Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.655
Filtrar
1.
Planta ; 259(6): 151, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733553

RESUMEN

MAIN CONCLUSION: The genetic diversity in tetraploid wheat provides a genetic pool for improving wheat productivity and environmental resilience. The tetraploid wheat had strong N uptake, translocation, and assimilation capacity under N deficit stress, thus alleviating growth inhibition and plant N loss to maintain healthy development and adapt to environments with low N inputs. Tetraploid wheat with a rich genetic variability provides an indispensable genetic pool for improving wheat yield. Mining the physiological mechanisms of tetraploid wheat in response to nitrogen (N) deficit stress is important for low-N-tolerant wheat breeding. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese spring (CS, hexaploid) as materials. We investigated the differences in the response of root morphology, leaf and root N accumulation, N uptake, translocation, and assimilation-related enzymes and gene expression in wheat seedlings of different ploidy under N deficit stress through hydroponic experiments. The tetraploid wheat (Kronos) had stronger adaptability to N deficit stress than the hexaploid wheats (YM25, CS). Kronos had better root growth under low N stress, expanding the N uptake area and enhancing N uptake to maintain higher NO3- and soluble protein contents. Kronos exhibited high TaNRT1.1, TaNRT2.1, and TaNRT2.2 expression in roots, which promoted NO3- uptake, and high TaNRT1.5 and TaNRT1.8 expression in roots and leaves enhanced NO3- translocation to the aboveground. NR and GS activity in roots and leaves of Kronos was higher by increasing the expression of TANIA2, TAGS1, and TAGS2, which enhanced the reduction and assimilation of NO3- as well as the re-assimilation of photorespiratory-released NH4+. Overall, Kronos had strong N uptake, translocation, and assimilation capacity under N deficit stress, alleviating growth inhibition and plant N loss and thus maintaining a healthy development. This study reveals the physiological mechanisms of tetraploid wheat that improve nitrogen uptake and assimilation adaptation under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.


Asunto(s)
Nitrógeno , Raíces de Plantas , Estrés Fisiológico , Tetraploidía , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Triticum/fisiología , Nitrógeno/metabolismo , Estrés Fisiológico/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Adaptación Fisiológica/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología , Plantones/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
BMC Plant Biol ; 24(1): 397, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745144

RESUMEN

BACKGROUND AND AIMS: The escalating issue of soil saline-alkalization poses a growing global challenge. Leymus chinensis is a perennial grass species commonly used in the establishment and renewal of artificial grasslands that is relatively tolerant of saline, alkaline, and drought conditions. Nonetheless, reduced seed setting rates limit its propagation, especially on alkali-degraded grassland. Inter-annual variations have an important effect on seed yield and germination under abiotic stress, and we therefore examined the effect of planting year on seed yield components of L. chinensis. METHODS: We grew transplanted L. chinensis seedlings in pots for two (Y2), three (Y3), or four (Y4) years and collected spikes for measurement of seed yield components, including spike length, seed setting rate, grain number per spike, and thousand seed weight. We then collected seeds produced by plants from different planting years and subjected them to alkaline stress (25 mM Na2CO3) for measurement of germination percentage and seedling growth. RESULTS: The seed setting rate of L. chinensis decreased with an increasing number of years in pot cultivation, but seed weight increased. Y2 plants had a higher seed setting rate and more grains per spike, whereas Y4 plants had a higher thousand seed weight. The effects of alkaline stress (25 mM Na2CO3) on seed germination were less pronounced for the heavier seeds produced by Y4 plants. Na2CO3 caused a 9.2% reduction in shoot length for seedlings derived from Y4 seeds but a 22.3% increase in shoot length for seedlings derived from Y3 seeds. CONCLUSIONS: Our findings demonstrate significant differences in seed yield components among three planting years of L. chinensis under pot cultivation in a finite space. Inter-annual variation in seed set may provide advantages to plants. Increased alkalinity tolerance of seed germination was observed for seeds produced in successive planting years.


Asunto(s)
Germinación , Poaceae , Semillas , Semillas/crecimiento & desarrollo , Semillas/fisiología , Poaceae/crecimiento & desarrollo , Poaceae/fisiología , Plantones/crecimiento & desarrollo , Plantones/fisiología , Suelo/química , Estrés Fisiológico
3.
Planta ; 259(6): 145, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709313

RESUMEN

MAIN CONCLUSION: Soil acidity in Ethiopian highlands impacts barley production, affecting root system architecture. Study on 300 accessions showed significant trait variability, with potential for breeding enhancement. Soil acidity poses a significant challenge to crop production in the highland regions of Ethiopia, particularly impacting barley, a crucial staple crop. This acidity serves as a key stressor affecting the root system architecture (RSA) of this crop. Hence, the objective of this study was to assess the RSA traits variability under acidic soil conditions using 300 barley accessions in a greenhouse experiment. The analysis of variance indicated substantial variations among the accessions across all traits studied. The phenotypic coefficient of variation ranged from 24.4% for shoot dry weight to 11.1% for root length, while the genotypic coefficient variation varied between 18.83 and 9.2% for shoot dry weight and root length, respectively. The broad-sense heritability ranged from 36.7% for leaf area to 69.9% for root length, highlighting considerable heritability among multiple traits. The genetic advances as a percent of the mean ranged from 13.63 to 29.9%, suggesting potential for enhancement of these traits through breeding efforts. Principal component analysis and cluster analysis grouped the genotypes into two major clusters, each containing varying numbers of genotypes with contrasting traits. This diverse group presents an opportunity to access a wide range of potential parent candidates to enhance genetic variablity in breeding programs. The Pearson correlation analysis revealed significant negative associations between root angle (RA) and other RSA traits. This helps indirect selection of accessions for further improvement in soil acidity. In conclusion, this study offers valuable insights into the RSA characteristics of barley in acidic soil conditions, aiding in the development of breeding strategies to enhance crop productivity in acidic soil environments.


Asunto(s)
Genotipo , Hordeum , Raíces de Plantas , Plantones , Suelo , Hordeum/genética , Hordeum/fisiología , Hordeum/crecimiento & desarrollo , Hordeum/anatomía & histología , Suelo/química , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología , Plantones/anatomía & histología , Fenotipo , Concentración de Iones de Hidrógeno , Fitomejoramiento , Etiopía , Variación Genética , Análisis de Componente Principal , Ácidos/metabolismo
4.
Planta ; 259(6): 144, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709333

RESUMEN

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Asunto(s)
Hordeum , Ácidos Indolacéticos , Óxido Nítrico , Estrés Oxidativo , Fosfatos , Fotosíntesis , Raíces de Plantas , Silicio , Hordeum/metabolismo , Hordeum/genética , Hordeum/efectos de los fármacos , Hordeum/crecimiento & desarrollo , Hordeum/fisiología , Silicio/farmacología , Silicio/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos/deficiencia , Fosfatos/metabolismo , Óxido Nítrico/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/genética , Plantones/efectos de los fármacos , Plantones/fisiología
5.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696020

RESUMEN

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Asunto(s)
Clorofila , Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Estrés Salino , Tolerancia a la Sal , Plantones , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/fisiología , Cucumis sativus/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Tolerancia a la Sal/genética , Estrés Salino/genética , Clorofila/metabolismo , Fotosíntesis/genética , Fotosíntesis/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Antioxidantes/metabolismo , Malondialdehído/metabolismo , Plantas Modificadas Genéticamente , Silenciador del Gen
6.
BMC Plant Biol ; 24(1): 365, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706002

RESUMEN

BACKGROUND: In plants, GABA plays a critical role in regulating salinity stress tolerance. However, the response of soybean seedlings (Glycine max L.) to exogenous gamma-aminobutyric acid (GABA) under saline stress conditions has not been fully elucidated. RESULTS: This study investigated the effects of exogenous GABA (2 mM) on plant biomass and the physiological mechanism through which soybean plants are affected by saline stress conditions (0, 40, and 80 mM of NaCl and Na2SO4 at a 1:1 molar ratio). We noticed that increased salinity stress negatively impacted the growth and metabolism of soybean seedlings, compared to control. The root-stem-leaf biomass (27- and 33%, 20- and 58%, and 25- and 59% under 40- and 80 mM stress, respectively]) and the concentration of chlorophyll a and chlorophyll b significantly decreased. Moreover, the carotenoid content increased significantly (by 35%) following treatment with 40 mM stress. The results exhibited significant increase in the concentration of hydrogen peroxide (H2O2), malondialdehyde (MDA), dehydroascorbic acid (DHA) oxidized glutathione (GSSG), Na+, and Cl- under 40- and 80 mM stress levels, respectively. However, the concentration of mineral nutrients, soluble proteins, and soluble sugars reduced significantly under both salinity stress levels. In contrast, the proline and glycine betaine concentrations increased compared with those in the control group. Moreover, the enzymatic activities of ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase, and glutathione peroxidase decreased significantly, while those of superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase increased following saline stress, indicating the overall sensitivity of the ascorbate-glutathione cycle (AsA-GSH). However, exogenous GABA decreased Na+, Cl-, H2O2, and MDA concentration but enhanced photosynthetic pigments, mineral nutrients (K+, K+/Na+ ratio, Zn2+, Fe2+, Mg2+, and Ca2+); osmolytes (proline, glycine betaine, soluble sugar, and soluble protein); enzymatic antioxidant activities; and AsA-GSH pools, thus reducing salinity-associated stress damage and resulting in improved growth and biomass. The positive impact of exogenously applied GABA on soybean plants could be attributed to its ability to improve their physiological stress response mechanisms and reduce harmful substances. CONCLUSION: Applying GABA to soybean plants could be an effective strategy for mitigating salinity stress. In the future, molecular studies may contribute to a better understanding of the mechanisms by which GABA regulates salt tolerance in soybeans.


Asunto(s)
Ácido Ascórbico , Glutatión , Glycine max , Plantones , Ácido gamma-Aminobutírico , Ácido gamma-Aminobutírico/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/fisiología , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Glycine max/fisiología , Ácido Ascórbico/metabolismo , Glutatión/metabolismo , Minerales/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Estrés Salino/efectos de los fármacos , Clorofila/metabolismo , Salinidad
8.
Sci Total Environ ; 929: 172626, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657823

RESUMEN

Despite the wide acknowledgment that plastic pollution and global warming have become serious agricultural concerns, their combined impact on crop growth remains poorly understood. Given the unabated megatrend, a simulated soil warming (SWT, +4 °C) microcosm experiment was carried out to provide a better understanding of the effects of temperature fluctuations on wheat seedlings exposed to nanoplastics (NPs, 1 g L-1 61.71 ± 0.31 nm polystyrene). It was documented that SWT induced oxidative stress in wheat seedlings grown in NPs-contaminated soil, with an 85.56 % increase in root activity, while decreasing plant height, fresh weight, and leaf area by 8.72 %, 47.68 %, and 15.04 % respectively. The SWT also resulted in reduced photosynthetic electron-transfer reaction and Calvin-Benson cycle in NPs-treated plants. Under NPs, SWT stimulated the tricarboxylic acid (TCA) metabolism and bio-oxidation process. The decrease in photosynthesis and the increase in respiration resulted in an 11.94 % decrease in net photosynthetic rate (Pn). These results indicated the complicated interplay between climate change and nanoplastic pollution in crop growth and underscored the potential risk of nanoplastic pollution on crop production in the future climate.


Asunto(s)
Fotosíntesis , Contaminantes del Suelo , Suelo , Temperatura , Triticum , Triticum/fisiología , Triticum/efectos de los fármacos , Suelo/química , Contaminantes del Suelo/toxicidad , Fotosíntesis/efectos de los fármacos , Calentamiento Global , Cambio Climático , Plantones/efectos de los fármacos , Plantones/fisiología , Plásticos/toxicidad
9.
Sci Rep ; 14(1): 8824, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38627563

RESUMEN

Understanding the physiological and biochemical responses of tree seedlings under extreme drought stress, along with recovery during rewatering, and potential intra-species differences, will allow us to more accurately predict forest responses under future climate change. Here, we selected seedlings from four provenances (AH (Anhui), JX (Jiangxi), HN (Hunan) and GX (Guangxi)) of Schima superba and carried out a simulated drought-rewatering experiment in a field-based rain-out shelter. Seedlings were progressively dried until they reached 50% and 88% loss of xylem hydraulic conductivity (PLC) (i.e. P50 and P88), respectively, before they were rehydrated and maintained at field capacity for 30 days. Leaf photosynthesis (Asat), water status, activity of superoxide dismutase (SOD), and proline (Pro) concentration were monitored and their associations were determined. Increasing drought significantly reduced Asat, relative water content (RWC) and SOD activity in all provenances, and Pro concentration was increased to improve water retention; all four provenances exhibited similar response patterns, associated with similar leaf ultrastructure at pre-drought. Upon rewatering, physiological and biochemical traits were restored to well-watered control values in P50-stressed seedlings. In P88-stressed seedlings, Pro was restored to control values, while SOD was not fully recovered. The recovery pattern differed partially among provenances. There was a progression of recovery following watering, with RWC firstly recovered, followed by SOD and Pro, and then Asat, but with significant associations among these traits. Collectively, the intra-specific differences of S. superba seedlings in recovery of physiology and biochemistry following rewatering highlight the need to consider variations within a given tree species coping with future more frequent drought stress.


Asunto(s)
Sequías , Superóxido Dismutasa , Prolina , China , Hojas de la Planta/química , Fotosíntesis/fisiología , Plantones/fisiología , Árboles , Agua/análisis
10.
Sci Total Environ ; 927: 172163, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569958

RESUMEN

The early growth stage of plants is vital to community diversity and community regeneration. The Janzen-Connell hypothesis predicts that conspecific density dependence lowers the survival of conspecific seedlings by attracting specialist natural enemies, promoting the recruitment and performance of heterospecific neighbors. Recent work has underscored how this conspecific negative density dependence may be mediated by mutualists - such as how mycorrhizal fungi may mediate the accrual of host-specific pathogens beneath the crown of conspecific adult trees. Aboveground mutualist and enemy interactions exist as well, however, and may provide useful insight into density dependence that are as of yet unexplored. Using a long-term seedling demographic dataset in a subtropical forest plot in central China, we confirmed that conspecific neighborhoods had a significant negative effect on seedling survival in this subtropical forest. Furthermore, although we detected more leaf damage in species that were closely related to ants, we found that the presence of ants had significant positive effects on seedling survival. Beside this, we also found a negative effect of ant appearance on seedling growth which may reflect a trade-off between survival and growth. Overall, our findings suggested that ants and conspecific neighborhoods played important but inverse roles on seedling survival and growth. Our results suggest ants may mediate the influence of conspecific negative density dependence on seedling survival at community level.


Asunto(s)
Hormigas , Bosques , Herbivoria , Plantones , China , Animales , Plantones/fisiología , Hormigas/fisiología , Árboles/fisiología , Densidad de Población , Simbiosis
11.
Physiol Plant ; 176(2): e14275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566267

RESUMEN

Developing and cultivating rice varieties is a potent strategy for reclaiming salinity-affected soils for rice production. Nevertheless, the molecular mechanisms conferring salt tolerance, especially in conventional high-yield japonica rice varieties, remain obscure. In this study, Zhendao 23309 (ZD23309) exhibited significantly less grain yield reduction under a salt stress gradient than the control variety Wuyunjing 30 (WYJ30). High positive correlations between grain yield and dry matter accumulation at the jointing, heading and maturity stages indicated that early salt tolerance performance is a crucial hallmark for yield formation. After a mild salt stress (85 mM NaCl) of young seedlings, RNA sequencing (RNA-seq) of shoot and root separately identified a total of 1952 and 3647 differentially expressed genes (DEGs) in ZD23309, and 2114 and 2711 DEGs in WYJ30, respectively. Gene ontology (GO) analysis revealed numerous DEGs in ZD23309 that play pivotal roles in strengthening salt tolerance, encompassing the response to stimulus (GO:0050896) in shoots and nucleoside binding (GO:0001882) in roots. Additionally, distinct expression patterns were observed in a fraction of genes in the two rice varieties under salt stress, corroborating the efficacy of previously reported salt tolerance genes. Our research not only offers fresh insights into the differences in salt stress tolerance among conventional high-yield rice varieties but also unveils the intricate nature of salt tolerance mechanisms. These findings lay a solid groundwork for deciphering the mechanisms underlying salt tolerance.


Asunto(s)
Oryza , Oryza/fisiología , Perfilación de la Expresión Génica , Estrés Salino , Plantones/fisiología , Tolerancia a la Sal/genética
12.
Physiol Plant ; 176(3): e14298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38685770

RESUMEN

Aluminium (Al) toxicity causes major plant distress, affecting root growth, nutrient uptake and, ultimately, agricultural productivity. Lentil, which is a cheap source of vegetarian protein, is recognized to be sensitive to Al toxicity. Therefore, it is important to dissect the physiological and molecular mechanisms of Al tolerance in lentil. To understand the physiological system and proteome composition underlying Al tolerance, two genotypes [L-4602 (Al-tolerant) and BM-4 (Al-sensitive)] were studied at the seedling stage. L-4602 maintained a significantly higher root tolerance index and malate secretion with reduced Al accumulation than BM-4. Also, label-free proteomic analysis using ultra-performance liquid chromatography-tandem mass spectrometer exhibited significant regulation of Al-responsive proteins associated with antioxidants, signal transduction, calcium homeostasis, and regulation of glycolysis in L-4602 as compared to BM-4. Functional annotation suggested that transporter proteins (transmembrane protein, adenosine triphosphate-binding cassette transport-related protein and multi drug resistance protein), antioxidants associated proteins (nicotinamide adenine dinucleotide dependent oxidoreductase, oxidoreductase molybdopterin binding protein & peroxidases), kinases (calmodulin-domain kinase & protein kinase), and carbohydrate metabolism associated proteins (dihydrolipoamide acetyltransferase) were found to be abundant in tolerant genotype providing protection against Al toxicity. Overall, the root proteome uncovered in this study at seedling stage, along with the physiological parameters measured, allow a greater understanding of Al tolerance mechanism in lentil, thereby assisting in future crop improvement programmes.


Asunto(s)
Aluminio , Lens (Planta) , Proteínas de Plantas , Raíces de Plantas , Proteómica , Lens (Planta)/efectos de los fármacos , Lens (Planta)/fisiología , Lens (Planta)/genética , Lens (Planta)/metabolismo , Aluminio/toxicidad , Proteómica/métodos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Genotipo , Plantones/efectos de los fármacos , Plantones/fisiología , Plantones/genética , Plantones/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteoma/metabolismo , Antioxidantes/metabolismo
13.
Plant Physiol Biochem ; 210: 108548, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552263

RESUMEN

Salt stress is an important abiotic stress that seriously affects plant growth. In order to research the salt tolerance of walnut rootstocks so as to provide scientific basis for screening salt-tolerant walnut rootstocks, two kinds of black walnut seedlings, Juglans microcarpa L. (JM) and Juglans nigra L. (JN), were treated under salt stress with different concentrations of NaCl (0, 50, 100, and 200 mM) and the growth situation of seedlings were observed. The physiological indexes of JM and JN seedlings were also measured in different days after treatment. Our study showed salt stress inhibited seedlings growth and limited biomass accumulation. Walnut mainly increased osmotic adjustment ability by accumulation Pro and SS. Furthermore, with the duration of treatment time increased, SOD and APX activities decreased, TPC and TFC contents increased. Walnut accumulated Na mostly in roots and transported more K and Ca to aboveground parts. The growth and physiological response performance differed between JM and JN, specifically, the differences occurred in the ability to absorb minerals, regulate osmotic stress, and scavenge ROS. Salt tolerance of JM and JN was assessed by principal component analysis (PCA) and resulted in JN > JM. In conclusion, our results indicated that JN has higher salt tolerance than JM, and JN might be used as a potential germplasm resource for the genetic breeding of walnuts.


Asunto(s)
Juglans , Tolerancia a la Sal , Plantones , Juglans/fisiología , Juglans/metabolismo , Juglans/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/fisiología , Plantones/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Superóxido Dismutasa/metabolismo , Cloruro de Sodio/farmacología
14.
Plant Cell Environ ; 47(6): 2192-2205, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38481108

RESUMEN

Physiological water stress induced by low root temperatures might contribute to species-specific climatic limits of tree distribution. We investigated the low temperature sensitivity of root water uptake and transport in seedlings of 16 European tree species which reach their natural upper elevation distribution limits at different distances to the alpine treeline. We used 2H-H2O pulse-labelling to quantify the water uptake and transport velocity from roots to leaves in seedlings exposed to constant 15°C, 7°C or 2°C root temperature, but identical aboveground temperatures between 20°C and 25°C. In all species, low root temperatures reduced the water transport rate, accompanied by reduced stem water potentials and stomatal conductance. At 7°C root temperature, the relative water uptake rates among species correlated positively with the species-specific upper elevation limits, indicating an increasingly higher sensitivity to lower root zone temperatures, the lower a species' natural elevational distribution limit. Conversely, 2°C root temperature severely inhibited water uptake in all species, irrespective of the species' thermal elevational limits. We conclude that low temperature-induced hydraulic constraints contribute to the cold distribution limits of temperate tree species and are a potential physiological cause behind the low temperature limits of plant growth in general.


Asunto(s)
Frío , Raíces de Plantas , Especificidad de la Especie , Árboles , Agua , Agua/metabolismo , Raíces de Plantas/fisiología , Raíces de Plantas/metabolismo , Árboles/fisiología , Árboles/metabolismo , Altitud , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Plantones/fisiología , Plantones/metabolismo , Transporte Biológico , Estomas de Plantas/fisiología
15.
Planta ; 259(5): 95, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512412

RESUMEN

MAIN CONCLUSIONS: A novel image-based screening method for precisely identifying genotypic variations in rapeseed RSA under waterlogging stress was developed. Five key root traits were confirmed as good indicators of waterlogging and might be employed in breeding, particularly when using the MFVW approach. Waterlogging is a vital environmental factor that has detrimental effects on the growth and development of rapeseed (Brassica napus L.). Plant roots suffer from hypoxia under waterlogging, which ultimately confers yield penalty. Therefore, it is crucially important to understand the genetic variation of root system architecture (RSA) in response to waterlogging stress to guide the selection of new tolerant cultivars with favorable roots. This research was conducted to investigate RSA traits using image-based screening techniques to better understand how RSA changes over time during waterlogging at the seedling stage. First, we performed a t-test by comparing the relative root trait value between four tolerant and four sensitive accessions. The most important root characteristics associated with waterlogging tolerance at 12 h are total root length (TRL), total root surface area (TRSA), total root volume (TRV), total number of tips (TNT), and total number of forks (TNF). The root structures of 448 rapeseed accessions with or without waterlogging showed notable genetic diversity, and all traits were generally restrained under waterlogging conditions, except for the total root average diameter. Additionally, according to the evaluation and integration analysis of 448 accessions, we identified that five traits, TRL, TRSA, TRV, TNT, and TNF, were the most reliable traits for screening waterlogging-tolerant accessions. Using analysis of the membership function value (MFVW) and D-value of the five selected traits, 25 extremely waterlogging-tolerant materials were screened out. Waterlogging significantly reduced RSA, inhibiting root growth compared to the control. Additionally, waterlogging increased lipid peroxidation, accompanied by a decrease in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). This study effectively improves our understanding of the response of RSA to waterlogging. The image-based screening method developed in this study provides a new scientific guidance for quickly examining the basic RSA changes and precisely predicting waterlogging-tolerant rapeseed germplasms, thus expanding the genetic diversity of waterlogging-tolerant rapeseed germplasm available for breeding.


Asunto(s)
Brassica napus , Brassica rapa , Fitomejoramiento , Plantones/fisiología , Fenotipo , Genotipo
16.
Tree Physiol ; 44(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38470306

RESUMEN

Drought is a major environmental stressor that limits seedling growth. Several studies have found that some ectomycorrhizal fungi may increase the drought tolerance of nursery-raised seedlings. However, the precise role that different ectomycorrhizal fungi species play in drought tolerance remains unclear. We evaluated the transpiration rate of Pinus sylvestris seedlings under drought stress in greenhouse conditions by exposing seedlings to 10 ectomycorrhizal fungi species, with different functional traits (exploration type and hydrophobicity), and to 3 natural soil inoculums. We measured the transpiration and water potential of the seedlings during a 10-day drought period and a 14-day recovery period. We then analyzed their root morphology, stem, needle, root biomass and needle chlorophyll fluorescence. We showed that exposing seedlings to ectomycorrhizal fungi or soil inoculum had a positive effect on their transpiration rate during the driest period and through the recovery phase, leading to 2- to 3-fold higher transpiration rates compared with the nonexposed control seedlings. Seedlings exposed to medium-distance ectomycorrhizal fungi performed better than other exploration types under drought conditions, but ectomycorrhizal fungi hydrophobicity did not seem to affect the seedlings response to drought. No significant differences were observed in biomass accumulation and root morphology between the seedlings exposed to different ectomycorrhizal fungi species and the control. Our results highlight the positive and species-specific effect of ectomycorrhizal fungi exposure on drought tolerance in nursery-raised Scots pine seedlings. The studied ectomycorrhizal fungi functional traits may not be sufficient to predict the seedling response to drought stress, thus physiological studies across multiple species are needed to draw the correct conclusion. Our findings have potential practical implications for enhancing seedling drought tolerance in nursery plant production.


Asunto(s)
Micorrizas , Pinus sylvestris , Pinus , Pinus sylvestris/fisiología , Plantones/fisiología , Biomasa , Raíces de Plantas/fisiología , Sequías , Transpiración de Plantas/fisiología , Suelo , Pinus/fisiología
17.
Plant Physiol Biochem ; 207: 108415, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38324955

RESUMEN

Salinization of land is globally increasing due to climate change, and salinity stress is an important abiotic stressor that adversely affects agricultural productivity. In this study, we assessed a halotolerant endophytic bacterium, Pseudoxanthomonas sp. JBR18, for its potential as a plant growth-promoting agent with multiple beneficial properties. The strain exhibited tolerance to sodium chloride concentration of up to 7.5 % in the R2A medium. In vitro evaluation revealed that strain JBR18 possessed proteolytic, protease (EC 3.4), and cellulase (EC 3.2.1.4) activities, as well as the ability to produce indole-acetic acid, proline, and exopolysaccharides. Compared with the controls, co-cultivation of Arabidopsis seedlings with the strain JBR18 improved plant growth, rosette size, shoot and root fresh weight, and chlorophyll content under salinity stress. Moreover, JBR18-inoculated seedlings showed lower levels of malondialdehyde, reactive oxygen species, and Na+ uptake into plant cells under salt stress but higher levels of K+. Additionally, seedlings inoculated with JBR18 exhibited a delayed response time and quantity of salt-responsive genes RD29A, RD29B, RD20, RD22, and KIN1 under salt stress. These multiple effects suggest that Pseudoxanthomonas sp. JBR18 is a promising candidate for mitigating the negative impacts of salinity stress on plant growth. Our findings may assist in future efforts to develop eco-friendly strategies for managing abiotic stress and enhancing plant tolerance to salt stress.


Asunto(s)
Arabidopsis , Plantones , Plantones/fisiología , Arabidopsis/genética , Tolerancia a la Sal , Bacterias , Estrés Fisiológico/genética
18.
Physiol Plant ; 176(1): e14202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356406

RESUMEN

Drought, a widespread abiotic stressor, exerts a profound impact on agriculture, impeding germination and plant growth, and reducing crop yields. In the present investigation, the osmotolerant rhizobacteria Bacillus casamancensis strain MKS-6 and Bacillus sp. strain MRD-17 were assessed for their effects on molecular processes involved in mustard germination under osmotic stress conditions. Enhancement in germination was evidenced by improved germination percentages, plumule and radicle lengths, and seedling vigor upon rhizobacterial inoculation under no stress and osmotic stress conditions. Under osmotic stress, rhizobacteria stimulated the production of gibberellins and reserve hydrolytic enzymes (lipases, isocitrate lyase, and malate synthase), bolstering germination. Furthermore, these rhizobacteria influenced the plant hormones such as gibberellins and abscisic acid (ABA), as well as signalling pathways, thereby promoting germination under osmotic stress. Reduced proline and glycine betaine accumulation, and down-regulation of transcription factors BjDREB1_2 and BjDREB2 (linked to ABA-independent signalling) in rhizobacteria-inoculated seedlings indicated that bacterial treatment mitigated water deficit stress during germination, independently of these pathways. Hence, the advantageous attributes exhibited by these rhizobacterial strains can be effectively harnessed to alleviate drought-induced stress in mustard crops, potentially through the development of targeted bio-formulations.


Asunto(s)
Bacillus , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Germinación , Giberelinas/farmacología , Planta de la Mostaza/metabolismo , Presión Osmótica/fisiología , Semillas , Plantones/fisiología , Deshidratación
19.
Plant Cell Environ ; 47(5): 1640-1655, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38282466

RESUMEN

How different stressors impact plant health and memory when they are imposed in different generations in wild ecosystems is still scarce. Here, we address how different environments shape heritable memory for the next generation in seeds and seedlings of Pinus radiata, a long-lived species with economic interest. The performance of the seedlings belonging to two wild clonal subpopulations (optimal fertirrigation vs. slightly stressful conditions) was tested under heat stress through physiological profiling and comparative time-series chloroplast proteomics. In addition, we explored the seeds conducting a physiological characterization and targeted transcriptomic profiling in both subpopulations. Our results showed differential responses between them, evidencing a cross-stress transgenerational memory. Seedlings belonging to the stressed subpopulation retained key proteins related to Photosystem II, chloroplast-to-nucleus signalling and osmoprotection which helped to overcome the applied heat stress. The seeds also showed a differential gene expression profile for targeted genes and microRNAs, as well as an increased content of starch and secondary metabolites, molecules which showed potential interest as biomarkers for early selection of primed plants. Thus, these finds not only delve into transgenerational cross-stress memory in trees, but also provide a new biotechnological tool for forest design.


Asunto(s)
Ecosistema , Pinus , Femenino , Humanos , Proteoma/metabolismo , Pinus/genética , Sequías , Madres , Núcleo Familiar , Plantones/fisiología , Respuesta al Choque Térmico , Semillas/genética , Cloroplastos , Estrés Fisiológico
20.
Plant J ; 118(3): 696-716, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38193347

RESUMEN

The root system is important for the absorption of water and nutrients by plants. Cultivating and selecting a root system architecture (RSA) with good adaptability and ultrahigh productivity have become the primary goals of agricultural improvement. Exploring the correlation between the RSA and crop yield is important for cultivating crop varieties with high-stress resistance and productivity. In this study, 277 cucumber varieties were collected for root system image analysis and yield using germination plates and greenhouse cultivation. Deep learning tools were used to train ResNet50 and U-Net models for image classification and segmentation of seedlings and to perform quality inspection and productivity prediction of cucumber seedling root system images. The results showed that U-Net can automatically extract cucumber root systems with high quality (F1_score ≥ 0.95), and the trained ResNet50 can predict cucumber yield grade through seedling root system image, with the highest F1_score reaching 0.86 using 10-day-old seedlings. The root angle had the strongest correlation with yield, and the shallow- and steep-angle frequencies had significant positive and negative correlations with yield, respectively. RSA and nutrient absorption jointly affected the production capacity of cucumber plants. The germination plate planting method and automated root system segmentation model used in this study are convenient for high-throughput phenotypic (HTP) research on root systems. Moreover, using seedling root system images to predict yield grade provides a new method for rapidly breeding high-yield RSA in crops such as cucumbers.


Asunto(s)
Cucumis sativus , Aprendizaje Profundo , Raíces de Plantas , Plantones , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/fisiología , Plantones/crecimiento & desarrollo , Plantones/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Productos Agrícolas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...