Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.800
Filtrar
1.
Science ; 384(6695): 513-514, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38696584

RESUMEN

Natural infections are distinct from those of laboratory-or zombie-strains.


Asunto(s)
Malaria , Animales , Malaria/parasitología , Humanos , Plasmodium/genética
2.
Anal Chem ; 96(19): 7524-7531, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38695755

RESUMEN

Asymptomatic infections of Plasmodium parasites are major obstacles to malaria control and elimination. A sensitive, specific, and user-friendly method is urgently needed for point-of-care (POC) Plasmodium diagnostics in asymptomatic malaria, especially in resource-limited settings. In this work, we present a POC method (termed Cas13a-SDT) based on the cascade sequence recognition and signal amplification of dual Cas13a trans-cleavage and strand displacement-triggered transcription (SDT). Cas13a-SDT not only achieves exceptional specificity in discriminating the target RNA from nontarget RNAs with any cross-interaction but also meets the sensitivity criterion set by the World Health Organization (WHO) for effective malaria detection. Remarkably, this novel method was successfully applied to screen malaria in asymptomatic infections from clinical samples. The proposed method provides a user-friendly and visually interpretable output mode while maintaining high accuracy and reliability comparable to RT-PCR. These excellent features demonstrate the significant potential of Cas13a-SDT for POC diagnosis of Plasmodium infections, laying a vital foundation for advancing malaria control and elimination efforts.


Asunto(s)
Sistemas CRISPR-Cas , Malaria , Sistemas de Atención de Punto , Malaria/diagnóstico , Malaria/parasitología , Humanos , Sistemas CRISPR-Cas/genética , Plasmodium/genética , Plasmodium/aislamiento & purificación , Transcripción Genética
3.
Sci Rep ; 14(1): 9871, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38684775

RESUMEN

The Plasmodium is responsible for malaria which poses a major health threat, globally. This study is based on the estimation of the relative abundance of mosquitoes, and finding out the correlations of meteorological parameters (temperature, humidity and rainfall) with the abundance of mosquitoes. In addition, this study also focused on the use of nested PCR (species-specific nucleotide sequences of 18S rRNA genes) to explore the Plasmodium spp. in female Anopheles. In the current study, the percentage relative abundance of Culex mosquitoes was 57.65% and Anopheles 42.34% among the study areas. In addition, the highest number of mosquitoes was found in March in district Mandi Bahauddin at 21 °C (Tmax = 27, Tmin = 15) average temperature, 69% average relative humidity and 131 mm rainfall, and these climatic factors were found to affect the abundance of the mosquitoes, directly or indirectly. Molecular analysis showed that overall, 41.3% of the female Anopheles pools were positive for genus Plasmodium. Among species, the prevalence of Plasmodium (P.) vivax (78.1%) was significantly higher than P. falciparum (21.9%). This study will be helpful in the estimation of future risk of mosquito-borne diseases along with population dynamic of mosquitoes to enhance the effectiveness of vector surveillance and control programs.


Asunto(s)
Anopheles , Malaria , Mosquitos Vectores , Plasmodium , Reacción en Cadena de la Polimerasa , Animales , Anopheles/parasitología , Anopheles/genética , Mosquitos Vectores/parasitología , Mosquitos Vectores/genética , Reacción en Cadena de la Polimerasa/métodos , Femenino , Plasmodium/genética , Plasmodium/aislamiento & purificación , Malaria/epidemiología , Malaria/parasitología , Malaria/transmisión , ARN Ribosómico 18S/genética , Culex/parasitología , Culex/genética , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/genética
4.
Int J Infect Dis ; 143: 107013, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38499057

RESUMEN

OBJECTIVES: We investigated the diversity and dynamics of Plasmodium infection in serially collected samples from asymptomatic participants of a clinical trial assessing the efficacy and safety of ivermectin in Gabon. We checked whether the baseline sample reflected the P. falciparum genotype and Plasmodium species diversity seen over 7 days of follow-up. METHODS: Blood samples were collected at inclusion, every 8 hours until hour 72, daily until day 7, and on day 14. Plasmodium species was determined by qPCR and pfmsp1 length polymorphism was assessed for P. falciparum genotyping. RESULTS: In 17/48 (35%) individuals, all pfmsp1 genotypes identified during the assessed period were detected at baseline; in 31/48 (65%), new genotypes were found during follow-up. Additional sampling at hour 24 allowed the identification of all genotypes seen over 7 days in 50% of the individuals. Ivermectin did not impact the genotype dynamics. Mixed Plasmodium spp. infections were detected in 28/49 (57%) individuals at baseline, and detection of non-falciparum infections during follow-up varied. CONCLUSIONS: Our results reveal complex intra-host dynamics of P. falciparum genotypes and Plasmodium species and underscore the importance of serial sampling in clinical trials for antimalarial drugs with asymptomatically P. falciparum-infected individuals. This might allow a more accurate identification of genotypes in multiple infections, impacting the assessment of drug efficacy.


Asunto(s)
Infecciones Asintomáticas , Genotipo , Ivermectina , Malaria Falciparum , Humanos , Gabón/epidemiología , Infecciones Asintomáticas/epidemiología , Adulto , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Malaria Falciparum/tratamiento farmacológico , Masculino , Ivermectina/uso terapéutico , Femenino , Variación Genética , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium/genética , Plasmodium/clasificación , Plasmodium/aislamiento & purificación , Plasmodium/efectos de los fármacos , Adulto Joven
5.
Parasit Vectors ; 17(1): 150, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519966

RESUMEN

BACKGROUND: Mosquitoes (Culicidae) are vectors for most malaria parasites of the Plasmodium species and are required for Plasmodium spp. to complete their life cycle. Despite having 16 species of mosquitoes and the detection of many Plasmodium species in birds, little is known about the role of different mosquito species in the avian malaria life cycle in New Zealand. METHODS: In this study, we used nested polymerase chain reaction (PCR) and real-time PCR to determine Plasmodium spp. prevalence and diversity of mitochondrial cytochrome b gene sequences in wild-caught mosquitoes sampled across ten sites on the North Island of New Zealand during 2012-2014. The mosquitoes were pooled by species and location collected, and the thorax and abdomens were examined separately for Plasmodium spp. DNA. Akaike information criterion (AIC) modeling was used to test whether location, year of sampling, and mosquito species were significant predictors of minimum infection rates (MIR). RESULTS: We collected 788 unengorged mosquitoes of six species, both native and introduced. The most frequently caught mosquito species were the introduced Aedes notoscriptus and the native Culex pervigilans. Plasmodium sp DNA was detected in 37% of matched thorax and abdomen pools. When considered separately, 33% of abdomen and 23% of thorax pools tested positive by nested PCR. The MIR of the positive thorax pools from introduced mosquito species was 1.79% for Ae. notoscriptus and 0% for Cx. quinquefasciatus, while the MIR for the positive thorax pools of native mosquito species was 4.9% for Cx. pervigilans and 0% for Opifex fuscus. For the overall MIR, site and mosquito species were significant predictors of Plasmodium overall MIR. Aedes notoscriptus and Cx. pervigilans were positive for malaria DNA in the thorax samples, indicating that they may play a role as avian malaria vectors. Four different Plasmodium lineages (SYAT05, LINN1, GRW6, and a new lineage of P (Haemamoeba) sp. AENOT11) were identified in the pooled samples. CONCLUSIONS: This is the first detection of avian Plasmodium DNA extracted from thoraxes of native Culex and introduced Aedes mosquito species in New Zealand and therefore the first study providing an indication of potential vectors in this country.


Asunto(s)
Aedes , Anopheles , Culex , Malaria Aviar , Malaria , Plasmodium , Animales , Malaria Aviar/parasitología , Anopheles/genética , Nueva Zelanda/epidemiología , Mosquitos Vectores/parasitología , Culex/genética , Plasmodium/genética , Aedes/genética , Aves/parasitología , ADN Protozoario/genética , ADN Protozoario/análisis
6.
Acta Trop ; 254: 107187, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518834

RESUMEN

Over the past year, P. falciparum infections have declined in Thailand, yet nonhuman primate malaria infections have correspondingly increased, including Plasmodium knowlesi and P. cynomolgi. Nevertheless, little is known about simian malaria in its natural macaque hosts, Macaca mulatta and Macaca fascicularis. This study aims to address several research questions, including the prevalence and distribution of simian malaria in these two Thai wild macaque species, variations in infection between different macaque species and between M. fascicularis subspecies, and the genetic composition of these pathogens. Blood samples were collected from 82 M. mulatta and 690 M. fascicularis across 15 locations in Thailand, as well as two locations in Vietnam and Myanmar. We employed quantitative real-time PCR targeting the Plasmodium genus-specific 18S ribosomal RNA (rRNA) gene to detect malaria infection, with a limit of detection set at 1,215.98 parasites per mL. We genotyped eight microsatellite markers, and the P. cynomolgi dihydrofolate reductase gene (DHFR) was sequenced (N = 29). In total, 100 of 772 samples (13 %) tested positive for malaria, including 45 (13 %) for P. cynomolgi, 37 (13 %) for P. inui, 16 (5 %) for P. coatneyi, and 2 (0.25 %) for Hepatocystis sp. in Saraburi, central and Ranong, southern Thailand. Notably, simian malaria infection was observed exclusively in M. fascicularis and not in M. mulatta (P = 0.0002). Particularly, P. cynomolgi was detected in 21.7 % (45/207) of M. f. fascicularis living in Wat Tham Phrapothisat, Saraburi Province. The infection with simian malaria was statistically different between M. fascicularis and M. mulatta (P = 0.0002) but not within M. fascicularis subspecies (P = 0.78). A haplotype network analysis revealed that P. cynomolgi shares a lineage with reference strains obtained from macaques. No mutation in the predicted binding pocket of PcyDHFR to pyrimethamine was observed. This study reveals a significant prevalence of simian malaria infection in M. fascicularis. The clonal genotypes of P. cynomolgi suggest in-reservoir breeding. These findings raise concerns about the potential spread of nonhuman primate malaria to humans and underscore the need for preventive measures.


Asunto(s)
Variación Genética , Macaca fascicularis , Malaria , ARN Ribosómico 18S , Animales , Tailandia/epidemiología , Malaria/epidemiología , Malaria/parasitología , Malaria/veterinaria , Macaca fascicularis/parasitología , Prevalencia , ARN Ribosómico 18S/genética , Macaca mulatta/parasitología , Genotipo , Repeticiones de Microsatélite/genética , Enfermedades de los Monos/parasitología , Enfermedades de los Monos/epidemiología , Humanos , Mianmar/epidemiología , Tetrahidrofolato Deshidrogenasa/genética , Plasmodium knowlesi/genética , Plasmodium knowlesi/aislamiento & purificación , Plasmodium/genética , Plasmodium/clasificación , Plasmodium/aislamiento & purificación , Vietnam/epidemiología , ADN Protozoario/genética , Plasmodium cynomolgi/genética , Plasmodium cynomolgi/clasificación , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Acta Trop ; 254: 107191, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554994

RESUMEN

Malaria remains one of the most perilous vector-borne infectious diseases for humans globally. Sexual gametocyte represents the exclusive stage at which malaria parasites are transmitted from the vertebrate to the Anopheles host. The feasible and effective approach to prevent malaria transmission is by addressing the sexual developmental processes, that is, gametocytogenesis and gametogenesis. Thus, this review will comprehensively cover advances in the regulation of gene expression surrounding the transmissible stages, including epigenetic, transcriptional, and post-transcriptional control.


Asunto(s)
Anopheles , Plasmodium , Animales , Anopheles/parasitología , Anopheles/genética , Plasmodium/genética , Plasmodium/crecimiento & desarrollo , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología , Mosquitos Vectores/crecimiento & desarrollo , Gametogénesis/genética , Humanos , Malaria/transmisión , Malaria/parasitología , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Epigénesis Genética , Desarrollo Sexual/genética
8.
Acta Parasitol ; 69(1): 1000-1004, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38498250

RESUMEN

BACKGROUND: Prompt malarial treatment and surveillance is crucial for accurate diagnosis of Plasmodium Sp. Gold standard microscopic examination has been widely applied for diagnosis of malaria in most part of the endemic areas. But in case of submicroscopic and asymptomatic microscopic diagnosis is questioned. The study aims to develop a simple, cost effective & robust nucleic acid amplification technique for the detection of malaria parasite. METHODS: Study population included 50 clinically diagnosed positive malaria patient samples from various pathological laboratories. Microscopy by preparing thick film was carried out of every sample for primary screening in the available facility of Surat Raktadan Kendra & Research Centre- Blood Bank. The conventional PCR (Polymerase Chain Reaction) was applied for genus-specific amplification targeting the 18 S rRNA gene of Plasmodium. Agarose gel electrophoresis was used to separate and analyze the amplified PCR product using 2% Agarose gel. RESULTS AND CONCLUSION: The study shows that nested PCR not only detected all microscopic positive samples, but also detected submicroscopic infections that were missed or misread by microscopy. Hence, the sensitivity of molecular based detection technique is proved to be more compared to microscopic examination.


Asunto(s)
Malaria , Reacción en Cadena de la Polimerasa , ARN Ribosómico 18S , Sensibilidad y Especificidad , Humanos , Malaria/diagnóstico , Malaria/parasitología , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 18S/genética , Plasmodium/genética , Plasmodium/aislamiento & purificación , Plasmodium/clasificación , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Microscopía/métodos , ADN Protozoario/genética
9.
Parasit Vectors ; 17(1): 104, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431686

RESUMEN

BACKGROUND: Mosquitoes belonging to the Anopheles gambiae sensu lato complex play a major role in malaria transmission across Africa. This study assessed the relative importance of members of An. gambiae s.l. in malaria transmission in two rural villages in the Republic of the Congo. METHODS: Adult mosquitoes were collected using electric aspirators from June to September 2022 in Djoumouna and Ntoula villages and were sorted by taxa based on their morphological features. Anopheles gambiae s.l. females were also molecularly identified. A TaqMan-based assay and a nested polymerase chain reaction (PCR) were performed to determine Plasmodium spp. in the mosquitoes. Entomological indexes were estimated, including man-biting rate, entomological inoculation rate (EIR), and diversity index. RESULTS: Among 176 mosquitoes collected, An. gambiae s.l. was predominant (85.8%), followed by Culex spp. (13.6%) and Aedes spp. (0.6%). Three members of the An. gambiae s.l. complex were collected in both villages, namely An. gambiae sensu stricto (74.3%), Anopheles coluzzii (22.9%) and Anopheles arabiensis (2.8%). Three Plasmodium species were detected in An. gambiae s.s. and An. coluzzii (Plasmodium falciparum, P. malariae and P. ovale), while only P. falciparum and P. malariae were found in An. arabiensis. In general, the Plasmodium infection rate was 35.1% (53/151) using the TaqMan-based assay, and nested PCR confirmed 77.4% (41/53) of those infections. The nightly EIR of An. gambiae s.l. was 0.125 infectious bites per person per night (ib/p/n) in Djoumouna and 0.08 ib/p/n in Ntoula. The EIR of An. gambiae s.s. in Djoumouna (0.11 ib/p/n) and Ntoula (0.04 ib/p/n) was higher than that of An. coluzzii (0.01 and 0.03 ib/p/n) and An. arabiensis (0.005 and 0.0 ib/p/n). CONCLUSIONS: This study provides baseline information on the dominant vectors and dynamics of malaria transmission in the rural areas of the Republic of the Congo during the dry season. In the two sampled villages, An. gambiae s.s. appears to play a predominant role in Plasmodium spp.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria , Plasmodium , Humanos , Masculino , Animales , Femenino , Estaciones del Año , Congo/epidemiología , Mosquitos Vectores , Malaria/epidemiología , Plasmodium/genética
10.
Malar J ; 23(1): 70, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459560

RESUMEN

BACKGROUND: Birds chronically infected with avian malaria parasites often show relapses of parasitaemia after latent stages marked by absence of parasites in the peripheral circulation. These relapses are assumed to result from the activation of dormant exo-erythrocytic stages produced during secondary (post-erythrocytic) merogony of avian Plasmodium spp. Yet, there is no morphological proof of persistent or dormant tissue stages in the avian host during latent infections. This study investigated persistence of Plasmodium relictum pSGS1 in birds with latent infections during winter, with the goal to detect presumed persisting tissue stages using a highly sensitive RNAscope® in situ hybridization technology. METHODS: Fourteen domestic canaries were infected with P. relictum pSGS1 by blood-inoculation in spring, and blood films examined during the first 4 months post infection, and during winter and spring of the following year. After parasitaemia was no longer detectable, half of the birds were dissected, and tissue samples investigated for persisting tissue stages using RNAscope ISH and histology. The remaining birds were blood-checked and dissected after re-appearance of parasitaemia, and their tissues equally examined. RESULTS: Systematic examination of tissues showed no exo-erythrocytic stages in birds exhibiting latent infections by blood-film microscopy, indicating absence of dormant tissue stages in P. relictum pSGS1-infected canaries. Instead, RNAscope ISH revealed rare P. relictum blood stages in capillaries of various tissues and organs, demonstrating persistence of the parasites in the microvasculature. Birds examined after re-appearance of parasitemia showed higher numbers of P. relictum blood stages in both capillaries and larger blood vessels, indicating replication during early spring and re-appearance in the peripheral circulation. CONCLUSIONS: The findings suggest that persistence of P. relictum pSGS1 during latent infection is mediated by continuous low-level erythrocytic merogony and possibly tissue sequestration of infected blood cells. Re-appearance of parasitaemia in spring seems to result from increased erythrocytic merogony, therefore representing recrudescence and not relapse in blood-inoculated canaries. Further, the study highlights strengths and limitations of the RNAscope ISH technology for the detection of rare parasite stages in tissues, providing directions for future research on persistence and tissue sequestration of avian malaria and related haemosporidian parasites.


Asunto(s)
Infección Latente , Malaria Aviar , Plasmodium , Animales , Canarios/parasitología , Malaria Aviar/parasitología , Plasmodium/genética , Aves , Hibridación in Situ , Parasitemia/parasitología , Recurrencia
11.
Mol Ecol ; 33(8): e17329, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38533805

RESUMEN

Patterns of pathogen prevalence are, at least partially, the result of coevolutionary host-pathogen interactions. Thus, exploring the distribution of host genetic variation in relation to infection by a pathogen within and across populations can provide important insights into mechanisms of host defence and adaptation. Here, we use a landscape genomics approach (Bayenv) in conjunction with genome-wide data (ddRADseq) to test for associations between avian malaria (Plasmodium) prevalence and host genetic variation across 13 populations of the island endemic Berthelot's pipit (Anthus berthelotii). Considerable and consistent spatial heterogeneity in malaria prevalence was observed among populations over a period of 15 years. The prevalence of malaria infection was also strongly positively correlated with pox (Avipoxvirus) prevalence. Multiple host loci showed significant associations with malaria prevalence after controlling for genome-wide neutral genetic structure. These sites were located near to or within genes linked to metabolism, stress response, transcriptional regulation, complement activity and the inflammatory response, many previously implicated in vertebrate responses to malarial infection. Our findings identify diverse genes - not just limited to the immune system - that may be involved in host protection against malaria and suggest that spatially variable pathogen pressure may be an important evolutionary driver of genetic divergence among wild animal populations, such as Berthelot's pipit. Furthermore, our data indicate that spatio-temporal variation in multiple different pathogens (e.g. malaria and pox in this case) may have to be studied together to develop a more holistic understanding of host pathogen-mediated evolution.


Asunto(s)
Malaria Aviar , Passeriformes , Plasmodium , Animales , Malaria Aviar/epidemiología , Malaria Aviar/genética , Plasmodium/genética , Flujo Genético , Passeriformes/genética , Genotipo
12.
Genome Biol Evol ; 16(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376987

RESUMEN

Plasmodium species causing malaria in humans are not monophyletic, sharing common ancestors with nonhuman primate parasites. Plasmodium gonderi is one of the few known Plasmodium species infecting African old-world monkeys that are not found in apes. This study reports a de novo assembled P. gonderi genome with complete chromosomes. The P. gonderi genome shares codon usage, syntenic blocks, and other characteristics with the human parasites Plasmodium ovale s.l. and Plasmodium malariae, also of African origin, and the human parasite Plasmodium vivax and species found in nonhuman primates from Southeast Asia. Using phylogenetically aware methods, newly identified syntenic blocks were found enriched with conserved metabolic genes. Regions outside those blocks harbored genes encoding proteins involved in the vertebrate host-Plasmodium relationship undergoing faster evolution. Such genome architecture may have facilitated colonizing vertebrate hosts. Phylogenomic analyses estimated the common ancestor between P. vivax and an African ape parasite P. vivax-like, within the Asian nonhuman primates parasites clade. Time estimates incorporating P. gonderi placed the P. vivax and P. vivax-like common ancestor in the late Pleistocene, a time of active migration of hominids between Africa and Asia. Thus, phylogenomic and time-tree analyses are consistent with an Asian origin for P. vivax and an introduction of P. vivax-like into Africa. Unlike other studies, time estimates for the clade with Plasmodium falciparum, the most lethal human malaria parasite, coincide with their host species radiation, African hominids. Overall, the newly assembled genome presented here has the quality to support comparative genomic investigations in Plasmodium.


Asunto(s)
Hominidae , Malaria , Parásitos , Plasmodium , Animales , Humanos , Plasmodium/genética , Malaria/veterinaria , Malaria/parasitología , Plasmodium vivax/genética , Plasmodium falciparum/genética , Primates/genética
13.
Cell Metab ; 36(3): 484-497.e6, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325373

RESUMEN

Severe forms of malaria are associated with systemic inflammation and host metabolism disorders; however, the interplay between these outcomes is poorly understood. Using a Plasmodium chabaudi model of malaria, we demonstrate that interferon (IFN) γ boosts glycolysis in splenic monocyte-derived dendritic cells (MODCs), leading to itaconate accumulation and disruption in the TCA cycle. Increased itaconate levels reduce mitochondrial functionality, which associates with organellar nucleic acid release and MODC restraint. We hypothesize that dysfunctional mitochondria release degraded DNA into the cytosol. Once mitochondrial DNA is sensitized, the activation of IRF3 and IRF7 promotes the expression of IFN-stimulated genes and checkpoint markers. Indeed, depletion of the STING-IRF3/IRF7 axis reduces PD-L1 expression, enabling activation of CD8+ T cells that control parasite proliferation. In summary, mitochondrial disruption caused by itaconate in MODCs leads to a suppressive effect in CD8+ T cells, which enhances parasitemia. We provide evidence that ACOD1 and itaconate are potential targets for adjunct antimalarial therapy.


Asunto(s)
Malaria , Plasmodium , Succinatos , Humanos , Monocitos , ADN Mitocondrial/metabolismo , Antígeno B7-H1/genética , Plasmodium/genética , Plasmodium/metabolismo , Malaria/metabolismo , Mitocondrias/metabolismo , Células Dendríticas
14.
Artículo en Inglés | MEDLINE | ID: mdl-38397717

RESUMEN

BACKGROUND: The first-line diagnosis of malaria in Mali is based on the use of rapid diagnostic tests (RDT) that detect the Histidin Rich Protein 2 (HRP2) antigen specific to Plasmodium falciparum. Our study, based on a real-time polymerase chain reaction (qPCR) gold standard, aimed to describe the distribution of the Plasmodium species in each administrative region of Mali and to assess the performance of RDTs. METHODS: We randomly selected 150 malaria-negative and up to 30 malaria-positive RDTs in 41 sites distributed in 9 regions of Mali. DNA extracted from the RDT nitrocellulose strip was assayed with a pan-Plasmodium qPCR. Positive samples were then analyzed with P. falciparum-, P. malariae-, P. vivax-, or P. ovale-specific qPCRs. RESULTS: Of the 1496 RDTs, 258 (18.6%) were positive for Plasmodium spp., of which 96.9% were P. falciparum. The P. vivax prevalence reached 21.1% in the north. RDT displayed acceptable diagnostic indices; the lower CI95% bounds of Youden indices were all ≥0.50, except in the north (Youden index 0.66 (95% CI [0.44-0.82]) and 0.63 (95% CI [0.33-0.83]. CONCLUSIONS: Overall, RDT diagnostic indices are adequate for the biological diagnosis of malaria in Mali. We recommend the use of RDTs detecting P. vivax-specific antigens in the north.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Plasmodium , Humanos , Prueba de Diagnóstico Rápido , Malí/epidemiología , Plasmodium vivax/genética , Pruebas Diagnósticas de Rutina , Sensibilidad y Especificidad , Malaria/diagnóstico , Plasmodium/genética , Malaria Vivax/epidemiología , Malaria Falciparum/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
Nat Commun ; 15(1): 1365, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355719

RESUMEN

Ribonucleoprotein complexes are composed of RNA, RNA-dependent proteins (RDPs) and RNA-binding proteins (RBPs), and play fundamental roles in RNA regulation. However, in the human malaria parasite, Plasmodium falciparum, identification and characterization of these proteins are particularly limited. In this study, we use an unbiased proteome-wide approach, called R-DeeP, a method based on sucrose density gradient ultracentrifugation, to identify RDPs. Quantitative analysis by mass spectrometry identifies 898 RDPs, including 545 proteins not yet associated with RNA. Results are further validated using a combination of computational and molecular approaches. Overall, this method provides the first snapshot of the Plasmodium protein-protein interaction network in the presence and absence of RNA. R-DeeP also helps to reconstruct Plasmodium multiprotein complexes based on co-segregation and deciphers their RNA-dependence. One RDP candidate, PF3D7_0823200, is functionally characterized and validated as a true RBP. Using enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP-seq), we demonstrate that this protein interacts with various Plasmodium non-coding transcripts, including the var genes and ap2 transcription factors.


Asunto(s)
Plasmodium , ARN , Humanos , ARN/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteoma/metabolismo , Proteínas de Unión al ARN/metabolismo , Plasmodium/genética
16.
Lancet Microbe ; 5(1): e72-e80, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185134

RESUMEN

BACKGROUND: Low-density asymptomatic Plasmodium infections are prevalent in endemic areas, but little is known about their natural history. The trajectories of these infections and their propensity to fluctuate to undetectable densities can affect detection in clinical trials and field studies. We aimed to classify the natural history of these infections in a high transmission area over 29 days. METHODS: In this longitudinal cohort study, we enrolled healthy, malaria-asymptomatic, afebrile, adults (age 18-59 years) and older children (age 8-17 years) in Katakwi District, Uganda, who were negative for Plasmodium infection on rapid diagnostic tests. Participants were instructed to self-collect one dried blood spot (DBS) per day for a maximum of 29 days. We excluded people if they were pregnant or taking antimalarials. During weekly clinic visits, staff collected a DBS and a 4 mL sample of venous blood. We analysed DBSs by Plasmodium 18S rRNA quantitative RT-PCR (qRT-PCR). We classified DBS by infection type as negative, P falciparum, non-P falciparum, or mixed. We plotted infection type over time for each participant and categorised trajectories as negative, new, cleared, chronic, or indeterminate infections. To estimate the effect of single timepoint sampling, we calculated the daily prevalence for each study day and estimated the number of infections that would have been detected in our population if sampling frequency was reduced. FINDINGS: Between April 9 and May 20, 2021, 3577 DBSs were collected by 128 (40 male adults, 60 female adults, 12 male children, and 16 female children) study participants. 2287 (64%) DBSs were categorised as negative, 751 (21%) as positive for P falciparum, 507 (14%) as positive for non-P falciparum, and 32 (1%) as mixed infections. Daily Plasmodium prevalence in the population ranged from 45·3% (95% CI 36·6-54·1) at baseline to 30·3% (21·9-38·6) on day 24. 37 (95%) of 39 P falciparum and 35 (85%) of 41 non-P falciparum infections would have been detected with every other day sampling, whereas, with weekly sampling, 35 (90%) P falciparum infections and 31 (76%) non-P falciparum infections would have been detected. INTERPRETATION: Parasite dynamics and species are highly variable among low-density asymptomatic Plasmodium infections. Sampling every other day or every 3 days detected a similar proportion of infections as daily sampling, whereas testing once per week or even less frequently could misclassify up to a third of the infections. Even using highly sensitive diagnostics, single timepoint testing might misclassify the true infection status of an individual. FUNDING: US National Institutes of Health and Bill and Melinda Gates Foundation.


Asunto(s)
Malaria Falciparum , Malaria , Plasmodium , Estados Unidos , Adulto , Niño , Embarazo , Humanos , Masculino , Femenino , Adolescente , Adulto Joven , Persona de Mediana Edad , Estudios Longitudinales , Uganda/epidemiología , Plasmodium falciparum/genética , Malaria/diagnóstico , Malaria/epidemiología , Plasmodium/genética , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Estudios de Cohortes , Infecciones Asintomáticas/epidemiología
17.
Elife ; 122024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252559

RESUMEN

Gametocytes play key roles in the Plasmodium lifecycle. They are essential for sexual reproduction as precursors of the gametes. They also play an essential role in parasite transmission to mosquitoes. Elucidation of the gene regulation at this stage is essential for understanding these two processes at the molecular level and for developing new strategies to break the parasite lifecycle. We identified a novel Plasmodium transcription factor (TF), designated as a partner of AP2-FG or PFG. In this article, we report that this TF regulates the gene expression in female gametocytes in concert with another female-specific TF AP2-FG. Upon the disruption of PFG, majority of female-specific genes were significantly downregulated, and female gametocyte lost the ability to produce ookinetes. ChIP-seq analysis showed that it was located in the same position as AP2-FG, indicating that these two TFs form a complex. ChIP-seq analysis of PFG in AP2-FG-disrupted parasites and ChIP-seq analysis of AP2-FG in PFG-disrupted parasites demonstrated that PFG mediates the binding of AP2-FG to a ten-base motif and that AP2-FG binds another motif, GCTCA, in the absence of PFG. In promoter assays, this five-base motif was identified as another female-specific cis-acting element. Genes under the control of the two forms of AP2-FG, with or without PFG, partly overlapped; however, each form had target preferences. These results suggested that combinations of these two forms generate various expression patterns among the extensive genes expressed in female gametocytes.


Asunto(s)
Culicidae , Plasmodium , Animales , Femenino , Factores de Transcripción/genética , Plasmodium/genética , Factor de Transcripción AP-2 , Bioensayo
18.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38230808

RESUMEN

The often tight association between parasites and their hosts means that under certain scenarios, the evolutionary histories of the two species can become closely coupled both through time and across space. Using spatial genetic inference, we identify a potential signal of common dispersal patterns in the Anopheles gambiae and Plasmodium falciparum host-parasite system as seen through a between-species correlation of the differences between geographic sampling location and geographic location predicted from the genome. This correlation may be due to coupled dispersal dynamics between host and parasite but may also reflect statistical artifacts due to uneven spatial distribution of sampling locations. Using continuous-space population genetics simulations, we investigate the degree to which uneven distribution of sampling locations leads to bias in prediction of spatial location from genetic data and implement methods to counter this effect. We demonstrate that while algorithmic bias presents a problem in inference from spatio-genetic data, the correlation structure between A. gambiae and P. falciparum predictions cannot be attributed to spatial bias alone and is thus likely a genetic signal of co-dispersal in a host-parasite system.


Asunto(s)
Anopheles , Malaria Falciparum , Parásitos , Plasmodium , Animales , Parásitos/genética , Anopheles/genética , Anopheles/parasitología , Interacciones Huésped-Parásitos/genética , Plasmodium/genética , Plasmodium falciparum/genética , Geografía
19.
J Wildl Dis ; 60(2): 413-420, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38294761

RESUMEN

The order Procellariiformes includes several species of seabirds that perform long-distance migrations crossing all the oceans. These movements may contribute to the dispersal and exchange of hemoparasites, such as haemosporidians. There is a lack of studies regarding the order Haemosporida in Procellariiformes, and, to date, only the genus Plasmodium has been reported. This survey investigated the occurrence of the three genera of haemosporidians, Plasmodium, Haemoproteus, and Leucocytozoon, in samples collected between 2013 and 2022 from 95 individuals of 14 species of Procellariiformes from southern Brazil, including live animals in rehabilitation centers, individuals caught as incidental bycatch, and carcasses found along the coast. A total of 171 samples of blood and fragments of liver and spleen were analyzed, with extracted DNA being subjected to a nested PCR followed by phylogeny analysis. All animals were negative for Plasmodium spp. and Leucocytozoon spp., but one Black-browed Albatross (Thalassarche melanophris) and one Manx Shearwater (Puffinus puffinus) specimen were positive for Haemoproteus spp. The sequences obtained from positive seabirds did not show 100% similarity with other known lineages available in the MalAvi database and thus were probably novel lineages. However, one sequence clustered together with Haemoproteus noctuae, a parasite from Strigiformes, while the other was grouped with Haemoproteus columbae, which is classically related to Columbiformes. These results suggest that both positive animals may have become infected when beached or in rehabilitation centers by a spillover of vectors from local birds. This highlights the importance of surveillance of the health of Procellariiformes regarding the possibility of dissemination of new pathogens in different bird populations.


Asunto(s)
Enfermedades de las Aves , Haemosporida , Parásitos , Plasmodium , Infecciones Protozoarias en Animales , Estrigiformes , Humanos , Animales , Brasil/epidemiología , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/parasitología , Haemosporida/genética , Plasmodium/genética , Filogenia , Infecciones Protozoarias en Animales/epidemiología , Infecciones Protozoarias en Animales/parasitología
20.
Parasit Vectors ; 17(1): 40, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287455

RESUMEN

BACKGROUND: The emergence of diseases of public health concern is enhanced by factors associated with global change, such as the introduction of invasive species. The Asian tiger mosquito (Aedes albopictus), considered a competent vector of different viruses and parasites, has been successfully introduced into Europe in recent decades. Molecular screening of parasites in mosquitoes (i.e. molecular xenomonitoring) is essential to understand the potential role of different native and invasive mosquito species in the local circulation of vector-borne parasites affecting both humans and wildlife. METHODS: The presence of avian Plasmodium parasites was molecularly tested in mosquitoes trapped in five localities with different environmental characteristics in southern Spain from May to November 2022. The species analyzed included the native Culex pipiens and Culiseta longiareolata and the invasive Ae. albopictus. RESULTS: Avian Plasmodium DNA was only found in Cx. pipiens with 31 positive out of 165 mosquito pools tested. None of the Ae. albopictus or Cs. longiareolata pools were positive for avian malaria parasites. Overall, eight Plasmodium lineages were identified, including a new lineage described here. No significant differences in parasite prevalence were found between localities or sampling sessions. CONCLUSIONS: Unlike the invasive Ae. albopictus, Cx. pipiens plays a key role in the transmission of avian Plasmodium in southern Spain. However, due to the recent establishment of Ae. albopictus in the area, further research on the role of this species in the local transmission of vector-borne pathogens with different reservoirs is required.


Asunto(s)
Aedes , Culex , Malaria Aviar , Plasmodium , Animales , Humanos , España/epidemiología , Mosquitos Vectores/parasitología , Aedes/parasitología , Plasmodium/genética , Culex/parasitología , Malaria Aviar/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...