Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem J ; 478(18): 3445-3466, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34486667

RESUMEN

OTU proteases antagonize the cellular defense in the host cells and involve in pathogenesis. Intriguingly, P. falciparum, P. vivax, and P. yoelii have an uncharacterized and highly conserved viral OTU-like proteins. However, their structure, function or inhibitors have not been previously reported. To this end, we have performed structural modeling, small molecule screening, deconjugation assays to characterize and develop first-in-class inhibitors of P. falciparum, P. vivax, and P. yoelii OTU-like proteins. These Plasmodium OTU-like proteins have highly conserved residues in the catalytic and inhibition pockets similar to viral OTU proteins. Plasmodium OTU proteins demonstrated Ubiquitin and ISG15 deconjugation activities as evident by intracellular ubiquitinated protein content analyzed by western blot and flow cytometry. We screened a library of small molecules to determine plasmodium OTU inhibitors with potent anti-malarial activity. Enrichment and correlation studies identified structurally similar molecules. We have identified two small molecules that inhibit P. falciparum, P. vivax, and P. yoelii OTU proteins (IC50 values as low as 30 nM) with potent anti-malarial activity (IC50 of 4.1-6.5 µM). We also established enzyme kinetics, druglikeness, ADME, and QSAR model. MD simulations allowed us to resolve how inhibitors interacted with plasmodium OTU proteins. These findings suggest that targeting malarial OTU-like proteases is a plausible strategy to develop new anti-malarial therapies.


Asunto(s)
Antimaláricos/farmacología , Péptido Hidrolasas/química , Plasmodium falciparum/efectos de los fármacos , Plasmodium vivax/efectos de los fármacos , Plasmodium yoelii/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Proteínas Protozoarias/química , Antimaláricos/química , Sitios de Unión , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium vivax/enzimología , Plasmodium vivax/genética , Plasmodium vivax/crecimiento & desarrollo , Plasmodium yoelii/enzimología , Plasmodium yoelii/genética , Plasmodium yoelii/crecimiento & desarrollo , Inhibidores de Proteasas/química , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad Cuantitativa , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación
2.
Parasitol Int ; 85: 102435, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34390881

RESUMEN

Malaria remains a heavy global burden on human health, and it is important to understand the molecular and cellular biology of the parasite to find targets for drug and vaccine development. The mouse malaria model is an essential tool to characterize the function of identified molecules; however, robust technologies for targeted gene deletions are still poorly developed for the widely used rodent malaria parasite, Plasmodium yoelii. To overcome this problem, we established a DiCre-loxP inducible knockout (iKO) system in P. yoelii, which showed more than 80% excision efficacy of the target locus and more than 90% reduction of locus transcripts 24 h (one cell cycle) after RAP administration. Using this developed system, cAMP-dependent protein kinase (PKAc) was inducibly disrupted and the phenotypes of the resulting PKAc-iKO parasites were analyzed. We found that PKAc-iKO parasites showed severe growth and erythrocyte invasion defects. We also found that disruption of PKAc impaired the secretion of AMA1 in P. yoelii, in contrast to a report showing no role of PKAc in AMA1 secretion in P. falciparum. This discrepancy may be related to the difference in the timing of AMA1 distribution to the merozoite surface, which occurs just after egress for P. falciparum, but after several minutes for P. yoelii. Secretions of PyEBL, Py235, and RON2 were not affected by the disruption of PKAc in P. yoelii. PyRON2 was already secreted to the merozoite surface immediately after merozoite egress, which is inconsistent with the current model that RON2 is injected into the erythrocyte cytosol. Further investigations are required to understand the role of RON2 exposed on the merozoite surface.


Asunto(s)
Antígenos de Protozoos/biosíntesis , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de la Membrana/biosíntesis , Plasmodium yoelii/genética , Proteínas Protozoarias/genética , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Merozoítos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Plasmodium yoelii/enzimología , Plasmodium yoelii/metabolismo , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/metabolismo
3.
Parasitol Int ; 76: 102056, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31953169

RESUMEN

Malaria parasites proliferate by repeated invasion of and multiplication within erythrocytes in the vertebrate host. Sexually committed intraerythrocytic parasites undergo sexual stage differentiation to become gametocytes. After ingestion by the mosquito, male and female gametocytes egress from erythrocytes and fertilize within the mosquito midgut. A complex signaling pathway likely responds to environmental events to trigger gametogenesis and regulate fertilization; however, such knowledge remains limited for malaria parasites. Several pseudokinases are highly transcribed at the gametocyte stage and are possible multi-functional regulators controlling critical steps of the life cycle. Here we characterized one pseudokinase, termed PypPK1, in Plasmodium yoelii that is highly expressed in schizonts and male gametocytes. Immunofluorescence assays for parasites expressing Myc-tagged PypPK1 confirmed that PypPK1 protein is expressed in schizonts and sexual stage parasites. Transgenic ΔpPK1 parasites, in which the PypPK1 gene locus was deleted by the CRISPR/Cas9 method, showed significant growth defect and reduced virulence in mice. In the blood stage, ΔpPK1 parasites were able to egress from erythrocytes similar to wild type parasites; however, erythrocyte invasion efficacy was significantly reduced. During sexual stage development, no clear changes were seen in male and female gametocytemias as well as gametocyte egress from erythrocytes; but, the number of exflagellation centers and oocysts were significantly reduced in ΔpPK1 parasites. Taken together, PypPK1 has an important role for both erythrocyte invasion and exflagellation center formation.


Asunto(s)
Eritrocitos/parasitología , Plasmodium yoelii/enzimología , Proteínas Protozoarias/genética , Animales , Femenino , Gametogénesis , Estadios del Ciclo de Vida , Masculino , Ratones , Ratones Endogámicos BALB C , Plasmodium yoelii/patogenicidad , Proteínas Protozoarias/metabolismo , Esquizontes/enzimología , Esquizontes/patogenicidad
4.
Exp Parasitol ; 179: 7-19, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28552792

RESUMEN

Malaria rapid diagnostic tests (RDTs) are immunochromatographic tests detecting Plasmodial histidine-rich protein 2 (HRP2), lactate dehydrogenase (LDH) and aldolase. HRP2 is only expressed by Plasmodium falciparum parasites and the protein is not expressed in several geographic isolates. LDH-based tests lack sensitivity compared to HRP2 tests. This study explored the potential of the Plasmodial glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a new malaria diagnostic biomarker. The P. falciparum and P. yoelii proteins were recombinantly expressed in BL21(DE3) Escherischia coli host cells and affinity purified. Two epitopes (CADGFLLIGEKKVSVFA and CAEKDPSQIPWGKCQV) specific to P. falciparum GAPDH and one common to all mammalian malaria species (CKDDTPIYVMGINH) were identified. Antibodies were raised in chickens against the two recombinant proteins and the three epitopes and affinity purified. The antibodies detected the native protein in parasite lysates as a 38 kDa protein and immunofluorescence verified a parasite cytosolic localization for the native protein. The antibodies suggested a 4-6 fold higher concentration of native PfGAPDH compared to PfLDH in immunoprecipitation and ELISA formats, consistent with published proteomic data. PfGAPDH shows interesting potential as a malaria diagnostic biomarker.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Malaria Falciparum/diagnóstico , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/biosíntesis , Especificidad de Anticuerpos , Antígenos de Protozoos/aislamiento & purificación , Biomarcadores/análisis , Western Blotting , Pollos , Cromatografía de Afinidad , Cromatografía en Gel , Diagnóstico Diferencial , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Epítopos/aislamiento & purificación , Técnica del Anticuerpo Fluorescente , Fructosa-Bifosfato Aldolasa/aislamiento & purificación , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/inmunología , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/inmunología , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulinas/inmunología , Inmunoprecipitación , L-Lactato Deshidrogenasa/inmunología , L-Lactato Deshidrogenasa/aislamiento & purificación , L-Lactato Deshidrogenasa/metabolismo , Plasmodium falciparum/inmunología , Plasmodium yoelii/enzimología , Plasmodium yoelii/inmunología , Proteínas Protozoarias/aislamiento & purificación , Conejos , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
5.
Protein Expr Purif ; 117: 17-25, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26341815

RESUMEN

Plasmodium spp. solely rely on glycolysis for their energy needs during asexual multiplication in human RBCs, making the enzymes of this pathway potential drug targets. We have cloned, over-expressed and purified Plasmodium falciparum glyceraldehyde-3-phosphate dehydrogenase (PfGapdh) for its kinetic and structural characterization. ∼ 30-40 mg pure recombinant enzyme with a specific activity of 12.6 units/mg could be obtained from a liter of Escherichia coli culture. This enzyme is a homotetramer with an optimal pH ∼ 9. Kinetic measurements gave KmNAD=0.28 ± 0.3 mM and KmG3P=0.25 ± 0.03 mM. Polyclonal antibodies raised in mice showed high specificity as was evident from their non-reactivity to rabbit muscle Gapdh. Western blot of Plasmodium yoelii cell extract showed three bands at MW ∼ 27, ∼ 37 and ∼ 51 kDa. Presence of PyGapdh in all the three bands was confirmed by LC-ESI-MS. Interestingly, the ∼ 51 kDa form was present only in the soluble fraction of the extract. Subcellular distribution of Gapdh in P. yoelii was examined using differential detergent fractionation method. Each fraction was analyzed on a two-dimensional gel and visualized by Western blotting. All four subcellular fractions (i.e., cytosol, nucleus, cytoskeleton and cell membranes) examined had Gapdh associated with them. Each fraction had multiple molecular species associated with them. Such species could arise only by multiple post-translational modifications. Structural heterogeneity observed among molecular species of PyGapdh and their diverse subcellular distribution, supports the view that Gapdh is likely to have multiple non-glycolytic functions in the parasite and could be an effective target for anti-malarial chemotherapeutics.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas , Plasmodium falciparum/enzimología , Plasmodium yoelii/enzimología , Proteínas Protozoarias , Animales , Gliceraldehído-3-Fosfato Deshidrogenasas/biosíntesis , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/aislamiento & purificación , Humanos , Ratones , Plasmodium falciparum/genética , Plasmodium yoelii/genética , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Especificidad de la Especie
6.
Cell Microbiol ; 17(12): 1848-67, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26118838

RESUMEN

The bud emergence (BEM)46 proteins are evolutionarily conserved members of the α/ß-hydrolase superfamily, which includes enzymes with diverse functions and a wide range of substrates. Here, we identified a Plasmodium BEM46-like protein (PBLP) and characterized it throughout the life cycle of the rodent malaria parasite Plasmodium yoelii. The Plasmodium BEM46-like protein is shown to be closely associated with the parasite plasma membrane of asexual erythrocytic stage schizonts and exo-erythrocytic schizonts; however, PBLP localizes to unique intracellular structures in sporozoites. Generation and analysis of P. yoelii knockout (Δpblp) parasite lines showed that PBLP has an important role in erythrocytic stage merozoite development with Δpblp parasites forming fewer merozoites during schizogony, which results in decreased parasitemia when compared with wild-type (WT) parasites. Δpblp parasites showed no defects in gametogenesis or transmission to mosquitoes; however, because they formed fewer oocysts there was a reduction in the number of developed sporozoites in infected mosquitoes when compared with WT. Although Δpblp sporozoites showed no apparent defect in mosquito salivary gland infection, they showed decreased infectivity in hepatocytes in vitro. Similarly, mice infected with Δpblp sporozoites exhibited a delay in the onset of blood-stage patency, which is likely caused by reduced sporozoite infectivity and a discernible delay in exo-erythrocytic merozoite formation. These data are consistent with the model that PBLP has an important role in parasite invasive-stage morphogenesis throughout the parasite life cycle.


Asunto(s)
Hidrolasas/metabolismo , Plasmodium yoelii/enzimología , Secuencia de Aminoácidos , Animales , Línea Celular , Membrana Celular/enzimología , Culicidae , Eliminación de Gen , Hidrolasas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Merozoítos/enzimología , Merozoítos/crecimiento & desarrollo , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Datos de Secuencia Molecular , Plasmodium yoelii/genética , Plasmodium yoelii/crecimiento & desarrollo , Esporozoítos/enzimología , Esporozoítos/crecimiento & desarrollo
7.
Parasitol Int ; 64(4): 60-3, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25701649

RESUMEN

Rodent malaria is a useful model for evaluating the efficacy of malaria vaccine candidates; however, labor-intensive microscopic parasite counting hampers the use of an in vivo parasite challenge in high-throughput screening. The measurement of malaria parasite lactate dehydrogenase (pLDH) activity, which is commonly used in the in vitro growth inhibition assay of Plasmodium falciparum, may be the cheapest and simplest alternative to microscopic parasite counting. However, the pLDH assay has not been applied in the in vivo rodent malaria model. Here, we showed that the pLDH assay is reliable and accurately determines parasitemia in the rodent malaria model. pLDH activity measured using a chromogenic substrate reflects the parasite number in the blood; it allows fast and easy assessment using a conventional microplate reader. To validate this approach, we synthesized recombinant PyMSP1-19 protein (rPyMSP1-19) using a wheat germ cell-free protein synthesis system and immunized mice with rPyMSP1-19. The antisera showed specific reactivity on the surface of the Plasmodium yoelii merozoite and immunized mice were protected against a lethal P. yoelii 17 XL challenge. The pLDH assay quickly and easily demonstrated a significant reduction of the parasite numbers in the immunized mice. Accordingly, the pLDH assay proved to be an efficient alternative to rodent malaria parasite counting, and may therefore accelerate in vivo vaccine candidate screening.


Asunto(s)
L-Lactato Deshidrogenasa/metabolismo , Vacunas contra la Malaria/inmunología , Malaria/parasitología , Parasitemia , Plasmodium yoelii/enzimología , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Ensayos Analíticos de Alto Rendimiento/métodos , Inmunización , Malaria/inmunología , Proteína 1 de Superficie de Merozoito/inmunología , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Plasmodium yoelii/inmunología , Plasmodium yoelii/fisiología , Proteínas Recombinantes/inmunología
8.
Mol Microbiol ; 91(4): 679-93, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24330260

RESUMEN

Malaria parasites scavenge nutrients from their host but also harbour enzymatic pathways for de novo macromolecule synthesis. One such pathway is apicoplast-targeted type II fatty acid synthesis, which is essential for late liver-stage development in rodent malaria. It is likely that fatty acids synthesized in the apicoplast are ultimately incorporated into membrane phospholipids necessary for exoerythrocytic merozoite formation. We hypothesized that these synthesized fatty acids are being utilized for apicoplast-targeted phosphatidic acid synthesis, the phospholipid precursor. Phosphatidic acid is typically synthesized in a three-step reaction utilizing three enzymes: glycerol 3-phosphate dehydrogenase, glycerol 3-phosphate acyltransferase and lysophosphatidic acid acyltransferase. The Plasmodium genome is predicted to harbour genes for both apicoplast- and cytosol/endoplasmic reticulum-targeted phosphatidic acid synthesis. Our research shows that apicoplast-targeted Plasmodium yoelii glycerol 3-phosphate dehydrogenase and glycerol 3-phosphate acyltransferase are expressed only during liver-stage development and deletion of the encoding genes resulted in late liver-stage growth arrest and lack of merozoite differentiation. However, the predicted apicoplast-targeted lysophosphatidic acid acyltransferase gene was refractory to deletion and was expressed solely in the endoplasmic reticulum throughout the parasite life cycle. Our results suggest that P. yoelii has an incomplete apicoplast-targeted phosphatidic acid synthesis pathway that is essential for liver-stage maturation.


Asunto(s)
Hígado/parasitología , Ácidos Fosfatidicos/biosíntesis , Plasmodium yoelii/enzimología , Plasmodium yoelii/fisiología , Plastidios/enzimología , Plastidios/metabolismo , Aciltransferasas/metabolismo , Animales , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Ratones , Plasmodium yoelii/metabolismo , Transporte de Proteínas
9.
Protein Sci ; 22(10): 1445-52, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23934758

RESUMEN

Peroxiredoxins (Prxs) are ubiquitous and efficient antioxidant enzymes crucial for redox homeostasis in most organisms, and are of special importance for disease-causing parasites that must protect themselves against the oxidative weapons of the human immune system. Here, we describe reanalyses of crystal structures of two Prxs from malaria parasites. In addition to producing improved structures, we provide normalizing explanations for features that had been noted as unusual in the original report of these structures (Qiu et al., BMC Struct Biol 2012;12:2). Most importantly, we provide evidence that the unusual octameric assembly seen for Plasmodium yoelii Prx1a is not physiologically relevant, but arises because the structure is not of authentic P. yoelii Prx1a, but a variant we designate PyPrx1a(N*) that has seven native N-terminal residues replaced by an affinity tag. This N-terminal modification disrupts a previously unrecognized, hydrophobic "ball-and-socket" interaction conserved at the B-type dimer interface of Prx1 subfamily enzymes, and is accommodated by a fascinating two-residue "ß-slip" type register shift in the ß-strand association at a dimer interface. The resulting change in the geometry of the dimer provides a simple explanation for octamer formation. This study illustrates how substantive impacts can occur in protein variants in which native residues have been altered.


Asunto(s)
Aminoácidos/química , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Plasmodium yoelii/enzimología , Multimerización de Proteína , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Variación Genética , Humanos , Malaria/parasitología , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Proteínas Protozoarias/metabolismo
10.
Exp Parasitol ; 129(4): 368-74, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21945268

RESUMEN

Plasmodium lacks the de novo pathway for purine biosynthesis and relies exclusively on the salvage pathway. Adenosine deaminase (ADA), first enzyme of the pathway, was purified and characterized from Plasmodium yoelii, a rodent malarial species, using ion exchange and gel exclusion chromatography. The purified enzyme is a 41 kDa monomer. The enzyme showed K(m) values of 41 µM and 34 µM for adenosine and 2'-deoxyadenosine, respectively. Erythro-9-(2-hydroxy-3-nonyl) adenine competitively inhibited P. yoelii ADA with K(i) value of 0.5 µM. The enzyme was inhibited by DEPC and protein denaturing agents, urea and GdmCl. Purine analogues significantly inhibited ADA activity. Inhibition by p-chloromercuribenzoate (pCMB) and N-ethylmaleimide (NEM) indicated the presence of functional -SH groups. Tryptophan fluorescence maxima of ADA shifted from 339 nm to 357 nm in presence of GdmCl. Refolding studies showed that higher GdmCl concentration irreversibly denatured the purified ADA. Fluorescence quenchers (KI and acrylamide) quenched the ADA fluorescence intensity to the varied degree. The observed differences in kinetic properties of P. yoelii ADA as compared to the erythrocyte enzyme may facilitate in designing specific inhibitors against ADA.


Asunto(s)
Adenosina Desaminasa/química , Adenosina Desaminasa/aislamiento & purificación , Plasmodium yoelii/enzimología , Adenosina Desaminasa/inmunología , Adenosina Desaminasa/metabolismo , Inhibidores de la Adenosina Desaminasa/farmacología , Sulfato de Amonio , Animales , Especificidad de Anticuerpos , Antimaláricos/farmacología , Fraccionamiento Químico , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Electroforesis en Gel de Poliacrilamida , Guanidina/farmacología , Concentración de Iones de Hidrógeno , Cinética , Ratones , Peso Molecular , Purinas/farmacología , Conejos , Espectrometría de Fluorescencia
11.
Int J Parasitol ; 41(3-4): 363-72, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21168413

RESUMEN

Malaria is still a major health problem in developing countries. It is caused by the protist parasite Plasmodium, in which proteases are activated during the cell cycle. Ca(2+) is a ubiquitous signalling ion that appears to regulate protease activity through changes in its intracellular concentration. Proteases are crucial to Plasmodium development, but the role of Ca(2+) in their activity is not fully understood. Here we investigated the role of Ca(2+) in protease modulation among rodent Plasmodium spp. Using fluorescence resonance energy transfer (FRET) peptides, we verified protease activity elicited by Ca(2+) from the endoplasmatic reticulum (ER) after stimulation with thapsigargin (a sarco/endoplasmatic reticulum Ca(2+)-ATPase (SERCA) inhibitor) and from acidic compartments by stimulation with nigericin (a K(+)/H(+) exchanger) or monensin (a Na(+)/H(+) exchanger). Intracellular (BAPTA/AM) and extracellular (EGTA) Ca(2+) chelators were used to investigate the role played by Ca(2+) in protease activation. In Plasmodium berghei both EGTA and BAPTA blocked protease activation, whilst in Plasmodium yoelii these compounds caused protease activation. The effects of protease inhibitors on thapsigargin-induced proteolysis also differed between the species. Pepstatin A and phenylmethylsulphonyl fluoride (PMSF) increased thapsigargin-induced proteolysis in P. berghei but decreased it in P. yoelii. Conversely, E64 reduced proteolysis in P. berghei but stimulated it in P. yoelii. The data point out key differences in proteolytic responses to Ca(2+) between species of Plasmodium.


Asunto(s)
Activación Enzimática/efectos de los fármacos , Eritrocitos/parasitología , Péptido Hidrolasas/metabolismo , Péptidos/farmacología , Plasmodium berghei/enzimología , Plasmodium yoelii/enzimología , Animales , Calcio/metabolismo , Calcio/farmacología , Señalización del Calcio , Transferencia Resonante de Energía de Fluorescencia , Monensina/farmacología , Nigericina/farmacología , Péptidos/química , Plasmodium berghei/efectos de los fármacos , Plasmodium yoelii/efectos de los fármacos , Tapsigargina/farmacología
12.
Mol Microbiol ; 75(4): 957-71, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20487290

RESUMEN

Plasmodium parasites possess a single pyruvate dehydrogenase (PDH) enzyme complex that is localized to the plastid-like organelle known as the apicoplast. Unlike most eukaryotes, Plasmodium parasites lack a mitochondrial PDH. The PDH complex catalyses the conversion of pyruvate to acetyl-CoA, an important precursor for the tricarboxylic acid cycle and type II fatty acid synthesis (FAS II). In this study, using a rodent malaria model, we show that the PDH E1 alpha and E3 subunits colocalize with the FAS II enzyme FabI in the apicoplast of liver stages but are not significantly expressed in blood stages. Deletion of the E1 alpha or E3 subunit genes of Plasmodium yoelii PDH caused no defect in blood stage development, mosquito stage development or early liver stage development. However, the gene deletions completely blocked the ability of the e1 alpha(-) and e3(-) parasites to form exo-erythrocytic merozoites during late liver stage development, thus preventing the initiation of a blood stage infection. This phenotype is similar to that observed for deletions of genes involved in FAS II elongation. The data strongly support the hypothesis that the sole role of PDH is to provide acetyl-CoA for FAS II.


Asunto(s)
Dihidrolipoamida Deshidrogenasa/metabolismo , Plasmodium yoelii/enzimología , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Animales , Dihidrolipoamida Deshidrogenasa/genética , Eritrocitos/parasitología , Femenino , Hígado/parasitología , Malaria/parasitología , Ratones , Ratones Endogámicos BALB C , Organismos Modificados Genéticamente , Plasmodium yoelii/genética , Plasmodium yoelii/crecimiento & desarrollo , Plasmodium yoelii/metabolismo , Plastidios/metabolismo , Piruvato Deshidrogenasa (Lipoamida)/genética
13.
J Biochem ; 145(2): 229-37, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19060309

RESUMEN

In the intraerythrocytic stages of malaria parasites, mitochondria lack obvious cristae and are assumed to derive energy through glycolysis. For understanding of parasite energy metabolism in mammalian hosts, we isolated rodent malaria mitochondria from Plasmodium yoelii yoelii grown in mice. As potential targets for antiplasmodial agents, we characterized two respiratory dehydrogenases, succinate:ubiquinone reductase (complex II) and alternative NADH dehydrogenase (NDH-II), which is absent in mammalian mitochondria. We found that P. y. yoelii complex II was a four-subunit enzyme and that kinetic properties were similar to those of mammalian enzymes, indicating that the Plasmodium complex II is favourable in catalysing the forward reaction of tricarboxylic acid cycle. Notably, Plasmodium complex II showed IC(50) value for atpenin A5 three-order of magnitudes higher than those of mammalian enzymes. Divergence of protist membrane anchor subunits from eukaryotic orthologs likely affects the inhibitor resistance. Kinetic properties and sensitivity to 2-heptyl-4-hydroxyquinoline-N-oxide and aurachin C of NADH: ubiquinone reductase activity of Plasmodium NDH-II were similar to those of plant and fungus enzymes but it can oxidize NADPH and deamino-NADH. Our findings are consistent with the notion that rodent malaria mitochondria are fully capable of oxidative phosphorylation and that these mitochondrial enzymes are potential targets for new antiplasmodials.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Mitocondrias/enzimología , NADH Deshidrogenasa/metabolismo , Plasmodium yoelii/enzimología , Proteínas Protozoarias/metabolismo , Animales , Transporte de Electrón , Complejo II de Transporte de Electrones/química , Femenino , Malaria/metabolismo , Malaria/parasitología , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , NADH Deshidrogenasa/química , Fosforilación Oxidativa , Plasmodium yoelii/metabolismo , Plasmodium yoelii/patogenicidad , Proteínas Protozoarias/química , Ratas
14.
FEMS Microbiol Lett ; 291(2): 157-61, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19076229

RESUMEN

In bacterial membranes and plant, fungus and protist mitochondria, NADH dehydrogenase (NDH-II) serves as an alternative NADH : quinone reductase, a non-proton-pumping single-subunit enzyme bound to the membrane surface. Because NDH-II is absent in mammalian mitochondria, it is a promising target for new antibiotics. However, inhibitors for NDH-II are rare and unspecific. Taking advantage of the simple organization of the respiratory chain in Gluconobacter oxydans, we carried out screening of natural compounds and identified scopafungin and gramicidin S as inhibitors for G. oxydans NDH-II. Further, we examined their effects on Mycobacterium smegmatis and Plasmodium yoelii NDH-II as model pathogen enzymes.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Gluconobacter oxydans/enzimología , Gramicidina/farmacología , NADH Deshidrogenasa/antagonistas & inhibidores , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Evaluación Preclínica de Medicamentos , Femenino , Cinética , Lactonas/farmacología , Malaria/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/enzimología , NADH Deshidrogenasa/química , NADH Deshidrogenasa/metabolismo , Plasmodium yoelii/efectos de los fármacos , Plasmodium yoelii/enzimología
15.
Parasitol Res ; 102(4): 805-7, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18180958

RESUMEN

The rapidly developing resistance to drugs used for prophylaxis and treatment of malaria makes the identification of novel drug targets necessary. Glutathione-S-transferase (GST, E.C. 2.5.1.18), an important enzyme of the glutathione (GSH) cycle, is considered to be an essential detoxification enzyme in malarial parasites. Selective inhibition of this enzyme from malarial parasites by various classes of inhibitors may be viewed as a potential chemotherapeutic strategy to combat malaria. Purified GST from Plasmodium yoelii was inhibited by compounds like protoporphyrin IX, cibacron blue, as well as by the GSH depletor menadione. Cytosolic GST was inhibited to varying degrees by each compound. A characteristic inhibitor constant (Ki) was obtained for each inhibitor. The possible consequences of selective inhibition of parasitic GST to that of the host are discussed in relation to the chemotherapy of malaria.


Asunto(s)
Glutatión Transferasa/antagonistas & inhibidores , Plasmodium yoelii/enzimología , Protoporfirinas/farmacología , Triazinas/farmacología , Vitamina K 3/farmacología , Animales , Relación Dosis-Respuesta a Droga , Cinética , Ratones , Plasmodium yoelii/efectos de los fármacos
16.
J Enzyme Inhib Med Chem ; 22(3): 327-42, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17674815

RESUMEN

Glutathione-S-transferase(s) (E.C.2.5.1.18, GSTs) have been investigated in parasitic protozoans with respect to their biochemistry and they have been identified as potential vaccine candidates in protozoan parasites and as a target in the synthesis of new antiparasitic agents. In a search towards the identification of novel biochemical targets for antimalarial drug design, the area of Plasmodium glutathione metabolism provides a number of promising chemotherapeutic targets. GST activity was determined in various subcellular fractions of malarial parasites Plasmodium yoelii and was found to be localized mainly in the cytosolic fraction (specific activity, c. 0.058 +/- 0.016 micromol/min/mg protein). Hemin, a known inhibitor of mammalian GST(s), maximally inhibited this enzyme from P. yoelii to nearly 86%. In a search towards synthetic modulators of malarial GST(s), 575 compounds belonging to various chemical classes were screened for their effect on crude GST from P. yoelii and 92 compounds belonging to various chemical classes were studied on recombinant GST from P. falciparum. Among all the compounds screened, 83 compounds inhibited/stimulated the enzyme from P. yoelii/P. falciparum to the extent of 40% or more.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Glutatión Transferasa/antagonistas & inhibidores , Glutatión Transferasa/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium yoelii/efectos de los fármacos , Plasmodium yoelii/enzimología , Animales , Antimaláricos/química , Evaluación Preclínica de Medicamentos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Glutatión Transferasa/metabolismo , Técnicas In Vitro , Cinética , Ratones , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
17.
Protein Pept Lett ; 14(6): 509-17, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17627589

RESUMEN

Phosphorylation by protein kinases is a very common and crucial process in many signal transduction pathways in eukaryotes. This review describes comparative protein kinase analysis of two apicomplexa Plasmodium falciparum (3D7 strain) and Plasmodium yoelii yoelii (17XNL strain) which are causative agents of malaria in human and African rat respectively. Sensitive bioinformatics techniques enable identification of 82 and 60 putative protein kinases in P. falciparum and P. yoelii yoelii respectively and these sequences could be classified into known subfamilies of protein kinases. The most populated kinase subfamilies in both the plasmodium species correspond to CAMK and CMGC groups. Analysis of domain architectures enables detection of uncommon domain organization in kinases of both the organisms such as kinase domain tethered to EF hands as well as PH domain. Components of MAPK signaling pathway is not well conserved in plasmodium organisms. Such observations suggest that plasmodium protein kinases are highly divergent from other eukaryotes. A transmembrane kinase with 6 membrane spanning segments in P. falciparum seems to have no orthologue in P. yoelii yoelii. 19 P. falciparum kinases have been found to cluster separately from P. yoelii yoelii kinases and hence these kinases are unique to P. falciparum genome. Only 28 orthologous pairs of kinases seem to be present between these two plasmodium organisms. Comparative kinome analysis of two plasmodium species has thus provided clues to the function of many protein kinases based upon their classification and domain organization and also implicate marked differences even between two plasmodium organisms.


Asunto(s)
Plasmodium falciparum/enzimología , Plasmodium yoelii/enzimología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Subunidades de Proteína/metabolismo , Animales , Genoma de Protozoos , Fosforilación , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium yoelii/genética , Plasmodium yoelii/metabolismo , Proteínas Quinasas/química , Subunidades de Proteína/química , Subunidades de Proteína/genética , Transducción de Señal
18.
Malar J ; 6: 45, 2007 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-17437631

RESUMEN

BACKGROUND: Enolase (2-Phospho-D-glycerate hydrolase; EC 4.2.1.11) is one of the glycolytic enzymes, whose levels are highly elevated in malaria parasite infected red blood cells. In several organisms, enolases have been shown to have diverse non glycolytic (moonlighting) biological functions. As functional diversity of a protein would require diverse sub-cellular localization, the possibility of involvement of Plasmodium enolase in moonlighting functions was examined by investigating its sub-cellular distribution in the murine malarial parasite, Plasmodium yoelii. METHODS: Cellular extracts of P. yoelii were fractionated in to soluble (cytosolic) and particulate (membranes, nuclear and cytoskeletal) fractions and were analysed by one and two-dimensional gel electrophoresis. These were probed by Western blotting using antibodies raised against recombinant Plasmodium falciparum enolase. Immunofluorescence assay was used for in situ localization. Fe+3 based metal affinity chromatography was used to isolate the phospho-proteome fraction from P. yoelii extracts. RESULTS: Apart from the expected presence of enolase in cytosol, this enzyme was also found to be associated with membranes, nuclei and cytoskeletal fractions. Nuclear presence was also confirmed by in situ immunofluorescence. Five different post translationally modified isoforms of enolase could be identified, of which at least three were due to the phosphorylation of the native form. in situ phosphorylation of enolase was also evident from the presence of enolase in purified phosphor-proteome of P. yoelii. Different sub-cellular fractions showed different isoform profiles. CONCLUSION: Association of enolase with nuclei, cell membranes and cytoskeletal elements suggests non-glycolytic functions for this enzyme in P. yoelii. Sub-cellular fraction specific isoform profiles indicate the importance of post-translational modifications in diverse localization of enolase in P. yoelii. Further, it is suggested that post-translational modifications of enolase may govern the recruitment of enolase for non-glycolytic functions.


Asunto(s)
Fosfopiruvato Hidratasa/metabolismo , Plasmodium yoelii/enzimología , Animales , Membrana Celular/enzimología , Núcleo Celular/enzimología , Citoesqueleto/enzimología , Técnica del Anticuerpo Fluorescente/métodos , Isoenzimas/metabolismo , Malaria/parasitología , Ratones , Fosforilación , Plasmodium yoelii/aislamiento & purificación , Procesamiento Proteico-Postraduccional , Fracciones Subcelulares/enzimología
19.
Parasitol Res ; 100(3): 581-8, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17024358

RESUMEN

Glutathione (GSH) metabolism represents a potential target for antiparasitic drug design. Glutathione-S-transferase (GST), an important enzyme of the GSH cycle, is considered to be an essential detoxification enzyme in parasitic species. Soluble GST from rodent malarial parasites Plasmodium yoelii was purified to homogeneity using a combination of salt precipitation, affinity chromatography on GSH-sepharose 6B and ultrafiltration. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed a single band and activity staining was also detected on PAGE gels. Kinetic studies on the purified enzyme revealed significant differences between the parasitic and mammalian enzymes. The purified enzyme exhibited an optimum pH of 8.2 and K (m) values of 0.2+/-0.213 and 3.3+/-0.056 mM with respect to co-substrate GSH and substrate 1-chloro-2, 4-dinitrobenzene (CDNB), respectively. Hemin, the known mammalian GST inhibitor was found to be a potent inhibitor of P. yoelii GST, with a K (i) of 4.0 microM.


Asunto(s)
Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Plasmodium yoelii/enzimología , Animales , Citosol/enzimología , Estabilidad de Enzimas , Glutatión Transferasa/antagonistas & inhibidores , Concentración de Iones de Hidrógeno , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...