Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.804
Filtrar
1.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731501

RESUMEN

Bacterial infection is a thorny problem, and it is of great significance to developing green and efficient biological antibacterial agents that can replace antibiotics. This study aimed to rapidly prepare a new type of green antibacterial nanoemulsion containing silver nanoparticles in one step by using Blumea balsamifera oil (BBO) as an oil phase and tea saponin (TS) as a natural emulsifier and reducing agent. The optimum preparation conditions of the AgNPs@BBO-TS NE were determined, as well as its physicochemical properties and antibacterial activity in vitro being investigated. The results showed that the average particle size of the AgNPs@BBO-TS NE was 249.47 ± 6.23 nm, the PDI was 0.239 ± 0.003, and the zeta potential was -35.82 ± 4.26 mV. The produced AgNPs@BBO-TS NE showed good stability after centrifugation and 30-day storage. Moreover, the AgNPs@BBO-TS NE had an excellent antimicrobial effect on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. These results demonstrated that the AgNPs@BBO-TS NE produced in this study can be used as an efficient and green antibacterial agent in the biomedical field.


Asunto(s)
Antibacterianos , Emulsiones , Tecnología Química Verde , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Plata , Antibacterianos/farmacología , Antibacterianos/química , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Staphylococcus aureus/efectos de los fármacos , Aceites de Plantas/química , Aceites de Plantas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Saponinas/química , Saponinas/farmacología
2.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731558

RESUMEN

Given the widespread prevalence of viruses, there is an escalating demand for antimicrobial composites. Although the composite of dialdehyde cellulose and silver nanoparticles (DAC@Ag1) exhibits excellent antibacterial properties, its weak mechanical characteristics hinder its practical applicability. To address this limitation, cellulose nanofibers (CNFs) were initially ammoniated to yield N-CNF, which was subsequently incorporated into DAC@Ag1 as an enhancer, forming DAC@Ag1/N-CNF. We systematically investigated the optimal amount of N-CNF and characterized the DAC@Ag1/N-CNF using FT-IR, XPS, and XRD analyses to evaluate its additional properties. Notably, the optimal mass ratio of N-CNF to DAC@Ag1 was found to be 5:5, resulting in a substantial enhancement in mechanical properties, with a 139.8% increase in tensile elongation and a 33.1% increase in strength, reaching 10% and 125.24 MPa, respectively, compared to DAC@Ag1 alone. Furthermore, the inhibition zones against Escherichia coli and Staphylococcus aureus were significantly expanded to 7.9 mm and 15.9 mm, respectively, surpassing those of DAC@Ag1 alone by 154.8% and 467.9%, indicating remarkable improvements in antimicrobial efficacy. Mechanism analysis highlighted synergistic effects from chemical covalent bonding and hydrogen bonding in the DAC@Ag1/N-CNF, enhancing the mechanical and antimicrobial properties significantly. The addition of N-CNF markedly augmented the properties of the composite film, thereby facilitating its broader application in the antimicrobial field.


Asunto(s)
Celulosa , Escherichia coli , Nanopartículas del Metal , Plata , Staphylococcus aureus , Plata/química , Nanopartículas del Metal/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Celulosa/química , Celulosa/análogos & derivados , Antibacterianos/farmacología , Antibacterianos/química , Nanofibras/química , Nanocompuestos/química , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/química , Antiinfecciosos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
3.
PeerJ ; 12: e16708, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715984

RESUMEN

The present work aimed at differentiating five Amaranthus species from Saudi Arabia according to their morphology and the ability in nanoparticle formulation. Biogenic silver nanoparticles (AgNPs) were synthesized from leaf extracts of the five Amaranthus species and characterized by different techniques. Fourier-transform infrared spectroscopy (FT-IR) was used to identify the phyto-constituents of Amaranthus species. The nanoparticles (NPs) were characterized by UV-visible spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The antibacterial activity of the synthesized NPs was tested against Staphylococcus aureus, E. coli, Klebsiella pneumoniae and Pseudomonas aeruginosa using the agar well diffusion method. Spherical NPs varying in size and functional groups from the five plant species were demonstrated by TEM, DLS and FTIR analysis, respectively. Variations in NPs characteristics could be related to the phytochemical composition of each Amaranthus species since they play a significant role in the reduction process. EDX confirmed the presence of Ag in plant fabricated AgNPs. Antibacterial activity varied among the species, possibly related to the NPs characteristics. Varied characteristics for the obtained AgNPs may reflect variations in the phytochemical composition type and concentration among Amaranthus species used for their fabrication.


Asunto(s)
Amaranthus , Antibacterianos , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Plata , Amaranthus/química , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier , Humanos , Pseudomonas aeruginosa/efectos de los fármacos , Hojas de la Planta/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Microscopía Electrónica de Transmisión , Arabia Saudita , Bacterias/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos
4.
Anal Chim Acta ; 1307: 342631, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719408

RESUMEN

BACKGROUND: Simultaneous detection of food contaminants is crucial in addressing the collective health hazards arising from the presence of multiple contaminants. However, traditional multi-competitive surface-enhanced Raman scattering (SERS) aptasensors face difficulties in achieving simultaneous accurate detection of multiple target substances due to the uncontrollable SERS "hot spots". In this study, using chloramphenicol (CAP) and estradiol (E2) as two target substances, we introduced a novel approach that combines machine learning methods with a dual SERS aptasensor, enabling simultaneous high-sensitivity and accurate detection of both target substances. RESULTS: The strategy effectively minimizes the interference from characteristic Raman peaks commonly encountered in traditional multi-competitive SERS aptasensors. For this sensing system, the Au@4-MBA@Ag nanoparticles modified with sulfhydryl (SH)-CAP aptamer and Au@DTNB@Ag NPs modified with sulfhydryl (SH)-E2 aptamer were used as signal probes. Additionally, Fe3O4@Au nanoflowers integrated with SH-CAP aptamer complementary DNA and SH-E2 aptamer complementary DNA were used as capture probes, respectively. When compared to linear regression random forest, and support vector regression (SVR) models, the proposed artificial neural network (ANN) model exhibited superior precision, demonstrating R2 values of 0.963, 0.976, 0.991, and 0.970 for the training set, test set, validation set, and entire dataset, respectively. Validation with ten spectral groups reported an average error of 244 µg L-1. SIGNIFICANCE: The essence of our study lies in its capacity to address a persistent challenge encountered by traditional multiple competitive SERS aptasensors - the interference generated by uncontrollable SERS "hot spots" that hinders simultaneous quantification. The accuracy of the predictive model for simultaneous detection of two target substances was significantly improved using machine learning tools. This innovative technique offers promising avenues for the accurate and high-sensitive simultaneous detection of multiple food and environmental contaminants.


Asunto(s)
Aptámeros de Nucleótidos , Oro , Aprendizaje Automático , Nanopartículas del Metal , Plata , Espectrometría Raman , Aptámeros de Nucleótidos/química , Plata/química , Oro/química , Nanopartículas del Metal/química , Cloranfenicol/análisis , Estradiol/análisis , Técnicas Biosensibles/métodos , Contaminación de Alimentos/análisis , Límite de Detección
5.
Sci Rep ; 14(1): 10618, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724594

RESUMEN

Various kinds of pets have been known to contract the ectoparasite Sarcoptes scabiei. Current acaricides are becoming less effective because of the resistance developed by the mite besides their adverse effects on the general activity and reproductive performance of domestic pets. For this reason, the present study aims to discover a novel and safe approach using silver and gold nanoparticles to fight Sarcoptic mange in rabbits as well as to explain their mechanism of action. 15 pet rabbits with clinical signs of Sarcoptic mange that were confirmed by the microscopic examination were used in our study. All rabbits used in this study were assessed positive for the presence of different developing stages of S. scabiei. Three groups of rabbits (n = 5) were used as follows: group (1) didn't receive any treatment, and group (2 and 3) was treated with either AgNPs or GNPs, respectively. Both nanoparticles were applied daily on the affected skin areas via a dressing and injected subcutaneously once a week for 2 weeks at a dose of 0.5 mg/kg bwt. Our results revealed that all rabbits were severely infested and took a mean score = 3. The skin lesions in rabbits that didn't receive any treatments progressed extensively and took a mean score = of 4. On the other hand, all nanoparticle-treated groups displayed marked improvement in the skin lesion and took an average score of 0-1. All NPs treated groups showed remarkable improvement in the microscopic pictures along with mild iNOS, TNF-α, and Cox-2 expression. Both nanoparticles could downregulate the m-RNA levels of IL-6 and IFγ and upregulate IL-10 and TGF-1ß genes to promote skin healing. Dressing rabbits with both NPs didn't affect either liver and kidney biomarkers or serum Ig levels indicating their safety. Our residual analysis detected AgNPs in the liver of rabbits but did not detect any residues of GNPs in such organs. We recommend using GNPs as an alternative acaricide to fight rabbit mange.


Asunto(s)
Oro , Nanopartículas del Metal , Sarcoptes scabiei , Escabiosis , Plata , Animales , Conejos , Nanopartículas del Metal/química , Nanopartículas del Metal/administración & dosificación , Oro/química , Escabiosis/tratamiento farmacológico , Escabiosis/parasitología , Plata/química , Sarcoptes scabiei/efectos de los fármacos , Piel/efectos de los fármacos , Piel/parasitología , Piel/patología , Piel/metabolismo
6.
BMC Biotechnol ; 24(1): 28, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702622

RESUMEN

Scientists know very little about the mechanisms underlying fish skin mucus, despite the fact that it is a component of the immune system. Fish skin mucus is an important component of defence against invasive infections. Recently, Fish skin and its mucus are gaining interest among immunologists. Characterization was done on the obtained silver nanoparticles Ag combined with Clarias gariepinus catfish epidermal mucus proteins (EMP-Ag-NPs) through UV-vis, FTIR, XRD, TEM, and SEM. Ag-NPs ranged in size from 4 to 20 nm, spherical in form and the angles were 38.10°, 44.20°, 64.40°, and 77.20°, Where wavelength change after formation of EMP-Ag-NPs as indicate of dark brown, the broad band recorded at wavelength at 391 nm. Additionally, the antimicrobial, antibiofilm and anticancer activities of EMP-Ag-NPs was assessed. The present results demonstrate high activity against unicellular fungi C. albicans, followed by E. faecalis. Antibiofilm results showed strong activity against both S. aureus and P. aeruginosa pathogens in a dose-dependent manner, without affecting planktonic cell growth. Also, cytotoxicity effect was investigated against normal cells (Vero), breast cancer cells (Mcf7) and hepatic carcinoma (HepG2) cell lines at concentrations (200-6.25 µg/mL) and current results showed highly anticancer effect of Ag-NPs at concentrations 100, 5 and 25 µg/mL exhibited rounding, shrinkage, deformation and granulation of Mcf7 and HepG2 with IC50 19.34 and 31.16 µg/mL respectively while Vero cells appeared rounded at concentration 50 µg/mL and normal shape at concentration 25, 12.5 and 6.25 µg/ml with IC50 35.85 µg/mL. This study evidence the potential efficacy of biologically generated Ag-NPs as a substitute medicinal agent against harmful microorganisms. Furthermore, it highlights their inhibitory effect on cancer cell lines.


Asunto(s)
Biopelículas , Bagres , Nanopartículas del Metal , Plata , Nanopartículas del Metal/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Plata/química , Plata/farmacología , Animales , Humanos , Moco/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Células Vero , Proteínas de Peces/farmacología , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Chlorocebus aethiops , Línea Celular Tumoral , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Candida albicans/efectos de los fármacos , Epidermis/metabolismo
7.
Artif Cells Nanomed Biotechnol ; 52(1): 238-249, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38696111

RESUMEN

Malaria is a mosquito-borne infectious disease that is caused by the Plasmodium parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of Terminalia bellirica, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from Plasmodium species were studied in silico as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of Terminalia bellirica were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, Plasmodium falciparum (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.


Asunto(s)
Antimaláricos , Tecnología Química Verde , Nanopartículas del Metal , Extractos Vegetales , Hojas de la Planta , Plasmodium falciparum , Plata , Terminalia , Plata/química , Plata/farmacología , Antimaláricos/química , Antimaláricos/farmacología , Antimaláricos/síntesis química , Nanopartículas del Metal/química , Terminalia/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Plasmodium falciparum/efectos de los fármacos , Simulación del Acoplamiento Molecular , Humanos
8.
Environ Geochem Health ; 46(6): 200, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696110

RESUMEN

Plant extracts are a great alternative to synthesizing nanoparticles of different metals and metal oxides. This green synthesis method has opened up numerous possibilities in various scientific domains. In present study, Leaf extract from Vitex negundo is a non-deciduous, long-lasting shrub from the Verbenaceae family is used as capping and reducing agents for the synthesis of silver and palladium nanoparticles. The characterization study UV-vis spectrophotometer analysis showed absorbance value around 320 nm which confirming that Ag-Pd nanoparticles have been successfully obtained. Further, SEM is used to investigate the morphology of Ag-Pd NPs, which revealing their spherical and rod-like configuration, aggregation, and the size of the particles are obtained between 50 and 100 nm. The successful synthesis of Ag-Pd NPs was further confirmed by the EDAX chart, which displayed the peak of Ag and Pd at bending energies between 0.5 and 1.5 keV. According to the quantitative study, Ag and Pd ions found about 5.24 and 13.28%, respectively. In addition, surface studies with TEM confirming that synthesized Ag-Pd NPs are predominates with spheres structure morphologies, with sizes averaging 11.20 nm and ranging from 10 to 20 nm. Further, Ag-Pd nanoparticles was applied as potential photocatalyst materials to degrade methylene blue dye and found about 85% of the degradation efficiency within 150 min of the sunlight exposure thus could be used as catalyst to removal of hazardous organic dye molecules.


Asunto(s)
Colorantes , Nanopartículas del Metal , Paladio , Plata , Vitex , Vitex/química , Paladio/química , Plata/química , Nanopartículas del Metal/química , Catálisis , Colorantes/química , Extractos Vegetales/química , Hojas de la Planta/química , Tecnología Química Verde , Fotólisis , Microscopía Electrónica de Transmisión
9.
Int J Nanomedicine ; 19: 3891-3905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711613

RESUMEN

Introduction: The synthesis of nanoparticles using naturally occurring reagents such as vitamins, sugars, plant extracts, biodegradable polymers and microorganisms as reductants and capping agents could be considered attractive for nanotechnology. These syntheses have led to the fabrication of limited number of inorganic nanoparticles. Among the reagents mentioned above, plant-based materials seem to be the best candidates, and they are suitable for large-scale biosynthesis of nanoparticles. Methods: The aqueous extract of Moringa peregrina leaves was used to synthesize silver nanoparticles. The synthesized nanoparticles were characterized by various spectral studies including FT-IR, SEM, HR-TEM and XRD. In addition, the antioxidant activity of the silver nanoparticles was studied viz. DPPH, ABTS, hydroxyl radical scavenging, superoxide radical scavenging, nitric oxide scavenging potential and reducing power with varied concentrations. The anticancer potential of the nanoparticles was also studied against MCF-7 and Caco-2 cancer cell lines. Results: The results showed that silver nanoparticles displayed strong antioxidant activity compared with gallic acid. Furthermore, the anticancer potential of the nanoparticles against MCF-7 and Caco-2 in comparison with the standard Doxorubicin revealed that the silver nanoparticles produced significant toxic effects against the studied cancer cell lines with the IC50 values of 41.59 (Caco-2) and 26.93 (MCF-7) µg/mL. Conclusion: In conclusion, the biosynthesized nanoparticles using M. peregrina leaf aqueous extract as a reducing agent showed good antioxidant and anticancer potential on human cancer cells and can be used in biological applications.


Asunto(s)
Antioxidantes , Tecnología Química Verde , Nanopartículas del Metal , Moringa , Extractos Vegetales , Hojas de la Planta , Plata , Humanos , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Células MCF-7 , Células CACO-2 , Extractos Vegetales/química , Extractos Vegetales/farmacología , Moringa/química , Antioxidantes/farmacología , Antioxidantes/química , Hojas de la Planta/química , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química
10.
Sci Rep ; 14(1): 10224, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702368

RESUMEN

The biosynthesis of nanoparticles offers numerous advantages, including ease of production, cost-effectiveness, and environmental friendliness. In our research, we focused on the bioformation of silver nanoparticles (AgNPs) using a combination of Lactobacillus sp. and Bacillus sp. growth. These AgNPs were then evaluated for their biological activities against multidrug-resistant bacteria. Our study involved the isolation of Bacillus sp. from soil samples and Lactobacillus sp. from raw milk in Dhamar Governorate, Yemen. The synthesized AgNPs were characterized using various techniques such as UV-visible spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The antibacterial properties of the AgNPs were assessed using the modified Kirby Bauer disk diffusion method against multidrug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa. Our results demonstrated that the use of a bacterial mixture for biosynthesis led to faster and more effective production of AgNPs compared to using a single bacterium. The UV-visible spectra showed characteristic peaks indicative of silver nanoparticles, while XRD analysis confirmed the crystalline nature of the synthesized particles. FTIR results suggested the presence of capping proteins that contribute to the synthesis and stability of AgNPs. Furthermore, TEM images revealed the size and morphology of the AgNPs, which exhibited spherical shapes with sizes ranging from 4.65 to 22.8 nm. Notably, the antibacterial activity of the AgNPs was found to be more pronounced against Staphylococcus aureus than Pseudomonas aeruginosa, indicating the potential of these nanoparticles as effective antimicrobial agents. Overall, our study highlights the promising antibacterial properties of AgNPs synthesized by a mixture of Lactobacillus sp. and Bacillus sp. growth. Further research is warranted to explore the potential of utilizing different bacterial combinations for enhanced nanoparticle synthesis.


Asunto(s)
Antibacterianos , Bacillus , Lactobacillus , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Plata , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/biosíntesis , Plata/química , Plata/farmacología , Bacillus/metabolismo , Lactobacillus/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
11.
Sci Rep ; 14(1): 10284, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704421

RESUMEN

The use of magnetic metal nanoparticles has been considered in cancer treatment studies. In this study, BiFe2O4@Ag nanoparticles were synthesized biologically by Scenedesmus obliquus for the first time and their anticancer mechanism in a gastric cancer cell line was characterized. The physicochemical properties of the nanoparticles were evaluated by fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic Light Scattering (DLS), and zeta potential analyses. Cell viability and nuclear damage were investigated by the MTT and Hoechst staining assays, respectively. Flow cytometry analysis was performed to determine the frequency of the necrotic and apoptotic cells as well as cell cycle analysis of the nanoparticles-treated cells. Physicochemical characterization showed that the synthesized particles were spherical, without impurities, in a size range of 38-83 nm, with DLS size and zeta potential of 295.7 nm and -27.7 mV, respectively. BiFe2O4@Ag nanoparticles were considerably more toxic for the gastric cancer cells (AGS cell line) than HEK293 normal cells with IC50 of 67 and 117 µg/ml, respectively. Treatment of AGS cells with the nanoparticles led to a remarkable increase in the percentage of late apoptosis (38.5 folds) and cell necrosis (13.4 folds) and caused cell cycle arrest, mainly at the S phase. Also, nuclear fragmentation and apoptotic bodies were observed in the gastric cancer cells treated with the nanoparticles. This study represents BiFe2O4@Ag as a novel anticancer candidate against gastric cancer that can induce cell apoptosis through DNA damage and inhibition of cell cycle progression.


Asunto(s)
Apoptosis , Nanopartículas del Metal , Scenedesmus , Plata , Neoplasias Gástricas , Humanos , Apoptosis/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Línea Celular Tumoral , Nanopartículas del Metal/química , Scenedesmus/efectos de los fármacos , Plata/química , Plata/farmacología , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Células HEK293 , Difracción de Rayos X
12.
J Agric Food Chem ; 72(19): 11251-11258, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699857

RESUMEN

Engineered nanoparticles (ENPs) have been increasingly used in agricultural operations, leading to an urgent need for robust methods to analyze co-occurring ENPs in plant tissues. In response, this study advanced the simultaneous extraction of coexisting silver, cerium oxide, and copper oxide ENPs in lettuce shoots and roots using macerozyme R-10 and analyzed them by single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Additionally, the standard stock suspensions of the ENPs were stabilized with citrate, and the long-term stability (up to 5 months) was examined for the first time. The method performance results displayed satisfactory accuracies and precisions and achieved low particle concentration and particle size detection limits. Significantly, the oven drying process was proved not to impact the properties of the ENPs; therefore, oven-dried lettuce tissues were used in this study, which markedly expanded the applicability of this method. This robust methodology provides a timely approach to characterize and quantify multiple coexisting ENPs in plants.


Asunto(s)
Lactuca , Espectrometría de Masas , Nanopartículas del Metal , Raíces de Plantas , Nanopartículas del Metal/química , Lactuca/química , Espectrometría de Masas/métodos , Raíces de Plantas/química , Cobre/análisis , Brotes de la Planta/química , Plata/química , Cerio/química , Tamaño de la Partícula
13.
PeerJ ; 12: e17328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770094

RESUMEN

Nanotechnology and nanoparticles have gained massive attention in the scientific community in recent years due to their valuable properties. Among various AgNPs synthesis methods, microbial approaches offer distinct advantages in terms of cost-effectiveness, biocompatibility, and eco-friendliness. In the present research work, investigators have synthesized three different types of silver nanoparticles (AgNPs), namely AgNPs-K, AgNPs-M, and AgNPs-E, by using Klebsiella pneumoniae (MBC34), Micrococcus luteus (MBC23), and Enterobacter aerogenes (MBX6), respectively. The morphological, chemical, and elemental features of the synthesized AgNPs were analyzed by using UV-Vis spectroscopy (UV-Vis), Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and energy-dispersive spectroscopy (EDX). UV-Vis absorbance peaks were obtained at 475, 428, and 503 nm for AgNPs-K, AgNPs-M, and AgNPs-E, respectively. The XRD analysis confirmed the crystalline nature of the synthesized AgNPs, having peaks at 26.2°, 32.1°, and 47.2°. At the same time, the FTIR showed bands at 599, 963, 1,693, 2,299, 2,891, and 3,780 cm-1 for all the types of AgNPs indicating the presence of bacterial biomolecules with the developed AgNPs. The size and morphology of the AgNPs varied from 10 nm to several microns and exhibited spherical to porous sheets-like structures. The percentage of Ag varied from 37.8% (wt.%) to 61.6%, i.e., highest in AgNPs-K and lowest in AgNPs-M. Furthermore, the synthesized AgNPs exhibited potential for environmental remediation, with AgNPs-M exhibiting the highest removal efficiency (19.24% at 120 min) for methyl orange dye in simulated wastewater. Further, all three types of AgNPs were evaluated for the removal of methyl orange dye from the simulated wastewater, where the highest dye removal percentage was 19.24% at 120 min by AgNPs-M. Antibacterial potential of the synthesized AgNPs assessment against both Gram-positive (GPB) Bacillus subtilis (MBC23), B. cereus (MBC24), and Gram-negative bacteria Enterococcus faecalis (MBP13) revealed promising results, with AgNPs-M, exhibiting the largest zone of inhibition (12 mm) against GPB B. megaterium. Such investigation exhibits the potential of the bacteria for the synthesis of AgNPs with diverse morphology and potential applications in environmental remediation and antibacterial therapy-based synthesis of AgNPs.


Asunto(s)
Compuestos Azo , Nanopartículas del Metal , Micrococcus luteus , Plata , Plata/química , Plata/farmacología , Plata/metabolismo , Nanopartículas del Metal/química , Compuestos Azo/química , Compuestos Azo/farmacología , Compuestos Azo/metabolismo , Micrococcus luteus/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Antiinfecciosos/farmacología , Antiinfecciosos/química , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Enterobacter aerogenes/efectos de los fármacos , Enterobacter aerogenes/metabolismo , Difracción de Rayos X , Contaminantes Químicos del Agua/metabolismo , Colorantes/química , Colorantes/farmacología
14.
Anal Chim Acta ; 1309: 342685, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772667

RESUMEN

The monitoring of heavy metal ions in ocean is crucial for environment protection and assessment of seawater quality. However, the detection of heavy metal ions in seawater with electrochemical sensors, especially for long-term monitoring, always faces challenges due to marine biofouling caused by the nonspecific adsorption of microbial and biomolecules. Herein, an electrochemical aptasensor, integrating both antifouling and antibacterial properties, was developed for the detection of Hg2+ in the ocean. In this electrochemical aptasensor, eco-friendly peptides with superior hydrophilicity served as anti-biofouling materials, preventing nonspecific adsorption on the sensing interface, while silver nanoparticles were employed to eliminate bacteria. Subsequently, a ferrocene-modified aptamer was employed for the specific recognition of Hg2+, leveraging the aptamer's ability to fold into a thymine-Hg2+-thymine (T-Hg2+-T) structure upon interaction, and bringing ferrocene nearer to the sensor surface, significantly amplifying the electrochemical response. The prepared electrochemical aptasensor significantly reduced the nonspecific adsorption in seawater while maintaining sensitive electrochemical response. Furthermore, the biosensor exhibited a linear response range of 0.01-100 nM with a detection limit of 2.30 pM, and realized the accurate monitoring of mercury ions in real marine environment. The research results offer new insights into the preparation of marine antifouling sensing devices, and it is expected that sensors with antifouling and antimicrobial capabilities will find broad applications in the monitoring of marine pollutants.


Asunto(s)
Antibacterianos , Incrustaciones Biológicas , Técnicas Biosensibles , Técnicas Electroquímicas , Mercurio , Agua de Mar , Mercurio/análisis , Agua de Mar/química , Agua de Mar/microbiología , Técnicas Electroquímicas/métodos , Antibacterianos/análisis , Antibacterianos/farmacología , Técnicas Biosensibles/métodos , Incrustaciones Biológicas/prevención & control , Aptámeros de Nucleótidos/química , Plata/química , Contaminantes Químicos del Agua/análisis , Nanopartículas del Metal/química , Límite de Detección , Compuestos Ferrosos/química , Metalocenos
15.
Pak J Pharm Sci ; 37(2): 297-305, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38767096

RESUMEN

The field of bio-fabricated noble metallic nanoparticles (NPs) has gained significant attention in applied research due to their eco-friendly and biocompatible nature. This study focuses on employing a green synthesis method to produce silver and gold nanoparticles (bio-fabricated) using a Mangrove plant extract and assessing their insecticidal and growth-inhibitory effects for environmentally friendly pest control. The resulting NPs underwent comprehensive characterization through various spectroscopy techniques. The morphology of both silver and gold mediated nanoparticles of Avicennia marina leaf extract displayed a spherical shape, with average sizes measuring around 70-80 nm and 95-100 nm, respectively. Regarding cytotoxicity, the inhibitory effects of silver nanoparticles were less than that observed by the extract alone while gold nanoparticles showed stronger cell growth inhibitory effects on splenic cells. The hepatic toxicity of silver and gold nanoparticles showed significant toxic effects as compared to A. marina extract alone. Notably, as prepared silver nanoparticles exhibited substantial larvicidal toxicity as compared to gold nanoparticles, when tested against fourth instar Culex pipiens larvae. These biocompatible silver and gold nanoparticles prepared from A. marina leaf extract hold promise for future applications as larvicides to effectively control mosquito species.


Asunto(s)
Avicennia , Culex , Oro , Insecticidas , Larva , Nanopartículas del Metal , Extractos Vegetales , Hojas de la Planta , Plata , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Oro/química , Oro/toxicidad , Oro/farmacología , Plata/química , Plata/toxicidad , Plata/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Animales , Insecticidas/síntesis química , Insecticidas/farmacología , Insecticidas/química , Insecticidas/toxicidad , Larva/efectos de los fármacos , Culex/efectos de los fármacos , Culex/crecimiento & desarrollo , Tecnología Química Verde/métodos , Ratones , Supervivencia Celular/efectos de los fármacos , Tamaño de la Partícula
16.
Sci Rep ; 14(1): 11354, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762576

RESUMEN

According to an estimate, 30% to 40%, of global fruit are wasted, leading to post harvest losses and contributing to economic losses ranging from $10 to $100 billion worldwide. Among, all fruits the discarded portion of oranges is around 20%. A novel and value addition approach to utilize the orange peels is in nanoscience. In the present study, a synthesis approach was conducted to prepare the metallic nanoparticles (copper and silver); by utilizing food waste (Citrus plant peels) as bioactive reductants. In addition, the Citrus sinensis extracts showed the reducing activity against metallic salts copper chloride and silver nitrate to form Cu-NPs (copper nanoparticles) and Ag-NPs (Silver nanoparticles). The in vitro potential of both types of prepared nanoparticles was examined against plant pathogenic bacteria Erwinia carotovora (Pectobacterium carotovorum) and pathogens effect on human health Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Moreover, the in vivo antagonistic potential of both types of prepared nanoparticles was examined by their interaction with against plant (potato slices). Furthermore, additional antipathogenic (antiviral and antifungal) properties were also examined. The statistical analysis was done to explain the level of significance and antipathogenic effectiveness among synthesized Ag-NPs and Cu-NPs. The surface morphology, elemental description and size of particles were analyzed by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy and zeta sizer (in addition polydispersity index and zeta potential). The justification for the preparation of particles was done by UV-Vis Spectroscopy (excitation peaks at 339 nm for copper and 415 nm for silver) and crystalline nature was observed by X-ray diffraction. Hence, the prepared particles are quite effective against soft rot pathogens in plants and can also be used effectively in some other multifunctional applications such as bioactive sport wear, surgical gowns, bioactive bandages and wrist or knee compression bandages, etc.


Asunto(s)
Cobre , Tecnología Química Verde , Nanopartículas del Metal , Pectobacterium carotovorum , Plata , Nanopartículas del Metal/química , Plata/química , Plata/farmacología , Pectobacterium carotovorum/efectos de los fármacos , Cobre/química , Cobre/farmacología , Escherichia coli/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Animales , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Humanos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
17.
J Environ Manage ; 359: 121045, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703653

RESUMEN

A multifunctional Ag/AlOOH nanowires (ANW) composite substrate was constructed, which not only accomplishes highly sensitive detection of organic dye molecules, but also has excellent performance in the degradation of pollutants. The ANW in the Ag/ANW substrate possesses a high aspect ratio, which extends the distribution area of Ag and enables a large number of hot spots on the active substrate. Additionally, due to the abundant OH groups on the ANW, there is an increased number of anchor sites for adsorbed metal ions in the Ag/ANW compound, thus contributing to the enhancement and degradation of molecules. Moreover, the constructed multifunctional Ag/ANW nanocomplexes also show great promise for practical applications, providing a reference for the detection and degradation of contaminants.


Asunto(s)
Nanocables , Espectrometría Raman , Nanocables/química , Plata/química , Compuestos Orgánicos/química , Compuestos Orgánicos/análisis
18.
J Environ Manage ; 359: 121063, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38704955

RESUMEN

Due to the potential harm caused by emerging micro-pollutants to living organisms, contaminating water supplies by micro-pollutants like EDCs, pharmaceuticals, and microorganisms has become a concern in many countries. Considering both microbiological and micro-pollutant exposure risks associated with water use for agricultural/or household purposes, it is imperative to create a strategy for improving pollutant removal from treated wastewater that is both effective and affordable. Natural clay minerals efficiently remove contaminants from wastewater, though the pristine clay has less affinity to several organic pollutants. Hydrophilic polymers, viz., poly(ethylene glycol) (PEG), improve the dispersion of particles, flocculation processes, and surface properties. In this study, PEG grafted with attapulgite, thereby providing a high-specific surface-area, mesoporous materials for the adsorption of micro-pollutants like ciprofloxacin (CIP) and 17α-ethinylestradiol (EE2) at high rates. A gentle washing process regenerates the clay-polymer material several times with no performance loss, and the natural water implications show fair applicability of solid in decontaminating the CIP and EE2 in an aqueous medium. Further, greenly synthesized silver nanoparticles in situ disperse with the clay polymer efficiently remove the gram-positive and gram-negative bacterium viz., Bacillus subtilis, and Pseudomonas aeruginosa, which are commonly persistent in aquatic environments. The clay polymer outperformed a modified clay composite to eliminate microorganisms and organic micro-pollutants in significant quantities quickly. These results clearly show the importance of fibrous clay-polymer composite for water purification technologies.


Asunto(s)
Arcilla , Polímeros , Plata , Purificación del Agua , Purificación del Agua/métodos , Polímeros/química , Arcilla/química , Plata/química , Adsorción , Contaminantes Químicos del Agua/química , Aguas Residuales/química , Bacterias
19.
Bioprocess Biosyst Eng ; 47(6): 931-942, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38709274

RESUMEN

The conjugated silver nanoparticles using biomolecules have attracted great attention of researchers because physical dimensions and surface chemistry play important roles in toxicity and biocompatibility of AgNPs. Hence, in the current study, synthesis of bio-conjugated AgNPs with protein protease inhibitor (PI) isolated from Streptomyces spp. is reported. UV-visible spectra of PI and AgNPs showed stronger peaks at 280 and 405 nm, confirming the synthesis of conjugated AgNPs-PI. TEM and SEM images of AgNPs-PI showed spherical-shaped nanoparticles with a slight increase in particle size and thin amorphous layer around the surface of silver nanomaterial. Circular dichroism, FT-IR and fluorescence spectral studies confirmed AgNPs-PI conjugation. Conjugated AgNPs-PI showed excellent anticancer potential than AgNPs and protease inhibitor separately on human breast MCF-7 and prostate PC-3 cell lines. The findings revealed that surface modification of AgNPs with protein protease inhibitor stabilised the nanomaterial and increased its anticancer activity.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Plata , Humanos , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/química , Células MCF-7 , Células PC-3 , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral
20.
ACS Nano ; 18(20): 13308-13321, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38716827

RESUMEN

Understanding the degradation of nanoparticles (NPs) after crossing the cell plasma membrane is crucial in drug delivery designs and cytotoxicity assessment. However, the key factors controlling the degradable kinetics remain unclear due to the absence of a quantification model. In this study, subcellular imaging of silver nanoparticles (AgNPs) was used to determine the intracellular transfer of AgNPs, and single particle ICP-MS was utilized to track the degradation process. A cellular kinetic model was subsequently developed to describe the uptake, transfer, and degradation behaviors of AgNPs. Our model demonstrated that the intracellular degradation efficiency of AgNPs was much higher than that determined by mimicking testing, and the degradation of NPs was highly influenced by cellular factors. Specifically, deficiencies in Ca or Zn primarily decreased the kinetic dissolution of NPs, while a Ca deficiency also resulted in the retardation of NP transfer. The biological significance of these kinetic parameters was strongly revealed. Our model indicated that the majority of internalized AgNPs dissolved, with the resulting ions being rapidly depurated. The release of Ag ions was largely dependent on the microvesicle-mediated route. By changing the coating and size of AgNPs, the model results suggested that size influenced the transfer of NPs into the degradation process, whereas coating affected the degradation kinetics. Overall, our developed model provides a valuable tool for understanding and predicting the impacts of the physicochemical properties of NPs and the ambient environment on nanotoxicity and therapeutic efficacy.


Asunto(s)
Nanopartículas del Metal , Plata , Plata/química , Nanopartículas del Metal/química , Cinética , Humanos , Tamaño de la Partícula , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...