Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Med Virol ; 96(5): e29671, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747003

RESUMEN

The coronavirus disease of 2019 (COVID-19) pandemic has led to more than 700 million confirmed cases and nearly 7 million deaths. Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus mainly infects the respiratory system, neurological complications are widely reported in both acute infection and long-COVID cases. Despite the success of vaccines and antiviral treatments, neuroinvasiveness of SARS-CoV-2 remains an important question, which is also centered on the mystery of whether the virus is capable of breaching the barriers into the central nervous system. By studying the K18-hACE2 infection model, we observed clear evidence of microvascular damage and breakdown of the blood-brain barrier (BBB). Mechanistically, SARS-CoV-2 infection caused pericyte damage, tight junction loss, endothelial activation and vascular inflammation, which together drive microvascular injury and BBB impairment. In addition, the blood-cerebrospinal fluid barrier at the choroid plexus was also impaired after infection. Therefore, cerebrovascular and choroid plexus dysfunctions are important aspects of COVID-19 and may contribute to neurological complications both acutely and in long COVID.


Asunto(s)
Barrera Hematoencefálica , COVID-19 , Plexo Coroideo , SARS-CoV-2 , Barrera Hematoencefálica/virología , Animales , Plexo Coroideo/virología , Plexo Coroideo/patología , COVID-19/virología , COVID-19/patología , COVID-19/complicaciones , COVID-19/fisiopatología , Ratones , Uniones Estrechas/virología , Modelos Animales de Enfermedad , Enzima Convertidora de Angiotensina 2/metabolismo , Inflamación/virología , Humanos , Pericitos/virología , Pericitos/patología
2.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575975

RESUMEN

Several classes of immunomodulators are used for treating relapsing-remitting multiple sclerosis (RRMS). Most of these disease-modifying therapies, except teriflunomide, carry the risk of progressive multifocal leukoencephalopathy (PML), a severely debilitating, often fatal virus-induced demyelinating disease. Because teriflunomide has been shown to have antiviral activity against DNA viruses, we investigated whether treatment of cells with teriflunomide inhibits infection and spread of JC polyomavirus (JCPyV), the causative agent of PML. Treatment of choroid plexus epithelial cells and astrocytes with teriflunomide reduced JCPyV infection and spread. We also used droplet digital PCR to quantify JCPyV DNA associated with extracellular vesicles isolated from RRMS patients. We detected JCPyV DNA in all patients with confirmed PML diagnosis (n = 2), and in six natalizumab-treated (n = 12), two teriflunomide-treated (n = 7), and two nonimmunomodulated (n = 2) patients. Of the 21 patients, 12 (57%) had detectable JCPyV in either plasma or serum. CSF was uniformly negative for JCPyV. Isolation of extracellular vesicles did not increase the level of detection of JCPyV DNA versus bulk unprocessed biofluid. Overall, our study demonstrated an effect of teriflunomide inhibiting JCPyV infection and spread in glial and choroid plexus epithelial cells. Larger studies using patient samples are needed to correlate these in vitro findings with patient data.


Asunto(s)
Crotonatos/farmacología , Virus ADN/efectos de los fármacos , Hidroxibutiratos/farmacología , Leucoencefalopatía Multifocal Progresiva/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Neuroglía/efectos de los fármacos , Nitrilos/farmacología , Toluidinas/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/virología , Línea Celular , Plexo Coroideo/efectos de los fármacos , Plexo Coroideo/virología , Virus ADN/patogenicidad , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/virología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/virología , Humanos , Factores Inmunológicos/efectos adversos , Factores Inmunológicos/uso terapéutico , Virus JC/efectos de los fármacos , Virus JC/patogenicidad , Leucoencefalopatía Multifocal Progresiva/inducido químicamente , Leucoencefalopatía Multifocal Progresiva/patología , Leucoencefalopatía Multifocal Progresiva/virología , Esclerosis Múltiple Recurrente-Remitente/genética , Esclerosis Múltiple Recurrente-Remitente/patología , Esclerosis Múltiple Recurrente-Remitente/virología , Neuroglía/virología , Virosis/tratamiento farmacológico , Virosis/genética , Virosis/virología
3.
Nature ; 595(7868): 565-571, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34153974

RESUMEN

Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of COVID-19 can suffer neurological symptoms1-3. However, an unbiased understanding of the cellular and molecular processes that are affected in the brains of patients with COVID-19 is missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS-CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated with COVID-19 that share features with pathological cell states that have previously been reported in human neurodegenerative disease4-6. Synaptic signalling of upper-layer excitatory neurons-which are evolutionarily expanded in humans7 and linked to cognitive function8-is preferentially affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with those found in chronic brain disorders and reside in genetic variants associated with cognition, schizophrenia and depression. Our findings and public dataset provide a molecular framework to understand current observations of COVID-19-related neurological disease, and any such disease that may emerge at a later date.


Asunto(s)
Astrocitos/patología , Encéfalo/patología , COVID-19/diagnóstico , COVID-19/patología , Plexo Coroideo/patología , Microglía/patología , Neuronas/patología , Anciano , Anciano de 80 o más Años , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encéfalo/virología , COVID-19/genética , COVID-19/fisiopatología , Núcleo Celular/genética , Plexo Coroideo/metabolismo , Plexo Coroideo/fisiopatología , Plexo Coroideo/virología , Femenino , Humanos , Inflamación/virología , Masculino , Persona de Mediana Edad , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/patogenicidad , Análisis de la Célula Individual , Transcriptoma , Replicación Viral
4.
Stem Cell Reports ; 16(5): 1156-1164, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979600

RESUMEN

Coronavirus disease 2019 (COVID-19) patients have manifested a variety of neurological complications, and there is still much to reveal regarding the neurotropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human stem cell-derived brain organoids offer a valuable in vitro approach to study the cellular effects of SARS-CoV-2 on the brain. Here we used human embryonic stem cell-derived cortical organoids to investigate whether SARS-CoV-2 could infect brain tissue in vitro and found that cortical organoids could be infected at low viral titers and within 6 h. Importantly, we show that glial cells and cells of the choroid plexus were preferentially targeted in our model, but not neurons. Interestingly, we also found expression of angiotensin-converting enzyme 2 in SARS-CoV-2 infected cells; however, viral replication and cell death involving DNA fragmentation does not occur. We believe that our model is a tractable platform to study the cellular effects of SARS-CoV-2 infection in brain tissue.


Asunto(s)
COVID-19/patología , Plexo Coroideo/patología , Células Madre Embrionarias Humanas/citología , Neuroglía/virología , Organoides/inervación , Organoides/patología , Células Cultivadas , Plexo Coroideo/citología , Plexo Coroideo/virología , Humanos , Neuroglía/patología , Neuronas/virología , Organoides/citología , SARS-CoV-2/patogenicidad
6.
Cell Stem Cell ; 27(6): 951-961.e5, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33113348

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, leads to respiratory symptoms that can be fatal. However, neurological symptoms have also been observed in some patients. The cause of these complications is currently unknown. Here, we use human-pluripotent-stem-cell-derived brain organoids to examine SARS-CoV-2 neurotropism. We find expression of viral receptor ACE2 in mature choroid plexus cells expressing abundant lipoproteins, but not in neurons or other cell types. We challenge organoids with SARS-CoV-2 spike pseudovirus and live virus to demonstrate viral tropism for choroid plexus epithelial cells but little to no infection of neurons or glia. We find that infected cells are apolipoprotein- and ACE2-expressing cells of the choroid plexus epithelial barrier. Finally, we show that infection with SARS-CoV-2 damages the choroid plexus epithelium, leading to leakage across this important barrier that normally prevents entry of pathogens, immune cells, and cytokines into cerebrospinal fluid and the brain.


Asunto(s)
Barrera Hematoencefálica/virología , Plexo Coroideo/virología , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Chlorocebus aethiops , Células HEK293 , Humanos , Modelos Biológicos , Organoides/virología , Células Vero , Tropismo Viral , Internalización del Virus
7.
Cell Stem Cell ; 27(6): 937-950.e9, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33010822

RESUMEN

Neurological complications are common in patients with COVID-19. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal pathogen of COVID-19, has been detected in some patient brains, its ability to infect brain cells and impact their function is not well understood. Here, we investigated the susceptibility of human induced pluripotent stem cell (hiPSC)-derived monolayer brain cells and region-specific brain organoids to SARS-CoV-2 infection. We found that neurons and astrocytes were sparsely infected, but choroid plexus epithelial cells underwent robust infection. We optimized a protocol to generate choroid plexus organoids from hiPSCs and showed that productive SARS-CoV-2 infection of these organoids is associated with increased cell death and transcriptional dysregulation indicative of an inflammatory response and cellular function deficits. Together, our findings provide evidence for selective SARS-CoV-2 neurotropism and support the use of hiPSC-derived brain organoids as a platform to investigate SARS-CoV-2 infection susceptibility of brain cells, mechanisms of virus-induced brain dysfunction, and treatment strategies.


Asunto(s)
Plexo Coroideo/virología , Células-Madre Neurales/virología , Organoides/virología , Células Madre Pluripotentes/virología , SARS-CoV-2/fisiología , Tropismo Viral , Animales , Astrocitos/virología , Encéfalo/citología , Encéfalo/virología , COVID-19/genética , COVID-19/virología , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Neuronas/virología
8.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872518

RESUMEN

Echovirus-30 (E-30) is responsible for the extensive global outbreaks of meningitis in children. To gain access to the central nervous system, E-30 first has to cross the epithelial blood-cerebrospinal fluid barrier. Several meningitis causing bacteria preferentially infect human choroid plexus papilloma (HIBCPP) cells in a polar fashion from the basolateral cell side. Here, we investigated the polar infection of HIBCPP cells with E-30. Both apical and basolateral infections caused a significant decrease in the transepithelial electrical resistance of HIBCPP cells. However, to reach the same impact on the barrier properties, the multiplicity of infection of the apical side had to be higher than that of the basolateral infection. Furthermore, the number of infected cells at respective time-points after basolateral infection was significantly higher compared to apical infection. Cytotoxic effects of E-30 on HIBCPP cells during basolateral infection were observed following prolonged infection and appeared more drastically compared to the apical infection. Gene expression profiles determined by massive analysis of cDNA ends revealed distinct regulation of specific genes depending on the side of HIBCPP cells' infection. Altogether, our data highlights the polar effects of E-30 infection in a human in vitro model of the blood-cerebrospinal fluid barrier leading to central nervous system inflammation.


Asunto(s)
Barrera Hematoencefálica/virología , Plexo Coroideo/virología , Enterovirus Humano B/patogenicidad , Redes Reguladoras de Genes , Adulto , Barrera Hematoencefálica/metabolismo , Polaridad Celular , Supervivencia Celular , Plexo Coroideo/citología , Plexo Coroideo/metabolismo , Plexo Coroideo/patología , Impedancia Eléctrica , Femenino , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Modelos Biológicos , Células Tumorales Cultivadas
9.
PLoS Pathog ; 16(5): e1008204, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32357162

RESUMEN

Zika virus (ZIKV) can infect and cause microcephaly and Zika-associated neurological complications in the developing fetal and adult brains. In terms of pathogenesis, a critical question is how ZIKV overcomes the barriers separating the brain from the circulation and gains access to the central nervous system (CNS). Despite the importance of ZIKV pathogenesis, the route ZIKV utilizes to cross CNS barriers remains unclear. Here we show that in mouse models, ZIKV-infected cells initially appeared in the periventricular regions of the brain, including the choroid plexus and the meninges, prior to infection of the cortex. The appearance of ZIKV in cerebrospinal fluid (CSF) preceded infection of the brain parenchyma. Further the brain infection was significantly attenuated by neutralization of the virus in the CSF, indicating that ZIKV in the CSF at the early stage of infection might be responsible for establishing a lethal infection of the brain. We show that cells infected by ZIKV in the choroid plexus were pericytes. Using in vitro systems, we highlight the possibility that ZIKV crosses the blood-CSF barrier by disrupting the choroid plexus epithelial layer. Taken together, our results suggest that ZIKV might exploit the blood-CSF barrier rather than the blood-brain barrier to invade the CNS.


Asunto(s)
Plexo Coroideo/patología , Pericitos/patología , Infección por el Virus Zika/patología , Animales , Barrera Hematoencefálica/patología , Encéfalo/patología , Sistema Nervioso Central/patología , Chlorocebus aethiops , Plexo Coroideo/metabolismo , Plexo Coroideo/virología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microcefalia/complicaciones , Microcefalia/virología , Enfermedades del Sistema Nervioso , Pericitos/metabolismo , Pericitos/virología , Cultivo Primario de Células , Células Vero , Virus Zika/fisiología , Infección por el Virus Zika/virología
10.
PLoS Pathog ; 16(3): e1008371, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130281

RESUMEN

The human polyomavirus, JCPyV, is the causative agent of progressive multifocal leukoencephalopathy (PML) in immunosuppressed and immunomodulated patients. Initial infection with JCPyV is common and the virus establishes a long-term persistent infection in the urogenital system of 50-70% of the human population worldwide. A major gap in the field is that we do not know how the virus traffics from the periphery to the brain to cause disease. Our recent discovery that human choroid plexus epithelial cells are fully susceptible to virus infection together with reports of JCPyV infection of choroid plexus in vivo has led us to hypothesize that the choroid plexus plays a fundamental role in this process. The choroid plexus is known to relay information between the blood and the brain by the release of extracellular vesicles. This is particularly important because human macroglia (oligodendrocytes and astrocytes), the major targets of virus infection in the central nervous system (CNS), do not express the known attachment receptors for the virus and do not bind virus in human tissue sections. In this report we show that JCPyV infected choroid plexus epithelial cells produce extracellular vesicles that contain JCPyV and readily transmit the infection to human glial cells. Transmission of the virus by extracellular vesicles is independent of the known virus attachment receptors and is not neutralized by antisera directed at the virus. We also show that extracellular vesicles containing virus are taken into target glial cells by both clathrin dependent endocytosis and macropinocytosis. Our data support the hypothesis that the choroid plexus plays a fundamental role in the dissemination of virus to brain parenchyma.


Asunto(s)
Plexo Coroideo/metabolismo , Células Epiteliales/metabolismo , Vesículas Extracelulares/metabolismo , Virus JC/metabolismo , Leucoencefalopatía Multifocal Progresiva/metabolismo , Neuroglía/metabolismo , Receptores Virales/metabolismo , Línea Celular Transformada , Plexo Coroideo/patología , Plexo Coroideo/virología , Células Epiteliales/patología , Células Epiteliales/virología , Vesículas Extracelulares/patología , Vesículas Extracelulares/virología , Humanos , Leucoencefalopatía Multifocal Progresiva/patología , Neuroglía/patología , Neuroglía/virología
11.
Hum Gene Ther ; 31(7-8): 440-447, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32056463

RESUMEN

Regulation of gene expression by viral vectors is an effective method for researchers to explore the function of gene products in a target tissue. The choroid plexus (CP) is an important target for gene therapy of neuropsychiatric diseases such as Alzheimer's disease and major depressive disorder. However, viral tropism in CP has not been well studied as a result of limited viral vector applications. To identify CP-specific viral vectors, we intracerebroventricularly administered six different serotypes of adeno-associated virus (AAV) vectors (AAV2/1, AAV2/5, AAV2/8, AAV2/9, AAV2-BR1, and AAV2-PHP.eB) and lentivirus in adult mice. Tropism in CP was compared among these viruses. We found that AAV2/5 and AAV2/8 displayed remarkable infections in CP, while AAV2/1 infected both ependymal cells and cells in the CP. Except for the low infection intensity of AAV2/9 and lentivirus in the CP, no infection intensity was found for CP tissues injected with AAV2-BR1 or AAV2-PHP.eB. Green fluorescence protein expression in the CP after AAV2/5 infection was confirmed by Western blotting. AAV2/5-mediated tropism in epithelial cells of the CP was verified by immunostaining with transthyretin. In this study, we identified for the first time that serotype-specific AAVs 5 and 8 may be robust research tools for intracerebroventricular gene delivery.


Asunto(s)
Plexo Coroideo/virología , Dependovirus , Técnicas de Transferencia de Gen , Vectores Genéticos , Lentivirus , Tropismo Viral , Animales , Proteínas Fluorescentes Verdes/metabolismo , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Serogrupo
12.
J Neuroinflammation ; 16(1): 232, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31752904

RESUMEN

BACKGROUND: Echovirus 30 (E-30) is one of the most frequently isolated pathogens in aseptic meningitis worldwide. To gain access to the central nervous system (CNS), E-30 and immune cells have to cross one of the two main barriers of the CNS, the epithelial blood-cerebrospinal fluid barrier (BCSFB) or the endothelial blood-brain barrier (BBB). In an in vitro model of the BCSFB, it has been shown that E-30 can infect human immortalized brain choroid plexus papilloma (HIBCPP) cells. METHODS: In this study we investigated the migration of different T cell subpopulations, naive and effector T cells, through HIBCPP cells during E-30 infection. Effects of E-30 infection and the migration process were evaluated via immunofluorescence and flow cytometry analysis, as well as transepithelial resistance and dextran flux measurement. RESULTS: Th1 effector cells and enterovirus-specific effector T cells migrated through HIBCPP cells more efficiently than naive CD4+ T cells following E-30 infection of HIBCPP cells. Among the different naive T cell populations, CD8+ T cells crossed the E-30-infected HIBCPP cell layer in a significantly higher number than CD4+ T cells. A large amount of effector T cells also remained attached to the basolateral side of the HIBCPP cells compared with naive T cells. Analysis of HIBCPP barrier function showed significant alteration after E-30 infection and trans- as well as paracellular migration of T cells independent of the respective subpopulation. Morphologic analysis of migrating T cells revealed that a polarized phenotype was induced by the chemokine CXCL12, but reversed to a round phenotype after E-30 infection. Further characterization of migrating Th1 effector cells revealed a downregulation of surface adhesion proteins such as LFA-1 PSGL-1, CD44, and CD49d. CONCLUSION: Taken together these results suggest that naive CD8+ and Th1 effector cells are highly efficient to migrate through the BCSFB in an inflammatory environment. The T cell phenotype is modified during the migration process through HIBCPP cells.


Asunto(s)
Movimiento Celular/inmunología , Plexo Coroideo/metabolismo , Plexo Coroideo/virología , Infecciones por Echovirus/inmunología , Linfocitos T/inmunología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/virología , Humanos , Linfocitos T/metabolismo , Células Tumorales Cultivadas
13.
J Neurovirol ; 25(4): 520-524, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31025264

RESUMEN

JC virus (JCV) can cause a lytic infection of oligodendrocytes and astrocytes in the central nervous system (CNS) leading to progressive multifocal leukoencephalopathy (PML). JCV can also infect meningeal and choroid plexus cells causing JCV meningitis (JCVM). Whether JCV also infects meningeal and choroid plexus cells in PML patients and other immunosuppressed individuals with no overt symptoms of meningitis remains unknown. We therefore analyzed archival formalin-fixed, paraffin-embedded brain samples from PML patients, and HIV-seropositive and seronegative control subjects by immunohistochemistry for the presence of JCV early regulatory T Ag and JCV VP1 late capsid protein. In meninges, we detected JCV T Ag in 11/48 (22.9%) and JCV VP1 protein in 8/48 (16.7%) PML patients. In choroid plexi, we detected JCV T Ag in 1/7 (14.2%) and JCV VP1 protein in 1/8 (12.5%) PML patients. Neither JCV T Ag nor VP1 protein could be detected in meninges or choroid plexus of HIV-seropositive and HIV-seronegative control subjects without PML. In addition, examination of underlying cerebellar cortex of PML patients revealed JCV-infected cells in the molecular layer, including GAD 67+ interneurons, but not in HIV-seropositive and HIV-seronegative control subjects without PML. Our findings suggest that productive JCV infection of meningeal cells and choroid plexus cells also occurs in PML patients without signs or symptoms of meningitis. The phenotypic characterization of JCV-infected neurons in the molecular layer deserves further study. This data provides new insight into JCV pathogenesis in the CNS.


Asunto(s)
Astrocitos/virología , Plexo Coroideo/virología , Virus JC/genética , Leucoencefalopatía Multifocal Progresiva/virología , Meninges/virología , Neuronas/virología , Oligodendroglía/virología , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismo , Astrocitos/patología , Autopsia , Biomarcadores/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Corteza Cerebelosa/patología , Corteza Cerebelosa/virología , Plexo Coroideo/patología , Expresión Génica , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , VIH/genética , VIH/patogenicidad , Infecciones por VIH/patología , Infecciones por VIH/virología , Humanos , Inmunohistoquímica , Virus JC/patogenicidad , Leucoencefalopatía Multifocal Progresiva/patología , Meninges/patología , Neuronas/patología , Oligodendroglía/patología
14.
J Virol ; 92(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29437972

RESUMEN

JC polyomavirus (JCPyV) establishes a lifelong persistence in roughly half the human population worldwide. The cells and tissues that harbor persistent virus in vivo are not known, but renal tubules and other urogenital epithelial cells are likely candidates as virus is shed in the urine of healthy individuals. In an immunosuppressed host, JCPyV can become reactivated and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system. Recent observations indicate that JCPyV may productively interact with cells in the choroid plexus and leptomeninges. To further study JCPyV infection in these cells, primary human choroid plexus epithelial cells and meningeal cells were challenged with virus, and their susceptibility to infection was compared to the human glial cell line, SVG-A. We found that JCPyV productively infects both choroid plexus epithelial cells and meningeal cells in vitro Competition with the soluble receptor fragment LSTc reduced virus infection in these cells. Treatment of cells with neuraminidase also inhibited both viral infection and binding. Treatment with the serotonin receptor antagonist, ritanserin, reduced infection in SVG-A and meningeal cells. We also compared the ability of wild-type and sialic acid-binding mutant pseudoviruses to transduce these cells. Wild-type pseudovirus readily transduced all three cell types, but pseudoviruses harboring mutations in the sialic acid-binding pocket of the virus failed to transduce the cells. These data establish a novel role for choroid plexus and meninges in harboring virus that likely contributes not only to meningoencephalopathies but also to PML.IMPORTANCE JCPyV infects greater than half the human population worldwide and causes central nervous system disease in patients with weakened immune systems. Several recent reports have found JCPyV in the choroid plexus and leptomeninges of patients with encephalitis. Due to their role in forming the blood-cerebrospinal fluid barrier, the choroid plexus and leptomeninges are also poised to play roles in virus invasion of brain parenchyma, where infection of macroglial cells leads to the development of progressive multifocal leukoencephalopathy, a severely debilitating and often fatal infection. In this paper we show for the first time that primary choroid plexus epithelial cells and meningeal cells are infected by JCPyV, lending support to the association of JCPyV with meningoencephalopathies. These data also suggest that JCPyV could use these cells as reservoirs for the subsequent invasion of brain parenchyma.


Asunto(s)
Plexo Coroideo , Células Epiteliales , Virus JC/metabolismo , Leucoencefalopatía Multifocal Progresiva , Meninges , Ritanserina/farmacología , Línea Celular , Plexo Coroideo/metabolismo , Plexo Coroideo/patología , Plexo Coroideo/virología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Epiteliales/virología , Humanos , Leucoencefalopatía Multifocal Progresiva/tratamiento farmacológico , Leucoencefalopatía Multifocal Progresiva/metabolismo , Leucoencefalopatía Multifocal Progresiva/patología , Leucoencefalopatía Multifocal Progresiva/virología , Meninges/metabolismo , Meninges/patología , Meninges/virología
15.
J Neuroinflammation ; 15(1): 50, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463289

RESUMEN

BACKGROUND: Echovirus (E) 30 (E-30) meningitis is characterized by neuroinflammation involving immune cell pleocytosis at the protective barriers of the central nervous system (CNS). In this context, infection of the blood-cerebrospinal fluid barrier (BCSFB), which has been demonstrated to be involved in enteroviral CNS pathogenesis, may affect the tight junction (TJ) and adherens junction (AJ) function and morphology. METHODS: We used an in vitro human choroid plexus epithelial (HIBCPP) cell model to investigate the effect of three clinical outbreak strains (13-311, 13-759, and 14-397) isolated in Germany in 2013, and compared them to E-30 Bastianni. Conducting transepithelial electrical resistance (TEER), paracellular dextran flux measurement, quantitative real-time polymerase chain reaction (qPCR), western blot, and immunofluorescence analysis, we investigated TJ and AJ function and morphology as well as strain-specific E-30 infection patterns. Additionally, transmission electron and focused ion beam microscopy electron microscopy (FIB-SEM) was used to evaluate the mode of leukocyte transmigration. Genome sequencing and phylogenetic analyses were performed to discriminate potential genetic differences among the outbreak strains. RESULTS: We observed a significant strain-dependent decrease in TEER with strains E-30 Bastianni and 13-311, whereas paracellular dextran flux was only affected by E-30 Bastianni. Despite strong similarities among the outbreak strains in replication characteristics and particle distribution, strain 13-311 was the only outbreak isolate revealing comparable disruptive effects on TJ (Zonula Occludens (ZO) 1 and occludin) and AJ (E-cadherin) morphology to E-30 Bastianni. Notwithstanding significant junctional alterations upon E-30 infection, we observed both para- and transcellular leukocyte migration across HIBCPP cells. Complete genome sequencing revealed differences between the strains analyzed, but no explicit correlation with the observed strain-dependent effects on HIBCPP cells was possible. CONCLUSION: The findings revealed distinct E-30 strain-specific effects on barrier integrity and junctional morphology. Despite E-30-induced barrier alterations leukocyte trafficking did not exclusively occur via the paracellular route.


Asunto(s)
Barrera Hematoencefálica/virología , Líquido Cefalorraquídeo/virología , Plexo Coroideo/virología , Brotes de Enfermedades , Enterovirus Humano B/aislamiento & purificación , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/ultraestructura , Línea Celular Tumoral , Supervivencia Celular/fisiología , Células Cultivadas , Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/metabolismo , Plexo Coroideo/ultraestructura , Enterovirus Humano B/metabolismo , Humanos , Filogenia , Especificidad de la Especie
16.
Sci Rep ; 7(1): 16555, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29185462

RESUMEN

Epidemic Transient Neonatal Losses (ETNL) is a disease of piglets caused by Senecavirus A (SVA) in which the method of dissemination and associated lesions are not well-defined. This study investigated the possible SVA-induced lesions by examining spontaneous infections in newborn piglets. Histopathology revealed ballooning degeneration of transitional epithelium, nonsuppurative meningoencephalitis, plexus choroiditis, and atrophic enteritis. RT-PCR identified SVA in all tissues evaluated and sequencing confirmed these results. Positive immunoreactivity to SVA was observed in endothelial and epithelial tissues of all organs evaluated. Semithin analysis revealed vacuolization of apical enterocytes of the small intestine, balloon degeneration and necrosis of endothelial cells of the choroid plexus (CP) and nonsuppurative choroid plexitis. Ultrathin evaluation demonstrated hydropic degeneration of apical enterocytes, degeneration and necrosis of endothelium of CP fenestrated capillaries, degeneration of ependymocytes associated with intralesional viral particles. It is proposed that SVA initially infects apical enterocytes of newborn piglets and probably enters the circulatory system with entry to the brain via the CP, by first producing an initial inflammatory reaction, with subsequent encephalitic dissemination. Consequently, SVA probably uses an enteric-neurological method of dissemination.


Asunto(s)
Plexo Coroideo/patología , Plexo Coroideo/virología , Picornaviridae/patogenicidad , Animales , Animales Recién Nacidos , Plexo Coroideo/metabolismo , Inflamación/metabolismo , Inflamación/patología , Inflamación/virología , Picornaviridae/inmunología , Infecciones por Picornaviridae/metabolismo , Infecciones por Picornaviridae/patología , Infecciones por Picornaviridae/virología , Porcinos , Enfermedades de los Porcinos
17.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795408

RESUMEN

Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. IMPORTANCE: Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this is the first report of nucleolar functions for NSs within the Bunyaviridae family.


Asunto(s)
Nucléolo Celular/virología , Células Ependimogliales/virología , Interacciones Huésped-Patógeno , Orthobunyavirus/patogenicidad , ARN Polimerasa II/química , Proteínas no Estructurales Virales/química , Animales , Línea Celular Transformada , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestructura , Plexo Coroideo/citología , Plexo Coroideo/metabolismo , Plexo Coroideo/virología , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Células Ependimogliales/metabolismo , Células Ependimogliales/ultraestructura , Regulación de la Expresión Génica , Células HeLa , Humanos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteolisis , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Ovinos , Transducción de Señal , Transcripción Genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
18.
mBio ; 7(2): e00437-16, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27073094

RESUMEN

UNLABELLED: Newborns are significantly more susceptible to severe viral encephalitis than adults, with differences in the host response to infection implicated as a major factor. However, the specific host signaling pathways responsible for differences in susceptibility and neurologic morbidity have remained unknown. In a murine model of HSV encephalitis, we demonstrated that the choroid plexus (CP) is susceptible to herpes simplex virus 1 (HSV-1) early in infection of the newborn but not the adult brain. We confirmed susceptibility of the CP to HSV infection in a human case of newborn HSV encephalitis. We investigated components of the type I interferon (IFN) response in the murine brain that might account for differences in cell susceptibility and found that newborns have a dampened interferon response and significantly lower basal levels of the alpha/beta interferon (IFN-α/ß) receptor (IFNAR) than do adults. To test the contribution of IFNAR to restricting infection from the CP, we infected IFNAR knockout (KO) adult mice, which showed restored CP susceptibility to HSV-1 infection in the adult. Furthermore, reduced IFNAR levels did not account for differences we found in the basal levels of several other innate signaling proteins in the wild-type newborn and the adult, including protein kinase R (PKR), that suggested specific regulation of innate immunity in the developing brain. Viral targeting of the CP, a region of the brain that plays a critical role in neurodevelopment, provides a link between newborn susceptibility to HSV and long-term neurologic morbidity among survivors of newborn HSV encephalitis. IMPORTANCE: Compared to adults, newborns are significantly more susceptible to severe disease following HSV infection. Over half of newborn HSV infections result in disseminated disease or encephalitis, with long-term neurologic morbidity in 2/3 of encephalitis survivors. We investigated differences in host cell susceptibility between newborns and adults that contribute to severe central nervous system disease in the newborn. We found that, unlike the adult brain, the newborn choroid plexus (CP) was susceptible early in HSV-1 infection. We demonstrated that IFN-α/ß receptor levels are lower in the newborn brain than in the adult brain and that deletion of this receptor restores susceptibility of the CP in the adult brain. The CP serves as a barrier between the blood and the cerebrospinal fluid and plays a role in proper neurodevelopment. Susceptibility of the newborn choroid plexus to HSV-1 has important implications in viral spread to the brain and, also, in the neurologic morbidity following HSV encephalitis.


Asunto(s)
Plexo Coroideo/inmunología , Encefalitis/virología , Herpesvirus Humano 1/fisiología , Interferón Tipo I/inmunología , Animales , Plexo Coroideo/crecimiento & desarrollo , Plexo Coroideo/virología , Encefalitis/genética , Encefalitis/inmunología , Femenino , Humanos , Interferón Tipo I/genética , Masculino , Ratones , Ratones Noqueados , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/inmunología
19.
J Virol ; 89(20): 10467-81, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26246581

RESUMEN

UNLABELLED: Bluetongue virus (BTV) is an arbovirus transmitted to livestock by midges of the Culicoides family and is the etiological agent of a hemorrhagic disease in sheep and other ruminants. In mammalian cells, BTV particles are released primarily by virus-induced cell lysis, while in insect cells they bud from the plasma membrane and establish a persistent infection. BTV possesses a ten-segmented double-stranded RNA genome, and NS3 proteins are encoded by segment 10 (Seg-10). The viral nonstructural protein 3 (NS3) plays a key role in mediating BTV egress as well as in impeding the in vitro synthesis of type I interferon in mammalian cells. In this study, we asked whether genetically distant NS3 proteins can alter BTV-host interactions. Using a reverse genetics approach, we showed that, depending on the NS3 considered, BTV replication kinetics varied in mammals but not in insects. In particular, one of the NS3 proteins analyzed harbored a proline at position 24 that leads to its rapid intracellular decay in ovine but not in Culicoides cells and to the attenuation of BTV virulence in a mouse model of disease. Overall, our data reveal that the genetic variability of Seg-10/NS3 differentially modulates BTV replication kinetics in a host-specific manner and highlight the role of the host-specific variation in NS3 protein turnover rate. IMPORTANCE: BTV is the causative agent of a severe disease transmitted between ruminants by biting midges of Culicoides species. NS3, encoded by Seg-10 of the BTV genome, fulfills key roles in BTV infection. As Seg-10 sequences from various BTV strains display genetic variability, we assessed the impact of different Seg-10 and NS3 proteins on BTV infection and host interactions. In this study, we revealed that various Seg-10/NS3 proteins alter BTV replication kinetics in mammals but not in insects. Notably, we found that NS3 protein turnover may vary in ovine but not in Culicoides cells due to a single amino acid residue that, most likely, leads to rapid and host-dependent protein degradation. Overall, this study highlights that genetically distant BTV Seg-10/NS3 influence BTV biological properties in a host-specific manner and increases our understanding of how NS3 proteins contribute to the outcome of BTV infection.


Asunto(s)
Virus de la Lengua Azul/genética , Células Endoteliales/virología , Regulación Viral de la Expresión Génica , Genoma Viral , Proteínas no Estructurales Virales/genética , Replicación Viral/genética , Secuencia de Aminoácidos , Animales , Aorta/metabolismo , Aorta/patología , Aorta/virología , Virus de la Lengua Azul/química , Virus de la Lengua Azul/metabolismo , Línea Celular Transformada , Ceratopogonidae , Plexo Coroideo/metabolismo , Plexo Coroideo/patología , Plexo Coroideo/virología , Cricetulus , Células Endoteliales/metabolismo , Células Endoteliales/patología , Especificidad del Huésped , Ratones , Datos de Secuencia Molecular , Cultivo Primario de Células , Estabilidad Proteica , Proteolisis , Genética Inversa , Ovinos , Transducción de Señal , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Liberación del Virus/genética
20.
Vet Res ; 44: 75, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24007601

RESUMEN

Transplacental transmission of bluetongue virus has been shown previously for the North European strain of serotype 8 (BTV-8) and for tissue culture or chicken egg-adapted vaccine strains but not for field strains of other serotypes. In this study, pregnant ewes (6 per group) were inoculated with either field or rescued strains of BTV-2 and BTV-8 in order to determine the ability of these viruses to cross the placental barrier. The field BTV-2 and BTV-8 strains was passaged once in Culicoides KC cells and once in mammalian cells. All virus inoculated sheep became infected and seroconverted against the different BTV strains used in this study. BTV RNA was detectable in the blood of all but two ewes for over 28 days but infectious virus could only be detected in the blood for a much shorter period. Interestingly, transplacental transmission of BTV-2 (both field and rescued strains) was demonstrated at high efficiency (6 out of 13 lambs born to BTV-2 infected ewes) while only 1 lamb of 12 born to BTV-8 infected ewes showed evidence of in utero infection. In addition, evidence for horizontal transmission of BTV-2 between ewes was observed. As expected, the parental BTV-2 and BTV-8 viruses and the viruses rescued by reverse genetics showed very similar properties to each other. This study showed, for the first time, that transplacental transmission of BTV-2, which had been minimally passaged in cell culture, can occur; hence such transmission might be more frequent than previously thought.


Asunto(s)
Virus de la Lengua Azul/fisiología , Lengua Azul/transmisión , Transmisión Vertical de Enfermedad Infecciosa/veterinaria , Enfermedades de las Ovejas/transmisión , Animales , Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/sangre , Lengua Azul/virología , Virus de la Lengua Azul/genética , Células Cultivadas , Ceratopogonidae/virología , Plexo Coroideo/virología , Femenino , Leche/virología , Placenta/virología , Reacción en Cadena de la Polimerasa/veterinaria , Embarazo , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...