Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.111
Filtrar
1.
Int Immunopharmacol ; 131: 111868, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38493692

RESUMEN

Mitochondrial injury, neuronal apoptosis and phenotypic transformation of macrophages are the main mechanisms of spinal cord injury. Based on the Prussian blue nanomase's strong ability to clear free radicals, the treatment of spinal cord injury with nano-zirconium (Pb-Zr) was carried out. The disease treatment strategy based on nanomaterials has excellent therapeutic effect, and Prussian blue analogs have good therapeutic properties, so the application prospects of Prussian blue analogs is broad. From the point of view of Prussian blue content, improving the presence of zirconium in the microenvironment significantly increased the activity of Prussian blue. Prussian Blue zirconium significantly improved lipopolysaccharide (LPS) and interferon (IFN-γ) induced neuronal cell (pc12 cells) and macrophage dysfunction by improving oxidative stress, inflammation, and apoptosis in the microenvironment. It can promote the recovery of motor function after spinal cord injury. In vivo experiments, it shows that Prussian blue zirconium can improve inflammation, apoptosis and oxidative stress of spinal cord tissue, promote regenerative therapy after spinal cord injury, and improve motor function. Moreover, it has been reported that high-priced Zr4+ cations can regulate the deposition and nucleation behavior of Zn2+ in high-performance zinc metal anodes. Therefore, we propose the hypothesis that Pb-Zr modulates Zn2+ be used to promote recovery from spinal cord injury. The results show that nanomaterial is beneficial in the treatment of spinal cord injury. This study provides a good prospect for the application of spinal cord injury treatment. It also provides an important feasibility for subsequent clinical conversions.


Asunto(s)
Ferrocianuros , Plomo , Traumatismos de la Médula Espinal , Ratas , Animales , Plomo/farmacología , Plomo/uso terapéutico , Circonio/uso terapéutico , Circonio/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Médula Espinal , Inflamación/tratamiento farmacológico , Zinc/uso terapéutico , Zinc/farmacología
2.
Ecotoxicol Environ Saf ; 274: 116178, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38461577

RESUMEN

BACKGROUND: The impact of heavy metals on liver function has been examined in numerous epidemiological studies. However, these findings lack consistency and longitudinal validation. METHODS: In this study, we conducted three follow-up surveys with 426 participants from Northeast China. Blood and urine samples were collected, along with questionnaire information. Urine samples were analyzed for concentrations of four metals (chromium [Cr], cadmium [Cd], lead [Pb], and manganese [Mn]), while blood samples were used to measure five liver function indicators (alanine aminotransferase [ALT], aspartate aminotransferase [AST], albumin [ALB], globulin [GLB], and total protein [TP]). We utilized a linear mixed-effects model (LME) to explore the association between individual heavy metal exposure and liver function. Joint effects of metal mixtures were investigated using quantile g-computation and Bayesian kernel machine regression (BKMR). Furthermore, we employed BKMR and Marginal Effect models to examine the interaction effects between metals on liver function. RESULTS: The LME results demonstrated a significant association between urinary heavy metals (Cr, Cd, Pb, and Mn) and liver function markers. BKMR results indicated positive associations between heavy metal mixtures and ALT, AST, and GLB, and negative associations with ALB and TP, which were consistent with the g-comp results. Synergistic effects were observed between Cd-Cr on ALT, Mn-Cr and Cr-Pb on ALB, while an antagonistic effect was found between Mn-Pb and Mn-Cd on ALB. Additionally, synergistic effects were observed between Mn-Cr on GLB and Cd-Cr on TP. Furthermore, a three-way antagonistic effect of Mn-Pb-Cr on ALB was identified. CONCLUSION: Exposure to heavy metals (Cr, Cd, Mn, Pb) is associated with liver function markers, potentially leading to liver damage. Moreover, there are joint and interaction effects among these metals, which warrant further investigation at both the population and mechanistic levels.


Asunto(s)
Cadmio , Metales Pesados , Humanos , Cadmio/toxicidad , Teorema de Bayes , Plomo/farmacología , Metales Pesados/farmacología , Manganeso/toxicidad , Cromo/farmacología , Hígado
3.
Environ Sci Pollut Res Int ; 31(9): 14043-14058, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38273079

RESUMEN

Here, the impact of irrigation using untreated wastewater (WW) on carrots (Daucus carota L.) was examined. We hypothesized that the addition of ethylenediaminetetraacetic acid (EDTA), dry algal powder (Spirulina platensis or Chlorella vulgaris), and Salix alba leaves powder would function as chelators for harmful contaminants in wastewater. The findings showed that irrigation of carrot plants with the sampled untreated wastewater led to significant decreases in the shoot lengths, fresh, dry weights of shoots and roots at stage I, the diameter of roots, pigment content, carotenoids, total soluble carbohydrate content, and soluble protein content. Furthermore, a significantly increased level of proline, total phenols, and the activities of polyphenol oxidase (PPO), peroxidase (POX), superoxide dismutase (SOD), and catalase (CAT) was identified in stage I samples. In contrast to the stage I, the length of the roots, the number of leaves on each plant, wet and dry weights of the stage II roots were all greatly enhanced. In spite of the increased yield due to the wastewater irrigation, carrot roots irrigated with wastewater had significantly more cadmium (Cd), nickel (Ni), cobalt (Co), and lead (Pb) than is considered safe. Our data clearly show that the application of Spirulina platensis, Chlorella vulgaris, EDTA, and leaves powder of salix was able to alleviate the toxicity of wastewater on carrot plants. For example, we recorded a significant decrease in the accumulation of carrot's Cd, Ni, Co, and Pb contents. We conclude that the treatments with Spirulina platensis and Chlorella vulgaris can be utilized as eco-friendly tools to lessen the damaging effects of wastewater irrigation on carrot plants.


Asunto(s)
Chlorella vulgaris , Daucus carota , Metales Pesados , Contaminantes del Suelo , Spirulina , Cadmio/toxicidad , Aguas Residuales , Ácido Edético/farmacología , Chlorella vulgaris/metabolismo , Plomo/farmacología , Polvos , Metales Pesados/análisis , Contaminantes del Suelo/toxicidad
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1233-1243, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37658211

RESUMEN

Oxidative stress has been linked with lead toxicity, including lead-induced sexual dysfunction. On the contrary, sodium acetate has been proven to exert antioxidant activity. However, the effect of sodium acetate on lead-induced sexual dysfunction has not been fully explored. This study investigated the effect of sodium acetate on lead-induced sexual dysfunction, exploring the involvement of testosterone, eNOS/NO/cGMP, and Nrf2/HO-1 signaling. Twenty male Wistar rats with similar weights were randomly assigned into four groups (n = 5 rats/group) after two weeks of acclimatization. Animals were vehicle-treated (0.5 ml/day of distilled water, per os), acetate-treated (200 mg/kg/day, per os), lead-treated (20 mg/kg/day, per os), or lead + acetate-treated. The results revealed that sodium acetate treatment attenuated lead-induced rise in penile lead, malondialdehyde and oxidized glutathione concentrations, and acetylcholinesterase activity. In addition, lead exposure prolonged mount, intromission, and ejaculation latency and reduced mount, intromission, and ejaculation frequency, as well as the motivation to mate and penile reflex, which were improved by acetate treatment. More so, acetate treatment ameliorated lead-induced reductions in absolute and relative penile weight, eNOS, NO, cGMP, luteinizing hormone, follicle-stimulating hormone, testosterone, dopamine, Nrf2, HO-1, and reduced glutathione concentrations, as well as glutathione reductase, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, and catalase activities. In conclusion, this study demonstrates that sodium acetate attenuated lead-induced sexual dysfunction by upregulating testosterone-dependent eNOS/NO/cGMP and Nrf2/HO-1 signaling. Despite the compelling data presented in this study, other possible associated mechanisms in the protective role of acetate should be explored.


Asunto(s)
Plomo , Testosterona , Ratas , Masculino , Animales , Ratas Wistar , Plomo/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Acetato de Sodio/farmacología , Acetilcolinesterasa , Antioxidantes/farmacología , Estrés Oxidativo
5.
Biometals ; 37(1): 211-222, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37792258

RESUMEN

A chronic disease, hypertension (HTN) is prevalent among the elderly. Exploring the factors that influence HTN and blood pressure (BP) changes is of great public health significance. However, mixed exposure to multiple serum metals has had less research on the effects on BP and HTN for the elderly. From April to August 2019, 2372 people participated in the community physical examination program for the elderly in Tongling City, Anhui Province. We measured BP and serum levels of 10 metals and collected basic demographic information. We analyzed the relationship between metal levels and changes in BP and HTN by the least absolute shrinkage and selection operator regression, Bayesian kernel machine regression model, and generalized linear model. In multiple models, lead (Pb) and cadmium (Cd) were still significantly associated with HTN occurrence after adjusting for potential confounders (Pb: ORquartile 4 VS quartile 1 = 1.20, 95% CI 1.01-1.43; Cd: ORquartile 4 VS quartile 1 = 1.37, 95% CI 1.16-1.62). In the male subgroup, results were similar to those of the general population. In the female group, Cd was positively correlated with HTN and systolic blood pressure, while Pb was not. According to this study, Pb and Cd were correlated with BP and HTN positively, and there was a certain joint effect. To some extent, our findings provide clues for the prevention of hypertension in the elderly.


Asunto(s)
Cadmio , Hipertensión , Humanos , Masculino , Femenino , Anciano , Presión Sanguínea , Cadmio/toxicidad , Teorema de Bayes , Plomo/farmacología , Hipertensión/inducido químicamente , Hipertensión/epidemiología
6.
Brain Res Bull ; 206: 110852, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141790

RESUMEN

Lead (Pb) is a well-known toxic pollutant that has negative effects on behavioral functions. Sesamin, a phytonutrient of the lignan class, has shown neuroprotective effects in various neurological disorder models. The present study was undertaken to evaluate the putative protective effects of sesamin against Pb-induced behavioral deficits and to identify the role of oxidative stress in male rats. The rats were exposed to 500 ppm of Pb acetate in their drinking water and simultaneously treated orally with sesamin at a dose of 30 mg/kg/day for eight consecutive weeks. Standard behavioral paradigms were used to assess the behavioral functions of the animals during the eighth week of the study. Subsequently, oxidative stress factors were evaluated in both the cerebral cortex and hippocampal regions of the rats. The results of this study showed that Pb exposure triggered anxiety-/depression-like behaviors and impaired object recognition memory, but locomotor activity was indistinguishable from the normal control rats. These behavioral deficiencies were associated with suppressed enzymatic and non-enzymatic antioxidant levels, and enhanced lipid peroxidation in the investigated brain regions. Notably, correlations were detected between behavioral deficits and oxidative stress generation in the Pb-exposed rats. Interestingly, sesamin treatment mitigated anxio-depressive-like behaviors, ameliorated object recognition memory impairment, and modulated oxidative-antioxidative status in the rats exposed to Pb. The results suggest that the anti-oxidative properties of sesamin may be one of the underlying mechanisms behind its beneficial effect in ameliorating behavioral deficits associated with Pb exposure.


Asunto(s)
Dioxoles , Plomo , Lignanos , Ratas , Animales , Masculino , Ratas Wistar , Plomo/farmacología , Estrés Oxidativo , Antioxidantes/farmacología , Lignanos/farmacología , Lignanos/uso terapéutico
7.
Environ Sci Pollut Res Int ; 31(5): 7498-7513, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38158536

RESUMEN

The toxicity of lead (Pb) in agricultural soil is constantly increasing as a result of anthropogenic activities. Pb is one of the most phytotoxic metals in soil that accumulates in plant tissue, resulting in yield loss. It is currently becoming more popular to supplement glycine betaine (GB) for Pb-induced stress tolerance in crop plants. Currently, no report describes the use of GB as a stress mitigator for growth attributes and stress-specific biomarkers in barley plants under Pb stress conditions. Hence, the present research was designed to examine the stress-mitigating behavior of GB on various growth attributes including germination percentage, seed vigor index (SVI), radicle length, plant biomass (fresh and dry), shoot and root length, physiological attributes such as relative water content (RWC), and stress-specific biomarkers like electrolyte leakage (EL), and H2O2 content of two barley varieties viz. BH959 and BH946 at three Pb stress treatments (15 mM, 25 mM, and 35 mM), with and without GB (2 mM) supplementation in natural conditions. The present investigation showed that at the highest Pb stress (35 mM), the germination rate was reduced to zero, and the growth attributes and RWC of both barley varieties were also reduced as compared to the non-stressed plants (control) with an increase in Pb treatment. However, EL up to 70% and H2O2 content up to 30% increased with an increase in Pb stress concentration indicated by ROS accumulation, resulting in more oxidative stress. Additionally, GB application alleviated the toxic effect of Pb stress by improving the rate of germination by 33.3% and growth performance by reducing the ROS accumulation in terms of reducing stress biomarkers H2O2 by 25%, and EL by 12%. It has been revealed that the application of GB can minimize or reduce the toxic effects caused by Pb toxicity in both varieties, positively modulating plant growth performances and lowering oxidative stress. This research may provide a scientific basis for assessing Pb tolerance in barley plants and developing alternative approaches to protecting them from the severe effects of Pb toxicity.


Asunto(s)
Betaína , Hordeum , Betaína/farmacología , Plomo/farmacología , Peróxido de Hidrógeno/farmacología , Especies Reactivas de Oxígeno/farmacología , Estrés Oxidativo , Suelo , Biomarcadores
8.
Int J Mol Sci ; 24(23)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38069399

RESUMEN

Spirulina, a filamentous microalga, is used all over the world as a nutraceutical dietary supplement. Recent studies have focused on examining its chelating activity and antioxidant properties, especially as a candidate for protection against neurotoxicity caused by heavy metals. The MTT test and LDH assay were used to examine the viability of the SH-SY5Y cells for 24, 48, and 72 h, to Cd, Hg, and Pb, individually or in combination with Spirulina, and the effects of necrotic cell death. In comparison to the control group, the viability of SH-SY5Y cells decreased after 24 h of exposure, with Cd being more toxic than Hg and Pb being less lethal. The effects of heavy metal toxicity on cell survival were ranked in order after 72 h under identical experimental circumstances as follows: Hg, Pb, and Cd. The viability of the cells was then tested after being exposed to Spirulina at doses of 5 at 50 (%v/v) for 24, 48, and 72 h, respectively. SH-SY5Y cells that had been treated with mixtures of heavy metals and Spirulina underwent the same assay. Cell viability is considerably increased by using Spirulina treatments at the prescribed periods and doses. Instead, the same procedure, when applied to SH-SY5Y cells, caused the release of LDH, which is consistent with the reduction in cell viability. We demonstrated for the first time, considering all the available data, that Spirulina 5, 25, and 50 (%v/v) enhanced the number of viable SH-SY5Y cells utilized as a model system for brain cells. Overall, the data from the present study provide a first insight into the promising positive role of Spirulina against the potentially toxic effects of metals.


Asunto(s)
Mercurio , Metales Pesados , Neuroblastoma , Spirulina , Humanos , Mercurio/toxicidad , Cadmio/toxicidad , Plomo/farmacología , Metales Pesados/toxicidad , Línea Celular Tumoral , Supervivencia Celular
9.
J Orthop Surg Res ; 18(1): 827, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924110

RESUMEN

BACKGROUND: This study aimed to investigate the association between blood trace elements and bone mineral density (BMD) and to determine the association between blood trace elements and the risk of low BMD/osteoporosis among US adults. METHODS: We performed a cross-sectional study using data from National Health and Nutrition Examination Survey (NHANES, 2011-2016). Multivariable linear regression models were employed to assess the associations of BMD in lumbar spine (LS-BMD), pelvic (PV-BMD) and total femur (TF-BMD) with blood trace elements, including Fe, Zn, Cu, Se, Mn, Cd, Pb, Hg. Additionally, the associations of low BMD/osteoporosis with blood trace elements were also evaluated using multivariable logistic regression. RESULTS: Higher blood Pb levels were found associated with decreased LS-BMD (p for trend < 0.001), PV-BMD (p for trend = 0.007), and TF-BMD (p for trend = 0.003) in female, while higher blood Se levels were associated with increased PV-BMD in female (p for trend = 0.042); no linear association between BMD and other blood trace element was observed. Also, significant associations were found between Pb levels and the prevalence of low BMD (p for trend = 0.030) and the prevalence of osteoporosis (p for trend = 0.036), while association between other blood trace elements and low BMD/osteoporosis was not observed. CONCLUSION: This study provides comprehensive insight into the association between blood trace elements and BMD and supports a detrimental effect of blood Pb levels on bone mass in women. Considering our analysis from a representative US general population, further study is warranted for the extreme levels of blood trace elements on bone metabolism.


Asunto(s)
Osteoporosis , Oligoelementos , Humanos , Adulto , Femenino , Densidad Ósea , Oligoelementos/farmacología , Encuestas Nutricionales , Estudios Transversales , Plomo/farmacología , Absorciometría de Fotón , Osteoporosis/metabolismo , Vértebras Lumbares/metabolismo
10.
Dev Psychobiol ; 65(7): e22421, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37860907

RESUMEN

Despite early-life disadvantage (ELD) in humans being a highly heterogenous construct, it consistently predicts negative neurobehavioral outcomes. The numerous environmental contributors and neural mechanisms underlying ELD remain unclear, though. We used a laboratory rat model to evaluate the effects of limited resources and/or heavy metal exposure on mothers and their adult male and female offspring. Dams and litters were chronically exposed to restricted (1-cm deep) or ample (4-cm deep) home cage bedding postpartum, with or without lead acetate (0.1%) in their drinking water from insemination through 1-week postweaning. Restricted-bedding mothers showed more pup-directed behaviors and behavioral fragmentation, while lead-exposed mothers showed more nestbuilding. Restricted bedding-raised male offspring showed higher anxiety and aggression. Either restricted bedding or lead exposure impaired goal-directed performance in a reinforcer devaluation task in females, whereas restricted bedding alone disrupted it in males. Lead exposure, but not limited bedding, also reduced sucrose reward sensitivity in a progressive ratio task in females. D1 and D2 receptor mRNA in the medial prefrontal cortex and nucleus accumbens (NAc) were each affected by the early-life treatments and differently between the sexes. Most notably, adult males (but not females) exposed to both early-life treatments had greatly increased D1 receptor mRNA in the NAc core. These results illuminate neural mechanisms through which ELD threatens neurobehavioral development and highlight forebrain dopamine as a factor.


Asunto(s)
Dopamina , Receptores Dopaminérgicos , Ratas , Animales , Humanos , Masculino , Femenino , Dopamina/metabolismo , Receptores Dopaminérgicos/metabolismo , Plomo/metabolismo , Plomo/farmacología , Núcleo Accumbens/metabolismo , Ansiedad , Agresión , Recompensa , ARN Mensajero/metabolismo
11.
Environ Sci Pollut Res Int ; 30(48): 106038-106046, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37726622

RESUMEN

Previous studies have reported that exposures to metals are associated with bone health, but are mostly restricted to a few of the most frequent hazardous metals. The effects of barium (Ba) are not fully understood. A cross-sectional study involving 1532 adults from the National Health and Nutrition Examination Survey (NHANES, 2013-2016) was conducted. Generalized linear model (GLM) and restricted cubic spline (RCS) were applied to evaluate the relationship of urinary Ba exposure with BMDs. According to the GLM analyses, urinary Ba was adversely correlated with total BMD (percent change: -0.75; 95% CI: -1.21, -0.29) and lumbar BMD (percent change: -0.76; 95% CI: -1.47, -0.04). Compared with the lowest tertile of Ba levels, the percentage change of T3 was -2.06 (-3.36, -0.73) for total BMD and was -2.39 (-4.51, -0.24) for lumbar BMD, showing a significant linear trend (P trend = 0.014 and P trend = 0.047, respectively). The RCS models showed a monotonically decreasing relationship of urinary Ba with total BMD and lumbar BMD. Moreover, the positive joint effects were observed between Pb (lead) and Ba, and Cd (cadmium) and Ba on BMDs. According to our findings, exposure to Ba may lead to a decrease in BMDs. Possible positive joint effects of Ba and Pb, and Ba and Cd on BMDs were found. Exposure to Ba may contribute to poor skeletal health.


Asunto(s)
Densidad Ósea , Cadmio , Adulto , Humanos , Encuestas Nutricionales , Bario , Absorciometría de Fotón , Cadmio/farmacología , Estudios Transversales , Plomo/farmacología
12.
Environ Sci Pollut Res Int ; 30(56): 118246-118262, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37599348

RESUMEN

Lead (Pb) is one of the most toxic elements on earth. The harmful effects of Pb at higher concentrations were seen on plant vegetation because plants are directly exposed towards it. Indian mustard, a well-known hyperaccumulator plant is the most promising crop for the environment, engaged in a variety of scenarios for ecological cleanup. In the present study, we used ethylene diamine tetraacetic acid (EDTA), a chelating agent that is of remarkable efficiency. The pot experiments were conducted in soil pretreated with 1000 mgkg-1 Pb with different concentrations of EDTA (2-10 mmol). All the growth parameters were reduced significantly in the plants treated with Pb and EDTA, however, a non-significant effect was observed in 5 mmol EDTA compared to Pb alone treatment. Photosynthetic pigments yield, nitrate reductase activity and NPK content were affected negatively; in contrast, superoxide dismutase and catalase activity was increased in Pb and Pb+EDTA treated in both the varieties. The Pb accumulation was elevated significantly by the augmentation of 5 mmol EDTA in both varieties. Accumulation of Pb in the shoot was higher in PM 25 than in P. Vijay, whereas root Pb accumulation showed the opposite, i.e., more Pb in roots of P. Vijay than PM 25. Moreover, The Pb accumulation per plant was observed more in P. Vijay as compared to PM 25. Hence, the present study implies that the augmentation of Pb-polluted soil with EDTA works well while dealing with B. juncea assisted phytoremediation and P. Vijay to be a stronger variety than PM 25. Further, 5 mmol of EDTA was optimum for phytoremediation of the soil polluted with up to 1000 mg Pb kg-1 soil.


Asunto(s)
Planta de la Mostaza , Contaminantes del Suelo , Ácido Edético/farmacología , Plomo/farmacología , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Suelo/química , Etilenos
13.
Mar Environ Res ; 191: 106134, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37586222

RESUMEN

Heavy metals are considered a major threat to aquatic ecosystems, due to their ability to penetrate and accumulate through the food chain, putting marine organisms and the ecosystem at risk. This research presents a case study of the Taghazout coast, located in the central Atlantic of Morocco, which has become the focal point of various development projects, including the Taghazout Bay tourist resort. The study aimed to gain a deeper understanding of the harmful effects of these metals on the reproductive cycle and population dynamics of the bivalve Donax trunculus. The assessment of cadmium (Cd), lead (Pb), and copper (Cu) levels in D. trunculus bivalves and sediment at the research location provides evidence of exposure to these metal sources by these bivalves. The analysis of the reproductive cycle revealed a balanced sex ratio of males to females. The Sexual Maturity Index (SMI) and Condition Index (CI) of the bivalves were found to be significantly influenced by trace elements Pb and Cu, as well as environmental factors like temperature, dissolved oxygen, and salinity. The maturity stages of the gonads were classified into five stages: undifferentiated, developing, mature, spawning, and spent. Two spawning periods were observed aligning with the population dynamics study that identified a bimodal recruitment (early autumn and spring) in D. trunculus. The population was found to have 11 size cohorts, with a maximum length of 37.96 cm, a yearly growth rate of 1.93 cm, and a short lifespan of 1.5 years. The high mortality rate of 3.30 per year was attributed to the presence of trace elements in Taghazout coast. These findings shed light on heavy metal's impact on the population of D. trunculus, revealing that a sole emphasis on its physiological or cellular effects may overlook its larger impact.


Asunto(s)
Bivalvos , Metales Pesados , Oligoelementos , Contaminantes Químicos del Agua , Animales , Masculino , Femenino , Ecosistema , Plomo/análisis , Plomo/farmacología , Oligoelementos/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
14.
Environ Sci Pollut Res Int ; 30(36): 86244-86254, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37402921

RESUMEN

This study investigated the combined effects of citric acid (CA) and Nocardiopsis sp. RA07 on the phytoremediation potential of lead (Pb)- and copper (Cu)-contaminated soils by Sorghum bicolor L. The strain RA07 was able to tolerate Pb and Cu, and exhibited plant growth-promoting features like siderophore production, indole-3-acetic acid (IAA) synthesis, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and phosphate solubilization. The combined application of CA and strain RA07 significantly increased S. bicolor growth, chlorophyll content and antioxidant enzymatic activity, and decreased oxidative stress (hydrogen peroxide and malondialdehyde content) under Pb and Cu stress circumstances as compared to individual treatments (i.e., CA and strain RA07). Furthermore, the combined application of CA and RA07 significantly enhanced S. bicolor ability to accumulate Pb and Cu by 64.41% and 60.71% in the root and 188.39% and 125.56% in the shoot, respectively, as compared to the corresponding uninoculated plants. Our results indicate that inoculation of Nocardiopsis sp. together with CA could be a useful practical approach to mitigate Pb and Cu stress on plant growth and increase the effectiveness of phytoremediation in Pb- and Cu-polluted soils.


Asunto(s)
Contaminantes del Suelo , Sorghum , Biodegradación Ambiental , Nocardiopsis , Ácido Cítrico/farmacología , Plomo/farmacología , Suelo , Contaminantes del Suelo/farmacología , Raíces de Plantas
15.
Environ Sci Pollut Res Int ; 30(40): 91563-91590, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495800

RESUMEN

The liver is a central target organ of heavy metals toxicity, and secondary metabolites of several plant species are suggested to attenuate lead (Pb)-induced hepatotoxicity through antioxidant and anti-inflammatory mechanisms. We used a systematic review framework to map the impact of plant extracts and bioactive secondary metabolites on immunological markers and liver redox metabolism in preclinical models of Pb exposure. This is a systematic review performed according to PRISMA guidelines. The structured research of publications was done through PubMed, Scopus, Web of Science, and Embase databases, selecting and analyzing 41 original studies included via the eligibility criteria. Evidence indicates that Pb-exposure increases reactive oxygen/nitrogen species (ROS/RNS) production by δ-aminolevulinic acid auto-oxidation, xanthine dehydrogenase, and xanthine oxidase upregulation. Pb exposure also inhibits antioxidant enzymes, potentiating ROS/NOS levels and reactive cell damage. Plant extracts rich in flavonoids, tannins, alkaloids, anthocyanins, and vitamins exerted hepatoprotective effects by chelating and decreasing Pb bioaccumulation. In addition, plant extracts reinforce exogenous and endogenous antioxidant defenses, attenuating liver oxidative stress and cell death. The lack of blinded evaluators and randomized experimental groups were the main sources of bias identified, which need to be controlled in toxicological studies aimed at identifying natural products applied to the prevention or treatment of Pb poisoning.


Asunto(s)
Antioxidantes , Plomo , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plomo/farmacología , Antocianinas/farmacología , Estrés Oxidativo , Oxidación-Reducción , Plantas/metabolismo , Extractos Vegetales/farmacología
16.
Chemosphere ; 338: 139593, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37478986

RESUMEN

To comprehensively explore the potential toxicity of aquatic organisms exposed to chlorinated or brominated flame retardants (BFRs) and metals mixtures, it is necessary to find a common pathway to relate local toxic targeted sites or organs. A key challenge in environmental risk assessment (ERA) is how to clarify the same or different sites or organs of toxic action in a species after exposure to individual chemicals or chemical mixtures. In this study, zebrafish embryo was used to evaluate the sub-lethal toxicity (swim bladder damage) of tris(2,3-dibromo propyl) isocyanurate (TBC), chlorinated paraffins (CPs), hexabromocyclododecane (HBCD), Cu, Cd, Pb, Ag, and Zn through optical microscopy methods, and corresponding sub-lethal molecular levels (inflammation-related enzymes [deiodinase (DIO) enzymes] and transcriptional levels of key genes) in fish through quantitative real-time PCR (qRT-PCR). The tested chemicals all caused failed inflation of the swim bladder, as indicated by activity inhibition of type 2 iodothyronine deiodinase enzyme. Following embryonic exposure to respective TBC + Cu, HBCD + TBC, and Cd + Pb mixtures, as the concentration of the respective Cu, TBC, and Pb increased, the deformity of the swim bladder increased, as also indicated by activity inhibition of type 2 iodothyronine deiodinase enzyme. Additionally, eight chemicals down-regulated Wnt (wnt3, wnt9b, fzd3b, wnt1, fzd5, and fdz1) signaling pathways, which were neurotoxic responses to individual chemical treatments and Hedgehog (ihh, shh, ptc1 and ptc2) signaling pathways. Moreover, excessive ROS induced by eight chemicals effectively induced defects in the swim bladder and Wnt/Hedgehog signaling, which also be proved in respective TBC + Cu, HBCD + TBC, and Cd + Pb mixture treatments. Our results first revealed that eight chemicals caused swim bladder developmental defects via ROS-mediated inhibition of the Wnt and Hedgehog pathways, which revealed the common targeted sites or organs (swim bladders) for further studying the toxic mechanisms underlying the chemical mixtures.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/metabolismo , Proteínas Hedgehog/genética , Especies Reactivas de Oxígeno/farmacología , Yoduro Peroxidasa/genética , Vejiga Urinaria/metabolismo , Cadmio/farmacología , Plomo/farmacología , Embrión no Mamífero , Contaminantes Químicos del Agua/química
17.
Cell Biochem Biophys ; 81(3): 443-458, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37341933

RESUMEN

Lead and mercury are the ubiquitous heavy metals triggering toxicity and initiating apoptosis in cells. Though the toxic effects of heavy metals on various organs are known, there is a paucity of information on the mechanisms that instigate the current study. A plausible role of phospholipid scramblase 3 (PLSCR3) in Pb2+ and Hg2+ induced apoptosis was investigated with human embryonic kidney (HEK 293) cells. After 12 h of exposure, ~30-40% of the cells were in the early stage of apoptosis with increased reactive oxygen species (ROS), decreased mitochondrial membrane potential, and increased intracellular calcium levels. Also, ~20% of the cardiolipin localized within the inner mitochondrial membrane was translocated to the outer mitochondrial membrane along with the mobilization of truncated Bid (t-Bid) to the mitochondria and cytochrome c from the mitochondria. The endogenous expression levels of PLSCR3, caspase 8, and caspase 3 were upregulated in Pb2+ and Hg2+ induced apoptosis. The activation and upregulation of PLSCR3 mediate CL translocation playing a potential role in initiating the heavy metal-induced apoptosis. Therefore, PLSCR3 could be the linker between mitochondria and heavy metal apoptosis.


Asunto(s)
Mercurio , Metales Pesados , Humanos , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/farmacología , Células HEK293 , Plomo/metabolismo , Plomo/farmacología , Mitocondrias/metabolismo , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Apoptosis , Mercurio/toxicidad , Mercurio/metabolismo , Especies Reactivas de Oxígeno/metabolismo
18.
Chemosphere ; 335: 139010, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37236281

RESUMEN

Heavy metals (HMs) and metalloids (Ms) such as arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) represent serious environmental threats due to their wide abundance and high toxicity. Contamination of water and soils by HMs and Ms from natural or anthropogenic sources is of great concern in agricultural production due to their toxic effects on plants, adversely affecting food safety and plant growth. The uptake of HMs and Ms by Phaseolus vulgaris L. plants depends on several factors including soil properties such as pH, phosphate, and organic matter. High concentrations of HMs and Ms could be toxic to plants due to the increased generation of reactive oxygen species (ROS) such as (O2•-), (•OH), (H2O2), and (1O2), and oxidative stress due to an imbalance between ROS generation and antioxidant enzyme activity. To minimize the effects of ROS, plants have developed a complex defense mechanism based on the activity of antioxidant enzymes such as SOD, CAT, GPX, and phytohormones, especially salicylic acid (SA) that can reduce the toxicity of HMs and Ms. This review focuses on evaluating the accumulation and translocation of As, Cd, Hg, and Pb in Phaseolus vulgaris L. plants and on their possible effects on the growth of Phaseolus vulgaris L. in soil contaminated with these elements. The factors that affect the uptake of HMs and Ms by bean plants, and the defense mechanisms under oxidative stress caused by the presence of As, Cd, Hg, and Pb are also discussed. Furthermore, future research on mitigating HMs and Ms toxicity in Phaseolus vulgaris L. plants is highlighted.


Asunto(s)
Arsénico , Mercurio , Metaloides , Metales Pesados , Phaseolus , Contaminantes del Suelo , Cadmio/toxicidad , Especies Reactivas de Oxígeno/farmacología , Antioxidantes/farmacología , Peróxido de Hidrógeno/farmacología , Plomo/farmacología , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Arsénico/análisis , Mercurio/toxicidad , Plantas , Suelo/química
19.
Small ; 19(32): e2301129, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37069781

RESUMEN

Lead-based perovskite nanoparticles (Pb-PNPs) with superior optoelectronic properties are promising alternatives for the next generation of photovoltaics materials. This raises a great concern about their potential exposure toxicity in biological systems. However, little is known about their adverse effects on the gastrointestinal tract system so far. Here, the aim is to investigate the biodistribution, biotransformation, potential gastrointestinal tract toxicity, and effect on the gut microbiota after oral exposure to the CsPbBr3 perovskite nanoparticles (CPB PNPs). The advanced synchrotron radiation based microscopic X-ray fluorescence scanning and X-ray absorption near-edge spectroscopy demonstrate that high doses of CPB (CPB-H) PNPs can gradually transform into different lead-based compounds, subsequently accumulating in the gastrointestinal tract, especially the colon. Meanwhile, the pathological changes of stomach, small intestine, and colon reveal that CPB-H PNPs have higher gastrointestinal tract toxicity than Pb(Ac)2 , consequently leading to colitis-like symptoms. More importantly, 16S rRNA gene sequencing analysis discloses that CPB-H PNPs cause more significant alterations in the richness and diversity of the gut microbiota related to inflammation, intestinal barrier, and immune function than Pb(Ac)2 . The findings may contribute to shedding light on understanding the adverse effects on gastrointestinal tract and gut microbiota of Pb-PNPs.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Nanopartículas , Humanos , Disbiosis , Plomo/farmacología , ARN Ribosómico 16S/metabolismo , Distribución Tisular , Colitis/inducido químicamente , Nanopartículas/efectos adversos
20.
Ecotoxicol Environ Saf ; 256: 114875, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37059018

RESUMEN

In this research, an attempt was made to produce safe food from lead-contaminated soil. It was assumed that an increased amount of calcium (Ca) in plants would prevent them from lead (Pb) uptake. A new-generation agricultural product - an activator of Ca transport in plants "InCa" (from Plant Impact) - was used. The study was conducted on several crop species, Cucumis sativus L., Linum usitatissimum L., Medicago sativa L. and Solanum lycopersicum L., cultivated in mineral medium. The leaves were sprayed with InCa activator while the roots received Pb from the substrate in the form of Pb(NO3)2 dissolved in the medium. It was shown that spraying the leaves with InCa reduced Pb concentration in the roots of S. lycopersicum to 73%, in C. sativus to 60%, and in L. usitatissimum to 57%. Finally, it was found that foliar application of InCa reduced the concentration of Pb in plant roots by 53%, and in plant shoots by 57% (on average by about 55%). These observations were confirmed using histochemical and electron microscopy techniques. It was shown that one of the InCa activator components - Ca(NO3)2 - is responsible for such effects. This result was verified by using another experimental method - the Allium epidermis test. Visualization of Pb in epidermal cells of Allium cepa. L. using the Leadmium™Green fluorescent probe (confocal microscopy) showed a reduction in the amount of Pb that entered the epidermal cells after the application of the tested solutions. For the first time, it was shown that it is possible to reduce Pb uptake by plants by up to 55%. In the future, this offers the possibility of developing a foliar calcium preparation aimed at lowering the concentration of Pb in plants and thereby reducing the amount of Pb in the food chain.


Asunto(s)
Plomo , Contaminantes del Suelo , Plomo/farmacología , Calcio/farmacología , Transporte Biológico , Alimentos , Cebollas , Contaminantes del Suelo/análisis , Raíces de Plantas , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...