Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.648
Filtrar
1.
J Environ Sci (China) ; 149: 278-287, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181642

RESUMEN

The arsenic (As) release from sediments in great lakes is affected by various factors. In this study, the characteristics of As release from sediments was investigated, and the As sources and sinks with the strengths in sediments from different areas (grass-type, algae-type, and grass-algae alternation areas) in great shallow lakes (Taihu Lake, China) were analyzed, and the influence of P competition in the process of As release was also studied. The results showed that changing trend of the values of equilibrium As concentration in sediments were consistent with the regional changes (0 to 28.12 µg/L), and the sediments from algae-type areas had the higher values. The sediments from western lake and northwest lake bay were a strong As and a weak P source, and the north lake bay had the opposite trend of these two regions. Intense P source competition with As from the sediments occurred in algae-type areas. The grass-type areas had strong As and P retention capacities, indicating a sink role of sediment with high As and P sorption capacities. The degree of As and P saturation had similar trend in sediments, and the grass-type areas had the higher values, 18.3%-21.4% and 15.31%-20.34%, respectively. Contribution analysis results showed that most of As release contribution was from the bottom (30-50 cm) sediments, and the surface (0-10 cm) sediments from algae-type areas contributed more to the overlying water than other region.


Asunto(s)
Arsénico , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Fósforo , Contaminantes Químicos del Agua , Lagos/química , Fósforo/análisis , Arsénico/análisis , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , China , Poaceae
2.
Int J Mol Sci ; 25(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39337599

RESUMEN

Salt stress severely inhibits plant growth. Understanding the mechanism of plant salt tolerance is highly important to improving plant salt tolerance. Previous studies have shown that nonselective cyclic nucleotide-gated ion channels (CNGCs) play an important role in plant salt tolerance. However, current research on CNGCs mainly focuses on CNGCs in glycophytic plants, and research on CNGCs in halophytes that exhibit special salt tolerance strategies is still scarce. This study used the halophilic plant Zoysia japonica, an excellent warm-season turfgrass, as the experimental material. Through bioinformatics analysis, 18 members of the CNGC family were identified in Zoysia japonica; they were designated ZjCNGC1 through ZjCNGC18 according to their scaffold-level chromosomal positions. ZjCNGCs are divided into four groups (I-IV), with the same groups having differentiated protein-conserved domains and gene structures. ZjCNGCs are unevenly distributed on 16 scaffold-level chromosomes. Compared with other species, the ZjCNGCs in Group III exhibit obvious gene expansion, mainly due to duplication of gene segments. The collinearity between ZjCNGCs, OsCNGCs, and SjCNGCs suggests that CNGCs are evolutionarily conserved among gramineous plants. However, the Group III ZjCNGCs are only partially collinear with OsCNGCs and SjCNGCs, implying that the expansion of Group III ZjCNGC genes may have been an independent event occurring in Zoysia japonica. Protein interaction prediction revealed that ZjCNGCs, calcium-dependent protein kinase, H+-ATPase, outwardly rectifying potassium channel protein, and polyubiquitin 3 interact with ZjCNGCs. Multiple stress response regulatory elements, including those involved in salt stress, are present on the ZjCNGC promoter. The qPCR results revealed differences in the expression patterns of ZjCNGCs in different parts of the plant. Under salt stress conditions, the expression of ZjCNGCs was significantly upregulated in roots and leaves, with ZjCNGC8 and ZjCNGC13 showing the greatest increase in expression in the roots. These results collectively suggest that ZjCNGCs play an important role in salt tolerance and that their expansion into Group III may be a special mechanism underlying the salt tolerance of Zoysia japonica.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Poaceae , Estrés Salino , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Poaceae/genética , Poaceae/metabolismo , Tolerancia a la Sal/genética , Genoma de Planta , Plantas Tolerantes a la Sal/genética , Perfilación de la Expresión Génica , Cromosomas de las Plantas/genética
3.
Int J Mol Sci ; 25(18)2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39337634

RESUMEN

Leymus chinensis, a halophytic perennial grass belonging to the Poaceae family, thrives in saline-alkali grasslands and harbors a rich repository of resistance-related genetic resources. This study focused on deciphering the stress-responsive mechanisms of L. chinensis by conducting transcriptomic sequencing under NaHCO3 stress, which resulted in the annotation of a segment corresponding to the 51WRKY gene. The alkali-induced gene LcWRKY40 (QIG37591) was identified by phylogenetic analysis. Real-time quantitative PCR analysis was performed on L. chinensis plants subjected to PEG6000 and alkaline salt (NaHCO3) stress, and the results indicated that the LcWRKY40 gene was upregulated in both the leaves and roots. The localization of the LcWRKY40 protein was confirmed by the use of green fluorescent protein (GFP) fusion technology in transformed rice protoplast cells. The GAL4-driven transformation of the LcWRKY40 gene in INVScI yeast cells, which exhibited enhanced tolerance upon overexpression of the LcWRKY40 gene under mannitol and alkaline salt (NaHCO3) stress conditions. Under drought stress using mannitol, the fresh weight of Nicotiana tabacum overexpressing the LcWRKY40 gene was significantly higher than that of wild-type(WT) tobacco. Through drought and salt alkali stress, we found that overexpressed tobacco at different stages always outperformed the wild type in terms of fresh weight, SOD, MDA, and Fv/Fm. This study provides preliminary insights into the involvement of the LcWRKY40 gene in responding to drought and alkaline salt stresses, highlighting its role in enhancing plant resistance to drought and saline-alkaline conditions. These findings lay the foundation for future molecular breeding strategies aimed at improving grass resistance from different aspects.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Nicotiana , Proteínas de Plantas , Tolerancia a la Sal , Estrés Fisiológico , Nicotiana/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Tolerancia a la Sal/genética , Filogenia , Plantas Modificadas Genéticamente/genética , Bicarbonato de Sodio/farmacología , Poaceae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plantas Tolerantes a la Sal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
4.
Sci Rep ; 14(1): 22196, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333669

RESUMEN

We aimed to explore the mineralization characteristics of soil organic carbon(SOC) under different plant species in semi-arid grassland and provide basic soil carbon cycling data. Leymus chinensis, Stipa krylovii Roshev, Artemisia frigida, and Agrophorn cristam (L.) Gaertn were selected as the plant species. Incubation experiment were conducted on SOC mineralization in soil aggregates with particle sizes of > 2, 1-2, 0.25-1, and < 0.25 mm. The cumulative SOC mineralization amount in L. chinensis with a particle size > 2 mm was the highest, exceeding that of A. cristam (L.) Gaertn by approximately 136.14%. S. krylovii Roshev (70.73%), L. chinensis (58.05%), and A. frigida (33.73%) exhibited pronounced promotion effects on mineralization. The potential SOC mineralization of S. krylovii Roshev was the greatest among all species at the same soil particle size. The potential SOC mineralization was highest at a particle size of > 2 mm for all plant types. All plant types increased the SOC mineralization rate and cumulative mineralization in soils with large particle sizes, the mineralization reaction occurred more strongly. Organic carbon cumulative SOC mineralization rapidly increased in all tests during the first 20 days and gradually slowed thereafter.


Asunto(s)
Carbono , Pradera , Suelo , Suelo/química , Carbono/metabolismo , Tamaño de la Partícula , Poaceae/metabolismo
5.
Mol Biol Rep ; 51(1): 987, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283359

RESUMEN

BACKGROUND: Over the last decade, increasing attention has been directed to using different substrates as sources of environmental DNA (eDNA) in ecological research. Reports on the use of environmental DNA located on the surface of plant leaves and flowers have highlighted the utility of this DNA source in studies including, but not limited to, biodiversity, invasive species, and pollination ecology. The current study assesses grass inflorescence as a source of eDNA for detecting invertebrate taxa. METHODS AND RESULTS: Inflorescences from four common grass species in a central South African grassland were collected for high-throughput sequencing analysis. Universal COI primers were utilised to detect Metazoan diversity. The sequencing results allowed for the detection of three Arthropoda orders, with most OTUs assigned to fungal taxa (Ascomycota and Basidiomycota). Some biases were detected while observing the relative read abundance (RRA) results. DISCUSSION: The observed biases could be explained by the accidental inclusion of invertebrate specimens during sample collection and DNA extraction. Primer biases towards the amplified taxa could be another reason for the observed RRA results. This study provided insight into the invertebrate community associated with the four sampled grass species. It should be noted that with the lack of negative field controls, it is impossible to rule out the influence of airborne eDNA on the observed diversity associated with each grass species. The lack of the inclusion of PCR and extraction blanks in the sequencing step, as well as the inclusion of negative field controls, including other areas for refinement were highlighted, and suggestions were provided to improve the outcomes of future studies.


Asunto(s)
Código de Barras del ADN Taxonómico , ADN Ambiental , Inflorescencia , Poaceae , Código de Barras del ADN Taxonómico/métodos , Poaceae/genética , ADN Ambiental/genética , Animales , Inflorescencia/genética , Biodiversidad , Monitoreo Biológico/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Pradera , Sudáfrica , ADN de Plantas/genética
6.
Nat Commun ; 15(1): 8085, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278956

RESUMEN

Moso bamboo (Phyllostachys edulis), an ecologically and economically important forest species in East Asia, plays vital roles in carbon sequestration and climate change mitigation. However, intensifying climate change threatens moso bamboo survival. Here we generate high-quality haplotype-based pangenome assemblies for 16 representative moso bamboo accessions and integrated these assemblies with 427 previously resequenced accessions. Characterization of the haplotype-based pangenome reveals extensive genetic variation, predominantly between haplotypes rather than within accessions. Many genes with allele-specific expression patterns are implicated in climate responses. Integrating spatiotemporal climate data reveals more than 1050 variations associated with pivotal climate factors, including temperature and precipitation. Climate-associated variations enable the prediction of increased genetic risk across the northern and western regions of China under future emissions scenarios, underscoring the threats posed by rising temperatures. Our integrated haplotype-based pangenome elucidates moso bamboo's local climate adaptation mechanisms and provides critical genomic resources for addressing intensifying climate pressures on this essential bamboo. More broadly, this study demonstrates the power of long-read sequencing in dissecting adaptive traits in climate-sensitive species, advancing evolutionary knowledge to support conservation.


Asunto(s)
Cambio Climático , Variación Genética , Genoma de Planta , Haplotipos , Poaceae , Poaceae/genética , China , Adaptación Fisiológica/genética , Aclimatación/genética
7.
Proc Biol Sci ; 291(2031): 20240642, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39288804

RESUMEN

Nutrient addition, particularly nitrogen, often increases plant aboveground biomass but causes species loss. Asymmetric competition for light is frequently assumed to explain the biomass-driven species loss. However, it remains unclear whether other factors such as water can also play a role. Increased aboveground leaf area following nitrogen addition and warming may increase transpiration and cause water limitation, leading to a decline in diversity. To test this, we conducted field measurements in a grassland community exposed to nitrogen and water addition, and warming. We found that warming and/or nitrogen addition significantly increased aboveground biomass but reduced species richness. Water addition prevented species loss in either nitrogen-enriched or warmed treatments, while it partially mitigated species loss in the treatment exposed to increases in both temperature and nitrogen. These findings thus strongly suggest that water limitation can be an important driver of species loss as biomass increases after nitrogen addition and warming when soil moisture is limiting. This result is further supported by a meta-analysis of published studies across grasslands worldwide. Our study indicates that loss of grassland species richness in the future may be greatest under a scenario of increasing temperature and nitrogen deposition, but decreasing precipitation.


Asunto(s)
Biodiversidad , Biomasa , Pradera , Nitrógeno , Agua , Nitrógeno/metabolismo , Temperatura , Calentamiento Global , Poaceae/fisiología
8.
Sci Total Environ ; 953: 175928, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39226953

RESUMEN

Critical soil suctions (threshold, tipping point, and permanent wilting) corresponding to initial drought response, near-death stage, and complete mortality, respectively; is essential for formulating irrigation schemes of vegetation grown in compacted soil under drought conditions. The effect of soil types on these critical soil suctions are unexplored and is crucial in understanding the soil-specific plant water functions. This study aims to establish the drought response of Axonopus compressus (grass), based on stomatal conductance (gs) and chlorophyll fluorescence parameters (CI) grown in different soil types. A. compressus were grown in six soil types (2 coarse-grained and 4 fine-grained soils) for 8 weeks, followed by continued drought condition. The gs and CI were monitored along with soil suction and moisture content. Both leaf and root growth were observed to be higher in coarse-grained soils than fine-grained soils, even though the water retention of the coarse-grained soils were comparatively less. Drought stress initiation in plants was captured by ψthreshold from the CI (especially in fine-grained soils) before the gs response. The three critical soil suctions estimated from the correlation between CI and ψ were found to be increasing with higher soil clay fraction. Corresponding plant available water contents (based on v/v volumetric water content) with each of three critical soil suctions were found to be dependent on the relative growth of canopy to root growth that occurred in different soil medias. Especially, plant available water in 'tipping suction' was dependent on the soil clay fraction (i.e., higher fraction could restrict root water uptake) and is presented with a simple empirical correlation for A. compressus.


Asunto(s)
Sequías , Poaceae , Suelo , Suelo/química , Poaceae/fisiología , Hidrología , Agua
9.
J Agric Food Chem ; 72(37): 20537-20546, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39231308

RESUMEN

Understanding and recognizing the structural characteristics of lignin-carbohydrate complexes (LCCs) and lignin in different growth stages and tissue types of bamboo will facilitate industrial processes and practical applications of bamboo biomass. Herein, the LCC and lignin samples were sequentially isolated from fibers and parenchyma cells of bamboo with different growth ages. The diverse yields of sequential fractions not only reflect the different biomass recalcitrance between bamboo fibers and parenchyma cells but also uncover the structural heterogeneity of these tissues at different growth stages. The molecular structures and structural inhomogeneities of the isolated lignin and LCC samples were comprehensively investigated. The results showed that the structural features of lignin and LCC linkages in parenchyma cells were abundant in ß-O-4 linkages but less with carbon-carbon linkages, suggesting that lignin and cross-linked LCC in parenchyma cells are simple in nature and easily to be tamed and tractable in the current biorefinery. Parallelly, the different ball-milled samples were directly characterized by high-resolution (800 M) solution-state 2D-HSQC NMR to analyze the whole lignocellulosic material. Overall, the scheme presented in this study will provide a comprehensive understanding of lignin and LCC linkages in fibers and parenchyma cells of bamboo and enable the utilization of bamboo biomass.


Asunto(s)
Carbohidratos , Lignina , Lignina/química , Lignina/metabolismo , Carbohidratos/química , Biomasa , Sasa/química , Sasa/crecimiento & desarrollo , Sasa/metabolismo , Espectroscopía de Resonancia Magnética , Estructura Molecular , Poaceae/química , Poaceae/metabolismo
10.
Sci Total Environ ; 953: 176027, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39236819

RESUMEN

Root resource acquisition strategies play a crucial role in understanding plant water uptake and drought adaptation. However, the interrelationships among mycorrhizal associations, root hair development, and fine root strategies, as well as the disparities between C3 and C4 grasses, remain largely unknown. A pot experiment was conducted to determine leaf gas exchange, root morphology, root hair, mycorrhizal fungi, and biomass allocation of three C4 grasses and four C3 grasses, common species of grasslands in Northeast China, under the control and drought conditions. Compared to the C3 grasses, the C4 grasses increased specific surface area by decreasing tissue density, yet exhibited root hair factor at only 21 % of the C3 grasses. Under the drought conditions, the C4 grasses exhibited more intense and extensive adjustments in root traits, characterized by shifts toward a more conservative morphology with increased root diameter and tissue density, as well as reduced mycorrhizal colonization rates. These adaptations led to a decrease in root absorptive function, which was compensated in the C4 grasses by greater root biomass partitioning and root hair factor. Variances in root strategies between plants functional groups were closely related to leaf photosynthetic rate, water and nitrogen use efficiency. We observed that the C4 grasses prefer direct acquisition of soil resources through the fine root pathway over the root hair or mycorrhizal pathway, suggesting a 'do-it-yourself' approach. These findings provide valuable insights into how plant communities of different photosynthetic types might respond to future climate change.


Asunto(s)
Micorrizas , Raíces de Plantas , Poaceae , Poaceae/fisiología , China , Micorrizas/fisiología , Sequías , Biomasa
11.
Sci Total Environ ; 953: 176051, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39241877

RESUMEN

The Competitor, Stress Tolerator, and Ruderal (CSR) theory delineates the ecological strategies of plant species. Nevertheless, how these ecological strategies shift at the levels of individuals, functional groups and plant communities to cope with increasing nitrogen deposition remains unclear. In this study, simulated nitrogen deposition experiments were performed in high-altitude grasslands of alpine meadows and alpine steppe on the Qinghai-Tibetan Plateau (QTP) by employing the strategy and functional type framework (StrateFy) methodology to evaluate plant CSR strategies. Our results indicated that the dominant ecological strategy of the high-altitude grassland on the QTP were predominantly aligned with the R-strategy. In both alpine meadow and alpine steppe grasslands, the community-weighted mean (CWM) of C scores were increased with nitrogen addition, while CWM of R and S scores were not significantly correlated with nitrogen addition. Remarkably, the increase in C scores due to nitrogen enrichment was observed solely in non-legumes, suggesting an enhanced competitive capability of non-legumes in anticipation of future nitrogen deposition. Leymus secalinus was dominated in both alpine meadow and alpine steppe grasslands across all levels of nitrogen deposition, with increasing C scores along the nitrogen gradients. Furthermore, the sensitivity of C scores of individual plant, functional group and plant community to nitrogen deposition rates was more pronounced in alpine steppe grassland than in alpine meadow grassland. These findings furnish novel insights into the alterations of ecological strategies in high-altitude alpine grasslands on the QTP and similar regions worldwide in cope with escalating nitrogen deposition.


Asunto(s)
Altitud , Pradera , Nitrógeno , Nitrógeno/análisis , Plantas , Tibet , Poaceae , China , Monitoreo del Ambiente
12.
Pestic Biochem Physiol ; 204: 106029, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277357

RESUMEN

Dollar spot, a highly destructive turfgrasses disease worldwide, is caused by multiple species within the genus Clarireedia. Previous research indicated varying sensitivity to boscalid among Clarireedia populations not historically exposed to succinate dehydrogenase inhibitors (SDHIs). This study confirms that the differential sensitivity pattern is inherent among different Clarireedia spp., utilizing a combination of phylogenetic analyses, in vitro cross-resistance assays, and genetic transformation of target genes with different mutations. Furthermore, greenhouse inoculation experiments revealed that the differential boscalid sensitivity did not lead to pathogenicity issues or fitness penalties, thereby not resulting in control failure by boscalid. This research underscores the importance of continuous monitoring of fungicide sensitivity trends and highlights the complexity of chemical control of dollar spot due to the inherent variability in fungicide sensitivity among different Clarireedia spp.


Asunto(s)
Compuestos de Bifenilo , Fungicidas Industriales , Niacinamida , Enfermedades de las Plantas , Fungicidas Industriales/farmacología , Compuestos de Bifenilo/farmacología , Enfermedades de las Plantas/microbiología , Niacinamida/análogos & derivados , Niacinamida/farmacología , Poaceae/microbiología , Filogenia , Farmacorresistencia Fúngica/genética , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/antagonistas & inhibidores , Basidiomycota/genética , Basidiomycota/efectos de los fármacos
13.
Meat Sci ; 218: 109644, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39241667

RESUMEN

Protein grass hay (PGH) was used as a new feed source for lambs to study its effect on fattening performance and meat quality. Fifty-six male lambs were allotted to four experimental groups and fed for eight weeks either alfalfa hay (AH)-based diet (control) or diets in which AH was replaced with 33 %, 66 %, or 99 % PGH. The inclusion of PGH did not affect final body weight, dry matter intake, average daily gain, feed conversion ratio, or carcass weight. Moreover, substituting AH with PGH at any level did not influence the ruminal fermentation or serum biochemical parameters, meat color, water holding capacity, shear force, or amino acid profile. However, relative liver weight was increased with 66 % substitutions. Furthermore, replacing 99 % AH with PGH decreased the meat's pH at 24 h. Higher levels of C18:3n-3, C20:5n-3, and total n-3 PUFA and a lower ratio of n-6: n-3 PUFA were also observed in meat from lambs fed PGH at 99 %. These findings suggest that PGH could be incorporated into the lamb's diet up to 99 % without compromising fattening performance and body health while improving their meat n-3 PUFA deposition.


Asunto(s)
Alimentación Animal , Dieta , Poaceae , Carne Roja , Oveja Doméstica , Animales , Masculino , Alimentación Animal/análisis , Dieta/veterinaria , Carne Roja/análisis , Proteínas en la Dieta/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Rumen/metabolismo , Medicago sativa , Concentración de Iones de Hidrógeno , Ácidos Grasos Omega-3/análisis , Hígado/metabolismo , Hígado/química , Aminoácidos/análisis , Fermentación , Color , Músculo Esquelético/química
14.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273397

RESUMEN

Fusarium head blight (FHB), caused by the Fusarium graminearum species complex, is a destructive disease in wheat worldwide. The lack of FHB-resistant germplasm is a barrier in wheat breeding for resistance to FHB. Thinopyrum elongatum is an important relative that has been successfully used for the genetic improvement of wheat. In this study, a translocation line, YNM158, with the YM158 genetic background carrying a fragment of diploid Th. elongatum 7EL chromosome created using 60Co-γ radiation, showed high resistance to FHB under both field and greenhouse conditions. Transcriptome analysis confirmed that the horizontal transfer gene, encoding glutathione S-transferase (GST), is an important contributor to FHB resistance in the pathogen infection stage, whereas the 7EL chromosome fragment carries other genes regulated by F. graminearum during the colonization stage. Introgression of the 7EL fragment affected the expression of wheat genes that were enriched in resistance pathways, including the phosphatidylinositol signaling system, protein processing in the endoplasmic reticulum, plant-pathogen interaction, and the mitogen-activated protein kinase (MAPK) signaling pathway at different stages after F. graminearium infection. This study provides a novel germplasm for wheat resistance to FHB and new insights into the molecular mechanisms of wheat resistance to FHB.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Triticum , Fusarium/patogenicidad , Triticum/microbiología , Triticum/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Transcriptoma/genética , Translocación Genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/microbiología , Interacciones Huésped-Patógeno/genética
15.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39273427

RESUMEN

Stenotaphrum secundatum is an excellent shade-tolerant warm-season turfgrass. Its poor cold resistance severely limits its promotion and application in temperate regions. Mining cold resistance genes is highly important for the cultivation of cold-resistant Stenotaphrum secundatum. Although there have been many reports on the role of the Shaker potassium channel family under abiotic stress, such as drought and salt stress, there is still a lack of research on their role in cold resistance. In this study, the transcriptome database of Stenotaphrum secundatum was aligned with the whole genome of Setaria italica, and eight members of the Shaker potassium channel family in Stenotaphrum secundatum were identified and named SsKAT1.1, SsKAT1.2, SsKAT2.1, SsKAT2.2, SsAKT1.1, SsAKT2.1, SsAKT2.2, and SsKOR1. The KAT3-like gene, KOR2 homologous gene, and part of the AKT-type weakly inwardly rectifying channel have not been identified in the Stenotaphrum secundatum transcriptome database. A bioinformatics analysis revealed that the potassium channels of Stenotaphrum secundatum are highly conserved in terms of protein structure but have more homologous members in the same group than those of other species. Among the three species of Oryza sativa, Arabidopsis thaliana, and Setaria italica, the potassium channel of Stenotaphrum secundatum is more closely related to the potassium channel of Setaria italica, which is consistent with the taxonomic results of these species belonging to Paniceae. Subcellular location experiments demonstrate that SsKAT1.1 is a plasma membrane protein. The expression of SsKAT1.1 reversed the growth defect of the potassium absorption-deficient yeast strain R5421 under a low potassium supply, indicating that SsKAT1.1 is a functional potassium channel. The transformation of SsKAT1.1 into the cold-sensitive yeast strain INVSC1 increased the cold resistance of the yeast, indicating that SsKAT1.1 confers cold resistance. The transformation of SsKAT1.1 into the salt-sensitive yeast strain G19 increased the resistance of yeast to salt, indicating that SsKAT1.1 is involved in salt tolerance. These results suggest that the manipulation of SsKAT1.1 will improve the cold and salt stress resistance of Stenotaphrum secundatum.


Asunto(s)
Canales de Potasio de la Superfamilia Shaker , Canales de Potasio de la Superfamilia Shaker/metabolismo , Canales de Potasio de la Superfamilia Shaker/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Frío , Filogenia , Transcriptoma , Arabidopsis/genética , Arabidopsis/metabolismo , Familia de Multigenes
16.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273599

RESUMEN

Drought, a pervasive global challenge, significantly hampers plant growth and crop yields, with drought stress being a primary inhibitor. Among resilient species, Buchloe dactyloides, a warm-season and dioecious turfgrass, stands out for its strong drought resistance and minimal maintenance requirements, making it a favored choice in ecological management and landscaping. However, there is limited research on the physiological and molecular differences in drought resistance between male and female B. dactyloides. To decipher the transcriptional regulation dynamics of these sexes in response to drought, RNA-sequencing analysis was conducted using the 'Texoka' cultivar as a model. A 14-day natural drought treatment, followed by a 7-day rewatering period, was applied. Notably, distinct physiological responses emerged between genders during and post-drought, accompanied by a more pronounced differential expression of genes (DEGs) in females compared to males. Further, KEGG and GO enrichment analysis revealed different DEGs enrichment pathways of B. dactyloides in response to drought stress. Analysis of the biosynthesis and signaling transduction pathways showed that drought stress significantly enhanced the biosynthesis and signaling pathway of ABA in both female and male B. dactyloides plants, contrasting with the suppression of IAA and JA pathways. Also, we discovered BdMPK8-like as a potential enhancer of drought tolerance in yeast, highlighting novel mechanisms. This study demonstrated the physiological and molecular mechanisms differences between male and female B. dactyloides in response to drought stress, providing a theoretical basis for the corresponding application of female and male B. dactyloides. Additionally, it enriches our understanding of drought resistance mechanisms in dioecious plants, opening avenues for future research and genetic improvement.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Transcriptoma , Estrés Fisiológico/genética , Poaceae/genética , Poaceae/fisiología , Perfilación de la Expresión Génica , Transducción de Señal/genética
18.
Se Pu ; 42(10): 972-978, 2024 Oct.
Artículo en Chino | MEDLINE | ID: mdl-39327661

RESUMEN

The flavonoid contents of different bamboo-leaf extracts and their relationships to antioxidant activity were investigated in this study by preparing nine samples using two commercially available bamboo-leaf extract products and seven bamboo-leaf extracts such as Phyllostachys edulis. A high performance liquid chromatography (HPLC) method was established to determine seven flavonoid components (orientin, isoorientin, vitexin, isovitexin, tricin, luteolin and luteoloside) in these samples, which were separated using a SymmetryShieldTM RP8 column (250 mm×4.6 mm, 5 µm) under gradient-elution conditions using acetonitrile as mobile phase A and 0.5% (v/v) acetic acid aqueous solution as mobile phase B. The antioxidant activities of the samples were evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assays, with half inhibitory concentration (IC50) as an indicator and the butylated hydroxytoluene (BHT) and tert-butylhydroquinone (TBHQ) antioxidants as positive controls. Pearson correlation was then used to analyze the relationship between flavonoid content and antioxidant activity. The HPLC method was found to be accurate and reliable for determining the flavonoid contents of the bamboo-leaf extracts. The seven flavonoids were well separated, and good linear relationships were exhibited (correlation coefficients (R2)≥0.9990). Furthermore, the contents of the seven flavonoids in the bamboo-leaf extracts ranged from 14.97 to 183.94 mg/g, with the highest content of 183.94 mg/g recorded for Phyllostachys edulis. The bamboo species exhibited significantly different flavonoid contents, with Phyllostachys edulis showing the highest orientin, isoorientin, and vitexin levels of 38.45, 101.30, and 9.42 mg/g, respectively. Moreover, the bamboo-leaf extracts exhibited IC50 values of 78.23-179.41 mg/L for DPPH-radical-scavenging, while values of 203.48-1250.81 mg/L were recorded for hydroxyl radicals. The Phyllostachys edulis leaf extract exhibited the strongest antioxidant activity, with the lowest IC50 values of 78.23 and 203.48 mg/L for DPPH and hydroxyl, respectively; it showed greatly significant for the further development and application of Phyllostachys edulis. Finally, the relationships between flavonoid content and the DPPH- and hydroxyl-radical-scavenging activities (based on the IC50 values) were correlated, which revealed that the orientin and isoorientin contents are closely related to the antioxidant activities of the bamboo-leaf extracts. Consequently, the orientin and isoorientin contents can be used as indicators for evaluating the antioxidant activities of bamboo-leaf extracts.


Asunto(s)
Antioxidantes , Flavonoides , Luteolina , Extractos Vegetales , Hojas de la Planta , Flavonoides/análisis , Antioxidantes/análisis , Luteolina/análisis , Extractos Vegetales/química , Extractos Vegetales/análisis , Hojas de la Planta/química , Apigenina/análisis , Cromatografía Líquida de Alta Presión , Glucósidos/análisis , Sasa/química , Poaceae/química , Bambusa/química
19.
Huan Jing Ke Xue ; 45(9): 5351-5360, 2024 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-39323153

RESUMEN

The unique geographical and climatic conditions in the Three-River Headwaters Region gave birth to distinctive plant species and vegetation types. To reveal the spatial distribution of plant communities and soil habitats along the riparian zone of the Sanjiangyuan Region and their influencing mechanisms, 14 survey plots were set up (ten from the Yangtze River source, two from the Lancang River source, and two from the Yellow River source), and the effects of soil nutrient characteristics (especially soil phosphorus morphology), climate factors, and river topography on plant community characteristics were quantitatively analyzed. The results showed that the plant community composition in the riparian zone of the source of the three rivers was dominated by perennial herbs (72.2%), followed by annual herbs (20.4%) and shrubs (7.4%). The dominant plants were Stipa purpurea, Polygonum orbiculatum, Carex parvula, Potentilla anserina, and Gentiana straminea. The average plant coverage, Shannon-Wiener index, and Pielou index were (64.4% ±23.6%), (1.31 ±0.42), and (0.84 ±0.08), respectively. The plant community diversity index was the highest in the Yangtze River source, followed by that in the Lancang River source, and the lowest in the Yellow River source. The soil pH of the riparian zone of the Yangtze River source was significantly higher than that of the Lancang River source, whereas the mean contents of organic matter, total nitrogen, and Fe-Al combined phosphorus were significantly lower than those of the Lancang River source. The calcium and magnesium-combined phosphorus was the main form of phosphorus in riparian soil (63.89%). Temperature, soil organic phosphorus content, and pH had significant effects on plant composition in the riparian zone of the Three-River Headwaters Region, whereas soil calcium and magnesium-combined phosphorus content had significant effects on plant community diversities. These results may deepen the scientific understanding of the evolution trend and genetic mechanism of plant communities in the riparian zone of the Three-River Headwaters Region.


Asunto(s)
Ecosistema , Fósforo , Ríos , Suelo , China , Suelo/química , Fósforo/análisis , Plantas/clasificación , Desarrollo de la Planta , Monitoreo del Ambiente , Dinámica Poblacional , Biodiversidad , Poaceae/crecimiento & desarrollo , Análisis Espacial
20.
Huan Jing Ke Xue ; 45(9): 5341-5350, 2024 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-39323152

RESUMEN

To investigate the characteristics of grassland degradation on a regional scale in Xizang, data on grassland degradation from the second grassland survey of Xizang and 12 vegetation and soil indicators from the National Tibetan Plateau Data Center were collected. Using ArcMap, 10 000 random sample points were selected on raster data (excluding non-grassland, desertification, and salinization data, leaving 7 949 valid sample points). The multi-value extraction to-point method was applied to extract degradation and indicator data for each sample point. The characteristics of degraded grassland vegetation and soil and their relationships were analyzed in Xizang. Moreover, random forest modeling was conducted to predict the trend of grassland ecosystem changes. The results indicated that: ① The grasslands in Xizang were primarily composed of alpine steppe and alpine meadow types, accounting for 45.83% and 41.15% of the valid sample points, respectively. ② With the intensification of grassland degradation, the number of steppe-type species among the 17 grassland types gradually decreased, and the proportion of steppe dominated by species such as Stipa purpurea and Carex moorcroftii decreased, whereas the proportion of miscellaneous grasses and Dasiphora fruticosa increased. ③ As the degree of degradation increased, vegetation indicators generally showed a declining trend, with soil total nitrogen, total phosphorus, total potassium, and organic carbon decreasing, whereas soil pH and bulk density increased, and soil moisture content was not significant. ④ A positive correlation exists between soil moisture content, total nitrogen, total phosphorus, total potassium, organic carbon, vegetation cover, net primary productivity of vegetation, normalized difference vegetation index, aboveground biomass, and habitat quality. However, there was a negative correlation between pH and soil bulk density, and the correlation coefficients among various indicators decreased with the intensification of degradation. ⑤ The random forest simulation results showed that during the degradation process, the contribution rates of soil bulk density and habitat quality both exceeded 12%, with the model prediction accuracy reaching 78%. The study revealed that grassland degradation in Xizang was closely related to soil bulk density and habitat quality, indicating that higher soil bulk density or lower habitat quality may correspond to more severe grassland degradation. This provides a scientific basis for future grassland conservation and management.


Asunto(s)
Conservación de los Recursos Naturales , Pradera , Poaceae , Suelo , Suelo/química , China , Poaceae/crecimiento & desarrollo , Ecosistema , Monitoreo del Ambiente , Nitrógeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA