Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.513
Filtrar
1.
PLoS One ; 19(5): e0302940, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748679

RESUMEN

Miscanthus lutarioriparia is a promising energy crop that is used for abandoned mine soil phytoremediation because of its high biomass yield and strong tolerance to heavy metals. However, the biological mechanism of heavy metal resistance is limited, especially for applications in the soil restoration of mining areas. Here, through the investigation of soil cadmium(Cd) in different mining areas and soil potted under Cd stress, the adsorption capacity of Miscanthus lutarioriparia was analyzed. The physiological and transcriptional effects of Cd stress on M. lutarioriparia leaves and roots under hydroponic conditions were analyzed. The results showed that M. lutarioriparia could reduce the Cd content in mining soil by 29.82%. Moreover, different Cd varieties have different Cd adsorption capacities in soils with higher Cd concentration. The highest cadmium concentrations in the aboveground and belowground parts of the plants were 185.65 mg/kg and 186.8 mg/kg, respectively. The total chlorophyll content, superoxide dismutase and catalase activities all showed a trend of increasing first and then decreasing. In total, 24,372 differentially expressed genes were obtained, including 7735 unique to leaves, 7725 unique to roots, and 8912 unique to leaves and roots, which showed differences in gene expression between leaves and roots. These genes were predominantly involved in plant hormone signal transduction, glutathione metabolism, flavonoid biosynthesis, ABC transporters, photosynthesis and the metal ion transport pathway. In addition, the number of upregulated genes was greater than the number of downregulated genes at different stress intervals, which indicated that M. lutarioriparia adapted to Cd stress mainly through positive regulation. These results lay a solid foundation for breeding excellent Cd resistant M. lutarioriparia and other plants. The results also have an important theoretical significance for further understanding the detoxification mechanism of Cd stress and the remediation of heavy metal pollution in mining soil.


Asunto(s)
Cadmio , Regulación de la Expresión Génica de las Plantas , Poaceae , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Poaceae/genética , Poaceae/efectos de los fármacos , Poaceae/metabolismo , Perfilación de la Expresión Génica , Biodegradación Ambiental , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Transcriptoma , Suelo/química , Estrés Fisiológico , Minería
2.
Water Sci Technol ; 89(9): 2523-2537, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747965

RESUMEN

Miscanthus sacchariflorus is previously demonstrated to be a potential candidate for remediation of cadmium (Cd) pollution. To explore its resistance strategy to Cd, a hydroponic experiment was conducted to determine the variations of photosynthetic activity in leaves and physiological response in roots of this plant. Results showed that the root of M. sacchariflorus was the primary location for Cd accumulation. The bioconcentration factor in the roots and rhizomes was >1, and the translocation factor from underground to aboveground was <1. Throughout the experimental period, treatment with 0.06 mM Cd2+ did not significantly alter the contents of chlorophyll a, chlorophyll b, or carotenoid. By contrast, treatment with 0.15 and 0.30 mM Cd2+ decreased the contents of chlorophyll a, chlorophyll b, and carotenoid; caused the deformation of the chlorophyll fluorescence transient curve; reduced the photochemical efficiency of photosystem II; and increased the contents of non-protein thiols, total flavone, and total phenol. These results indicate that M. sacchariflorus has good adaptability to 0.06 mM Cd2+. Moreover, the accumulation of the non-protein thiols, total flavone, and total phenol in roots may promote the chelation of Cd2+, thus alleviating Cd toxicity. This study provides theoretical support for using M. sacchariflorus to remediate Cd-polluted wetlands.


Asunto(s)
Cadmio , Fotosíntesis , Poaceae , Compuestos de Sulfhidrilo , Cadmio/toxicidad , Cadmio/metabolismo , Fotosíntesis/efectos de los fármacos , Poaceae/metabolismo , Poaceae/efectos de los fármacos , Compuestos de Sulfhidrilo/metabolismo , Clorofila/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Biodegradación Ambiental
3.
Pestic Biochem Physiol ; 200: 105826, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582590

RESUMEN

Acetyl-CoA carboxylase (ACCase)-inhibiting herbicides are among the most commonly used herbicides to control grassy weeds, especially Leptochloa chinensis, in rice fields across China. Herein, we collected a suspected resistant (R) population of L. chinensis (HFLJ16) from Lujiang county in Anhui Province. Whole plant dose response tests showed that, compared with the susceptible (S) population, the R population showed high resistance to cyhalofop-butyl (22-fold) and displayed cross-resistance to metamifop (9.7-fold), fenoxaprop-P-ethyl (18.7-fold), quizalofop-P-ethyl (7.6-fold), clodinafop-propargyl (12-fold) and clethodim (8.4-fold). We detected an amino acid substitution (Cys-2088-Arg) in the ACCase of resistant L. chinensis. However, ACCase gene expression levels were not significantly different (P > 0.05) between R plants and S plants, without or with cyhalofop-butyl treatment. Furthermore, pretreatment with piperonyl butoxide (PBO, a cytochrome P450 monooxygenase (CYP450) inhibitor) or 4-chloro-7-nitrobenzoxadiazole (NBD-Cl, a glutathione-S-transferase (GST) inhibitor), inhibited the resistance of the R population to cyhalofop-butyl significantly (by approximately 60% and 26%, respectively). Liquid chromatography tandem mass spectrometry analysis showed that R plants metabolized cyhalofop-butyl and cyhalofop acid (its metabolite) significantly faster than S plants. Three CYP450 genes, one GST gene, and two ABC transporter genes were induced by cyhalofop-butyl and were overexpressed in the R population. Overall, GST-associated detoxification, CYP450 enhancement, and target-site gene mutation are responsible for the resistance of L. chinensis to cyhalofop-butyl.


Asunto(s)
4-Cloro-7-nitrobenzofurazano , Acetil-CoA Carboxilasa , Butanos , Herbicidas , Nitrilos , Oxazoles , Propionatos , Acetil-CoA Carboxilasa/metabolismo , Proteínas de Plantas/genética , Poaceae/genética , Poaceae/metabolismo , Herbicidas/farmacología , Sistema Enzimático del Citocromo P-450/genética , Mutación , Resistencia a los Herbicidas/genética
4.
Ying Yong Sheng Tai Xue Bao ; 35(3): 659-668, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646753

RESUMEN

To accurately monitor the phenology of net ecosystem carbon exchange (NEE) in grasslands with remote sensing, we analyzed the variations in NEE and its phenology in the Stipa krylovii steppe and discussed the remote sensing vegetation index thresholds for NEE phenology, with the observational data from the Inner Mongolia Xilinhot National Climate Observatory's eddy covariance system and meteorological gradient observation system during 2018-2021, as well as Sentinel-2 satellite data from January 1, 2018 to December 31, 2021. Results showed that, from 2018 to 2021, NEE exhibited seasonal variations, with carbon sequestration occurring from April to October and carbon emission in other months, resulting in an overall carbon sink. The average Julian days for the start date (SCUP) and the end date (ECUP) of carbon uptake period were the 95th and 259th days, respectively, with an average carbon uptake period lasting 165 days. Photosynthetically active radiation showed a negative correlation with daily NEE, contributing to carbon absorption of grasslands. The optimal threshold for capturing SCUP was a 10% threshold of the red-edge chlorophyll index, while the normalized difference vegetation index effectively reflected ECUP with a threshold of 75%. These findings would provide a basis for remote sensing monitoring of grassland carbon source-sink dynamics.


Asunto(s)
Carbono , Ecosistema , Monitoreo del Ambiente , Pradera , Poaceae , Tecnología de Sensores Remotos , China , Carbono/metabolismo , Poaceae/metabolismo , Poaceae/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Secuestro de Carbono , Estaciones del Año , Ciclo del Carbono
5.
Planta ; 259(5): 115, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589536

RESUMEN

MAIN CONCLUSION: A member of the rice GT61 clade B is capable of transferring both 2-O-xylosyl and 2-O-arabinosyl residues onto xylan and another member specifically catalyses addition of 2-O-xylosyl residue onto xylan. Grass xylan is substituted predominantly with 3-O-arabinofuranose (Araf) as well as with some minor side chains, such as 2-O-Araf and 2-O-(methyl)glucuronic acid [(Me)GlcA]. 3-O-Arabinosylation of grass xylan has been shown to be catalysed by grass-expanded clade A members of the glycosyltransferase family 61. However, glycosyltransferases mediating 2-O-arabinosylation of grass xylan remain elusive. Here, we performed biochemical studies of two rice GT61 clade B members and found that one of them was capable of transferring both xylosyl (Xyl) and Araf residues from UDP-Xyl and UDP-Araf, respectively, onto xylooligomer acceptors, whereas the other specifically catalysed Xyl transfer onto xylooligomers, indicating that the former is a xylan xylosyl/arabinosyl transferase (named OsXXAT1 herein) and the latter is a xylan xylosyltransferase (named OsXYXT2). Structural analysis of the OsXXAT1- and OsXYXT2-catalysed reaction products revealed that the Xyl and Araf residues were transferred onto O-2 positions of xylooligomers. Furthermore, we demonstrated that OsXXAT1 and OsXYXT2 were able to substitute acetylated xylooligomers, but only OsXXAT1 could xylosylate GlcA-substituted xylooligomers. OsXXAT1 and OsXYXT2 were predicted to adopt a GT-B fold structure and molecular docking revealed candidate amino acid residues at the predicted active site involved in binding of the nucleotide sugar donor and the xylohexaose acceptor substrates. Together, our results establish that OsXXAT1 is a xylan 2-O-xylosyl/2-O-arabinosyl transferase and OsXYXT2 is a xylan 2-O-xylosyltransferase, which expands our knowledge of roles of the GT61 family in grass xylan synthesis.


Asunto(s)
Arabidopsis , Oryza , Glicosiltransferasas/análisis , Oryza/metabolismo , Xilanos/metabolismo , Arabidopsis/metabolismo , Simulación del Acoplamiento Molecular , UDP Xilosa Proteína Xilosiltransferasa , Poaceae/metabolismo , Pared Celular/metabolismo
6.
Sci Rep ; 14(1): 8704, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622291

RESUMEN

Grasslands cover approximately 24% of the Earth's surface and are the main feed source for cattle and other ruminants. Sustainable and efficient grazing systems require regular monitoring of the quantity and nutritive value of pastures. This study demonstrates the potential of estimating pasture leaf forage mass (FM), crude protein (CP) and fiber content of tropical pastures using Sentinel-2 satellite images and machine learning algorithms. Field datasets and satellite images were assessed from an experimental area of Marandu palisade grass (Urochloa brizantha sny. Brachiaria brizantha) pastures, with or without nitrogen fertilization, and managed under continuous stocking during the pasture growing season from 2016 to 2020. Models based on support vector regression (SVR) and random forest (RF) machine-learning algorithms were developed using meteorological data, spectral reflectance, and vegetation indices (VI) as input features. In general, SVR slightly outperformed the RF models. The best predictive models to estimate FM were those with VI combined with meteorological data. For CP and fiber content, the best predictions were achieved using a combination of spectral bands and meteorological data, resulting in R2 of 0.66 and 0.57, and RMSPE of 0.03 and 0.04 g/g dry matter. Our results have promising potential to improve precision feeding technologies and decision support tools for efficient grazing management.


Asunto(s)
Brachiaria , Poaceae , Bovinos , Animales , Poaceae/metabolismo , Brachiaria/metabolismo , Fibras de la Dieta/metabolismo , Algoritmos , Alimentación Animal/análisis
7.
Nat Commun ; 15(1): 3607, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684658

RESUMEN

Heterotrophic activity, primarily driven by sulfate-reducing prokaryotes, has traditionally been linked to nitrogen fixation in the root zone of coastal marine plants, leaving the role of chemolithoautotrophy in this process unexplored. Here, we show that sulfur oxidation coupled to nitrogen fixation is a previously overlooked process providing nitrogen to coastal marine macrophytes. In this study, we recovered 239 metagenome-assembled genomes from a salt marsh dominated by the foundation plant Spartina alterniflora, including diazotrophic sulfate-reducing and sulfur-oxidizing bacteria. Abundant sulfur-oxidizing bacteria encode and highly express genes for carbon fixation (RuBisCO), nitrogen fixation (nifHDK) and sulfur oxidation (oxidative-dsrAB), especially in roots stressed by sulfidic and reduced sediment conditions. Stressed roots exhibited the highest rates of nitrogen fixation and expression level of sulfur oxidation and sulfate reduction genes. Close relatives of marine symbionts from the Candidatus Thiodiazotropha genus contributed ~30% and ~20% of all sulfur-oxidizing dsrA and nitrogen-fixing nifK transcripts in stressed roots, respectively. Based on these findings, we propose that the symbiosis between S. alterniflora and sulfur-oxidizing bacteria is key to ecosystem functioning of coastal salt marshes.


Asunto(s)
Fijación del Nitrógeno , Oxidación-Reducción , Raíces de Plantas , Poaceae , Azufre , Humedales , Azufre/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Poaceae/metabolismo , Filogenia , Simbiosis , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Metagenoma , Sulfatos/metabolismo , Nitrógeno/metabolismo
8.
Plant Physiol Biochem ; 210: 108597, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598868

RESUMEN

BACKGROUND: Shortawn foxtail (Alopecurus aequalis Sobol.) is a noxious weed in China. The resistance of A. aequalis developed rapidly due to the long-term application of acetolactate synthase (ALS)-inhibiting herbicides. Here, a suspected mesosulfuron-methyl-resistant A. aequalis population, Aa-R, was collected from a wheat field in China. RESULTS: A dose‒response test showed that the Aa-R population has evolved a high level of resistance to mesosulfuron-methyl, and its growth was suppressed by imazamox, pyroxsulam and bispyribac-sodium. ALS gene sequence analysis revealed that a known resistance-related mutation (Pro-197-Thr) was present in the Aa-R population. Moreover, ALS gene overexpression was detected in the Aa-R population. The mesosulfuron-methyl resistance could be reversed by cytochrome P450 monooxygenase (CYP450) and glutathione S-transferase (GST) inhibitors. In addition, enhanced metabolism of mesosulfuron-methyl was detected in the Aa-R population compared with the susceptible population. NADPH-cytochrome P450 reductase and GST activities were strongly inducible in the Aa-R population. One CYP450 gene, CYP74A2, and one GST gene, GST4, were constitutively upregulated in the Aa-R population. Molecular docking results showed the binding affinity of CYP74A2 and GST4 for the tested ALS-inhibiting herbicides, respectively. CONCLUSION: This study confirmed that target-site resistance and non-target-site resistance involving CYP450 and GST were the main mechanisms involved in resistance in the mesosulfuron-methyl-resistant A. aequalis population.


Asunto(s)
Acetolactato Sintasa , Resistencia a los Herbicidas , Herbicidas , Poaceae , Compuestos de Sulfonilurea , Resistencia a los Herbicidas/genética , Compuestos de Sulfonilurea/farmacología , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Herbicidas/farmacología , Poaceae/genética , Poaceae/efectos de los fármacos , Poaceae/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Imidazoles/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación , Simulación del Acoplamiento Molecular , Benzoatos , Pirimidinas
9.
Cells ; 13(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474409

RESUMEN

Up to a third of the world's population suffers from allergies, yet the effectiveness of available preventative measures remains, at large, poor. Consequently, the development of successful prophylactic strategies for the induction of tolerance against allergens is crucial. In proof-of-concept studies, our laboratory has previously shown that the transfer of autologous hematopoietic stem cells (HSC) or autologous B cells expressing a major grass pollen allergen, Phl p 5, induces robust tolerance in mice. However, eventual clinical translation would require safe allergen expression without the need for retroviral transduction. Therefore, we aimed to chemically couple Phl p 5 to the surface of leukocytes and tested their ability to induce tolerance. Phl p 5 was coupled by two separate techniques, either by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) or by linkage via a lipophilic anchor, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-maleimide (DSPE-PEG-Mal). The effectiveness was assessed in fresh and cultured Phl p 5-coupled cells by flow cytometry, image cytometry, and immunofluorescence microscopy. Chemical coupling of Phl p 5 using EDC was robust but was followed by rapid apoptosis. DSPE-PEG-Mal-mediated linkage was also strong, but antigen levels declined due to antigen internalization. Cells coupled with Phl p 5 by either method were transferred into autologous mice. While administration of EDC-coupled splenocytes together with short course immunosuppression initially reduced Phl p 5-specific antibody levels to a moderate degree, both methods did not induce sustained tolerance towards Phl p 5 upon several subcutaneous immunizations with the allergen. Overall, our results demonstrate the successful chemical linkage of an allergen to leukocytes using two separate techniques, eliminating the risks of genetic modifications. More durable surface expression still needs to be achieved for use in prophylactic cell therapy protocols.


Asunto(s)
Alérgenos , Hipersensibilidad , Ratones , Animales , Inmunoglobulina E/metabolismo , Polen , Poaceae/metabolismo
10.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542226

RESUMEN

The homeodomain-leucine zipper (HD-ZIP) transcription factors, representing one of the largest plant-specific superfamilies, play important roles in the response to various abiotic stresses. However, the functional roles of HD-ZIPs in abiotic stress tolerance and the underlying mechanisms remain relatively limited in Miscanthus sinensis. In this study, we isolated an HD-ZIP TF gene, MsHDZ23, from Miscanthus and ectopically expressed it in Arabidopsis. Transcriptome and promoter analyses revealed that MsHDZ23 responded to salt, alkali, and drought treatments. The overexpression (OE) of MsHDZ23 in Arabidopsis conferred higher tolerance to salt and alkali stresses compared to wild-type (WT) plants. Moreover, MsHDZ23 was able to restore the hb7 mutant, the ortholog of MsHDZ23 in Arabidopsis, to the WT phenotype. Furthermore, MsHDZ23-OE lines exhibited significantly enhanced drought stress tolerance, as evidenced by higher survival rates and lower water loss rates compared to WT. The improved drought tolerance may be attributed to the significantly smaller stomatal aperture in MsHDZ23-OE lines compared to WT. Furthermore, the accumulation of the malondialdehyde (MDA) under abiotic stresses was significantly decreased, accompanied by dramatically enhanced activities in several antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in the transgenic plants. Collectively, these results demonstrate that MsHDZ23 functions as a multifunctional transcription factor in enhancing plant resistance to abiotic stresses.


Asunto(s)
Arabidopsis , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Poaceae/genética , Poaceae/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Álcalis , Sequías
11.
BMC Plant Biol ; 24(1): 213, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528453

RESUMEN

BACKGROUND: KNOTTED1-like homeobox (KNOX) genes, plant-specific homologous box transcription factors (TFs), play a central role in regulating plant growth, development, organ formation, and response to biotic and abiotic stresses. However, a comprehensive genome-wide identification of the KNOX genes in Moso bamboo (Phyllostachys edulis), the fastest growing plant, has not yet been conducted, and the specific biological functions of this family remain unknown. RESULTS: The expression profiles of 24 KNOX genes, divided into two subfamilies, were determined by integrating Moso bamboo genome and its transcriptional data. The KNOX gene promoters were found to contain several light and stress-related cis-acting elements. Synteny analysis revealed stronger similarity with rice KNOX genes than with Arabidopsis KNOX genes. Additionally, several conserved structural domains and motifs were identified in the KNOX proteins. The expansion of the KNOX gene family was primarily regulated by tandem duplications. Furthermore, the KNOX genes were responsive to naphthaleneacetic acid (NAA) and gibberellin (GA) hormones, exhibiting distinct temporal expression patterns in four different organs of Moso bamboo. Short Time-series Expression Miner (STEM) analysis and quantitative real-time PCR (qRT-PCR) assays demonstrated that PeKNOX genes may play a role in promoting rapid shoot growth. Additionally, Gene Ontology (GO) and Protein-Protein Interaction (PPI) network enrichment analyses revealed several functional annotations for PeKNOXs. By regulating downstream target genes, PeKNOXs are involved in the synthesis of AUX /IAA, ultimately affecting cell division and elongation. CONCLUSIONS: In the present study, we identified and characterized a total of 24 KNOX genes in Moso bamboo and investigated their physiological properties and conserved structural domains. To understand their functional roles, we conducted an analysis of gene expression profiles using STEM and RNA-seq data. This analysis successfully revealed regulatory networks of the KNOX genes, involving both upstream and downstream genes. Furthermore, the KNOX genes are involved in the AUX/IAA metabolic pathway, which accelerates shoot growth by influencing downstream target genes. These results provide a theoretical foundation for studying the molecular mechanisms underlying the rapid growth and establish the groundwork for future research into the functions and transcriptional regulatory networks of the KNOX gene family.


Asunto(s)
Oryza , Poaceae , Poaceae/genética , Poaceae/metabolismo , Oryza/genética , Oryza/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genoma de Planta , Redes Reguladoras de Genes , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Sci Total Environ ; 923: 171458, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38438035

RESUMEN

Endophytic fungi (Trichoderma harzianum (TH) and Paecilomyces lilacinus (PL)) showed potential in phytoremediation for soils contaminated with potentially toxic elements (PTEs (Cd and As)). However, their efficiency is limited, which can be enhanced with the assistance of biochar. This study sought to investigate the effects of TH at two application rates (T1: 4.5 g m-2; T2: 9 g m-2), PL at two application rates (P1: 4.5 g m-2; P2: 9 g m-2), in conjunction with biochar (BC) at 750 g m-2 on the phytoremediation of PTEs by Miscanthus sinensis (M. sinensis). The results showed that the integration of endophytic fungi with biochar notably enhanced the accumulation of Cd and As in M. sinensis by 59.60 %-114.38 % and 49.91 %-134.60 %, respectively. The treatments T2BC and P2BC emerged as the most effective. Specifically, the P2BC treatment significantly enhanced the soil quality index (SQI > 0.55) across all examined soil layers, markedly improving the overall soil condition. It was observed that T2BC treatment could elevate the SQI to 0.56 at the 0-15 cm depth. The combined amendment shifted the primary influences on plant PTEs accumulation from fungal diversity and soil nutrients to bacterial diversity and the availability of soil PTEs. Characteristic microorganisms identified under the combined treatments were RB41 and Pezizaceae, indicating an increase in both bacterial and fungal diversity. This combination altered the soil microbial community, influencing key metabolic pathways. The combined application of PL and biochar was superior to the TH and biochar combination for the phytoremediation of M. sinensis. This approach not only enhanced the phytoremediation potential but also positively impacted soil health and microbial community, suggesting that the synergistic use of endophytic fungi and biochar is an effective strategy for improving the condition of alkaline soils contaminated with PTEs.


Asunto(s)
Arsénico , Contaminantes del Suelo , Cadmio/análisis , Biodegradación Ambiental , Suelo , Contaminantes del Suelo/análisis , Poaceae/metabolismo , Carbón Orgánico , Bacterias/metabolismo , Hongos/metabolismo
13.
Chemosphere ; 353: 141636, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447895

RESUMEN

Cr(VI) contamination is widely recognized as one of the major environmental hazards. To address the problem of remediation of soil Cr(VI) contamination and utilization of waste peanut shells, this study comprehensively investigated the effects of peanut shell-derived biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz on Cr(VI) reduction and microbial community succession in soil. This study confirmed that root exudate-loaded peanut shell biochar reduced soil pH while simultaneously increasing DOC, sulfide, and Fe(II) concentrations, thereby facilitating the reduction of Cr(VI), achieving a reduction efficiency of 81.8%. Based on XPS and SEM elemental mapping analyses, Cr(VI) reduction occurred concurrently with the Fe and S redox cycles. Furthermore, the microbial diversity, abundance of the functional genera (Geobacter, Arthrobacter, and Desulfococcus) and the metabolic functions associated with Cr(VI) reduction were enhanced by root exudate-loaded biochar. Root exudate-loaded biochar can promote both direct Cr(VI) reduction mediated by the Cr(VI)-reducing bacteria Arthrobacter, and indirect Cr(VI) reduction through Cr/S/Fe co-transformation mediated by the sulfate-reducing bacteria Desulfococcus and Fe(III)-reducing bacteria Geobacter. This study demonstrates the effectiveness of peanut shell biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz to promote soil Cr(VI) reduction, reveals the mechanism how root exudate-loaded biochar shapes functional microbial communities to facilitate Cr(VI) reduction, and proposes a viable strategy for Cr(VI) remediation and utilization of peanut shell.


Asunto(s)
Microbiota , Contaminantes del Suelo , Compuestos Férricos/metabolismo , Suelo , Carbón Orgánico/metabolismo , Cromo/metabolismo , Poaceae/metabolismo , Contaminantes del Suelo/metabolismo , Exudados y Transudados/metabolismo
14.
BMC Microbiol ; 24(1): 93, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515035

RESUMEN

Plant growth promoting microbe assisted phytoremediation is considered a more effective approach to rehabilitation than the single use of plants, but underlying mechanism is still unclear. In this study, we combined transcriptomic and physiological methods to explore the mechanism of plant growth promoting microbe Trichoderma citrinoviride HT-1 assisted phytoremediation of Cd contaminated water by Phragmites australis. The results show that the strain HT-1 significantly promoted P. australis growth, increased the photosynthetic rate, enhanced antioxidant enzyme activities. The chlorophyll content and the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were increased by 83.78%, 23.17%, 47.60%, 97.14% and 12.23% on average, and decreased the content of malondialdehyde (MDA) by 31.10%. At the same time, strain HT-1 improved the absorption and transport of Cd in P. australis, and the removal rate of Cd was increased by 7.56% on average. Transcriptome analysis showed that strain HT-1 induced significant up-regulated the expression of genes related to oxidative phosphorylation and ribosome pathways, and these upregulated genes promoted P. australis remediation efficiency and resistance to Cd stress. Our results provide a mechanistic understanding of plant growth promoting microbe assisted phytoremediation under Cd stress.


Asunto(s)
Cadmio , Hypocreales , Contaminantes del Suelo , Cadmio/análisis , Biodegradación Ambiental , Agua , Antioxidantes/metabolismo , Poaceae/metabolismo , Perfilación de la Expresión Génica , Contaminantes del Suelo/metabolismo
15.
Environ Sci Pollut Res Int ; 31(18): 26880-26894, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456979

RESUMEN

Salt marshes are capable of mitigating metal pollution in coastal environments, yet the efficacy of this remediation is contingent upon various environmental factors and the plant species involved. This study investigates the influence of different anthropogenic activities, including industrial, urban, recreational (in an insular area), and dredging operations, on the bioaccumulation of eight metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) within Spartina alterniflora Loisel. in the Patos Lagoon estuary, Brazil. The research aims to assess the pattern of metal bioaccumulation and distribution within the plant's leaves, stems, and roots while also examining metal presence in the sediment. Our main findings reveal that S. alterniflora exhibited elevated metal levels in its plant structure directly related with the metal concentrations in the surrounding sediment, which, in turn, is related to the different anthropogenic activities. The industrial area presented the highest metal levels in sediment and plant sections, followed by dredging, insular, and urban areas. This same pattern was mirrored for the bioconcetration factors (BCF), with the BCFs consistently indicating active metal bioaccumulation across all areas and for most of the metals. This provides evidence of the metal bioaccumulation pattern in S. alterniflora, with elevated BCFs in areas affected by activities with a higher degree of impact. Translocation factors (TF) showed varying metal mobility patterns within the plant's below-ground and above-ground sections across the different areas, with only Hg exhibiting consistent translocation across all study areas. Zn was the primary metal contributor in all plant sections, followed by Pb and Cu. It is worth noting that Pb is a non-essential metal for this plant, highlighting the relationship between elevated Pb contributions in the plant sections and the bioaccumulation of this metal within the plant's structure. Overall, this study emphasizes the bioaccumulation capacity of S. alterniflora and elucidate the intrinsic connection between different anthropogenic activities and their impact on the resultant availability and bioaccumulation of metals by this salt marsh plant.


Asunto(s)
Bioacumulación , Monitoreo del Ambiente , Estuarios , Metales , Poaceae , Humedales , Poaceae/metabolismo , Brasil , Metales/metabolismo , Contaminantes Químicos del Agua/metabolismo , Metales Pesados/metabolismo , Sedimentos Geológicos/química
16.
Microbiol Spectr ; 12(4): e0257423, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38488391

RESUMEN

The clavicipitaceous fungus Epichloë gansuensis forms symbiotic associations with drunken horse grass (Achnatherum inebrians), providing biotic and abiotic stress protection to its host. However, it is unclear how E. gansuensis affects the assembly of host plant-associated bacterial communities after ammonium nitrogen (NH4+-N) treatment. We examined the shoot- and root-associated bacterial microbiota and root metabolites of A. inebrians when infected (I) or uninfected (F) with E. gansuensis endophyte. The results showed more pronounced NH4+-N-induced microbial and metabolic changes in the endophyte-infected plants compared to the endophyte-free plants. E. gansuensis significantly altered bacterial community composition and ß-diversity in shoots and roots and increased bacterial α-diversity under NH4+-N treatment. The relative abundance of 117 and 157 root metabolites significantly changed with E. gansuensis infection under water and NH4+-N treatment compared to endophyte-free plants. Root bacterial community composition was significantly related to the abundance of the top 30 metabolites [variable importance in the projection (VIP) > 2 and VIP > 3] contributing to differences between I and F plants, especially alkaloids. The correlation network between root microbiome and metabolites was complex. Microorganisms in the Proteobacteria and Firmicutes phyla were significantly associated with the R00693 metabolic reaction of cysteine and methionine metabolism. Co-metabolism network analysis revealed common metabolites between host plants and microorganisms.IMPORTANCEOur results suggest that the effect of endophyte infection is sensitive to nitrogen availability. Endophyte symbiosis altered the composition of shoot and root bacterial communities, increasing bacterial diversity. There was also a change in the class and relative abundance of metabolites. We found a complex co-occurrence network between root microorganisms and metabolites, with some metabolites shared between the host plant and its microbiome. The precise ecological function of the metabolites produced in response to endophyte infection remains unknown. However, some of these compounds may facilitate plant-microbe symbiosis by increasing the uptake of beneficial soil bacteria into plant tissues. Overall, these findings advance our understanding of the interactions between the microbiome, metabolome, and endophyte symbiosis in grasses. The results provide critical insight into the mechanisms by which the plant microbiome responds to nutrient stress in the presence of fungal endophytes.


Asunto(s)
Endófitos , Epichloe , Endófitos/fisiología , Epichloe/metabolismo , Nitrógeno/metabolismo , Poaceae/metabolismo , Poaceae/microbiología , Simbiosis , Bacterias
17.
J Hazard Mater ; 466: 133578, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306837

RESUMEN

Phytoremediation is widely considered as a cost-effective method for managing heavy metal soil pollution. Leersia hexandra Swartz shows a promising potential for the remediation of heavy metals pollution, including chromium (Cr), copper (Cu), and nickel (Ni). It is vital to understand the physiological and biochemical responses of L. hexandra to Ni stress to elucidate the mechanisms underlying Ni tolerance and accumulation. Here, we examined the metabolic and transcriptomic responses of L. hexandra exposed to 40 mg/L Ni for 24 h and 14 d. After 24-h Ni stress, gene expression of glutathione metabolic cycle (GSTF1, GSTU1 and MDAR4) and superoxide dismutase (SODCC2) was significantly increased in plant leaves. Furthermore, after 14-d Ni stress, the ascorbate peroxidase (APX7), superoxide dismutase (SODCP and SOD1), and catalase (CAT) gene expression was significantly upregulated, but that of glutathione metabolic cycle (EMB2360, GSTU1, GSTU6, GSH2, GPX6, and MDAR2) was downregulated. After 24-h Ni stress, the differentially expressed metabolites (DEMs) were mainly flavonoids (45%) and flavones (20%). However, after 14-d Ni stress, the DEMs were mainly carbohydrates and their derivatives (34%), amino acids and derivatives (15%), and organic acids and derivatives (8%). Results suggest that L. hexandra adopt distinct time-dependent antioxidant and metal detoxification strategies likely associated with intracellular reduction-oxidation balance. Novel insights into the molecular mechanisms responsible for Ni tolerance in plants are presented.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Níquel/toxicidad , Antioxidantes/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Poaceae/metabolismo , Glutatión/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Mecanismos de Defensa
18.
Nat Commun ; 15(1): 1219, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336770

RESUMEN

Plants with the C4 photosynthesis pathway typically respond to climate change differently from more common C3-type plants, due to their distinct anatomical and biochemical characteristics. These different responses are expected to drive changes in global C4 and C3 vegetation distributions. However, current C4 vegetation distribution models may not predict this response as they do not capture multiple interacting factors and often lack observational constraints. Here, we used global observations of plant photosynthetic pathways, satellite remote sensing, and photosynthetic optimality theory to produce an observation-constrained global map of C4 vegetation. We find that global C4 vegetation coverage decreased from 17.7% to 17.1% of the land surface during 2001 to 2019. This was the net result of a reduction in C4 natural grass cover due to elevated CO2 favoring C3-type photosynthesis, and an increase in C4 crop cover, mainly from corn (maize) expansion. Using an emergent constraint approach, we estimated that C4 vegetation contributed 19.5% of global photosynthetic carbon assimilation, a value within the range of previous estimates (18-23%) but higher than the ensemble mean of dynamic global vegetation models (14 ± 13%; mean ± one standard deviation). Our study sheds insight on the critical and underappreciated role of C4 plants in the contemporary global carbon cycle.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Poaceae/metabolismo , Plantas/metabolismo , Zea mays/metabolismo
19.
Genes (Basel) ; 15(2)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38397157

RESUMEN

In the quest for sustainable and nutritious food sources, exploration of ancient grains and wild relatives of cultivated cereals has gained attention. Aegilops caudata, a wild wheatgrass species, stands out as a promising genetic resource due to its potential for crop enhancement and intriguing nutritional properties. This manuscript investigates the CslF6 gene sequence and protein structure of Aegilops caudata, employing comparative analysis with other grass species to identify potential differences impacting ß-glucan content. The study involves comprehensive isolation and characterization of the CslF6 gene in Ae. caudata, utilizing genomic sequence analysis, protein structure prediction, and comparative genomics. Comparisons with sequences from diverse monocots reveal evolutionary relationships, highlighting high identities with wheat genomes. Specific amino acid motifs in the CslF6 enzyme sequence, particularly those proximal to key catalytic motifs, exhibit variations among monocot species. These differences likely contribute to alterations in ß-glucan composition, notably impacting the DP3:DP4 ratio, which is crucial for understanding and modulating the final ß-glucan content. The study positions Ae. caudata uniquely within the evolutionary landscape of CslF6 among monocots, suggesting potential genetic divergence or unique functional adaptations within this species. Overall, this investigation enriches our understanding of ß-glucan biosynthesis, shedding light on the role of specific amino acid residues in modulating enzymatic activity and polysaccharide composition.


Asunto(s)
Aegilops , beta-Glucanos , Aegilops/genética , beta-Glucanos/metabolismo , Poaceae/genética , Poaceae/metabolismo , Triticum/genética
20.
Plant Sci ; 342: 112054, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38423392

RESUMEN

Perennial grasses seasonal nitrogen (N) cycle extends the residence and reuse time of N within the plant system, thereby enhancing N use efficiency. Currently, the mechanism of N metabolism has been extensively examined in model plants and annual grasses, and although perennial grasses exhibit similarities, they also possess distinct characteristics. Apart from assimilating and utilizing N throughout the growing season, perennial grasses also translocate N from aerial parts to perennial tissues, such as rhizomes, after autumn senescence. Subsequently, they remobilize the N from these perennial tissues to support new growth in the subsequent year, thereby ensuring their persistence. Previous studies indicate that the seasonal storage and remobilization of N in perennial grasses are not significantly associated with winter survival despite some amino acids and proteins associated with low temperature tolerance accumulating, but primarily with regrowth during the subsequent spring green-up stage. Further investigation can be conducted in perennial grasses to explore the correlation between stored N and dormant bud outgrowth in perennial tissues, such as rhizomes, during the spring green-up stage, building upon previous research on the relationship between N and axillary bud outgrowth in annual grasses. This exploration on seasonal N cycling in perennial grasses can offer valuable theoretical insights for new perennial grasses varieties with high N use efficiency through the application of gene editing and other advanced technologies.


Asunto(s)
Nitrógeno , Poaceae , Poaceae/metabolismo , Estaciones del Año , Nitrógeno/metabolismo , Frío , Aminoácidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...