Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.451
Filtrar
1.
Ecol Lett ; 27(5): e14435, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38735857

RESUMEN

A long-standing debate exists among ecologists as to how diversity regulates infectious diseases (i.e., the nature of diversity-disease relationships); a dilution effect refers to when increasing host diversity inhibits infectious diseases (i.e., negative diversity-disease relationships). However, the generality, strength, and potential mechanisms underlying negative diversity-disease relationships in natural ecosystems remain unclear. To this end, we conducted a large-scale survey of 63 grassland sites across China to explore diversity-disease relationships. We found widespread negative diversity-disease relationships that were temperature-dependent; non-random diversity loss played a fundamental role in driving these patterns. Our study provides field evidence for the generality and temperature dependence of negative diversity-disease relationships in grasslands, becoming stronger in colder regions, while also highlighting the role of non-random diversity loss as a mechanism. These findings have important implications for community ecology, disease ecology, and epidemic control.


Asunto(s)
Biodiversidad , Pradera , Enfermedades de las Plantas , Temperatura , China , Enfermedades de las Plantas/microbiología , Hongos/fisiología , Hojas de la Planta/microbiología , Poaceae/microbiología , Poaceae/fisiología
2.
Antonie Van Leeuwenhoek ; 117(1): 77, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717550

RESUMEN

The "Shadegan International Wetland" (SIW) is one of the wetlands internationally recognized in the Ramsar convention. The vegetation of this wetland ecosystem consists of mostly grasses and shrubs that host a large number of fungi including endophytes. In this study, Nigrospora isolates were obtained from healthy plants of this wetland and its surrounding salt marshes and identified based on morphological features and multilocus phylogenetic analyses based on three DNA loci, namely the internal transcribed spacer regions 1 and 2 including the intervening 5.8S nuclear ribosomal DNA (ITS), ß-tubulin (tub2), and elongation factor 1-α (tef1-α). Accordingly, the following Nigrospora species were identified: N. lacticolonia, N. oryzae, N. osmanthi, N. pernambucoensis and a novel taxon N. shadeganensis sp. nov., which is described and illustrated. To the best of our knowledge, 10 new hosts for Nigrospora species are here reported, namely Aeluropus lagopoides, Allenrolfea occidentalis, Anthoxanthum monticola, Arthrocnemum macrostachyum, Cressa cretica, Halocnemum strobilaceum, Seidlitzia rosmarinus, Suaeda vermiculata, Tamarix passerinoides, and Typha latifolia. Moreover, the species N. lacticolonia and N. pernambucoensis are new records for the mycobiota of Iran.


Asunto(s)
Ascomicetos , Endófitos , Filogenia , Poaceae , Humedales , Irán , Endófitos/clasificación , Endófitos/genética , Endófitos/aislamiento & purificación , Poaceae/microbiología , Ascomicetos/genética , Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Tubulina (Proteína)/genética
3.
Sci Rep ; 14(1): 10938, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740878

RESUMEN

Plant disease often increases with N, decreases with CO2, and increases as biodiversity is lost (i.e., the dilution effect). Additionally, all these factors can indirectly alter disease by changing host biomass and hence density-dependent disease transmission. Yet over long periods of time as communities undergo compositional changes, these biomass-mediated pathways might fade, intensify, or even reverse in direction. Using a field experiment that has manipulated N, CO2, and species richness for over 20 years, we compared severity of a specialist rust fungus (Puccinia andropogonis) on its grass host (Andropogon gerardii) shortly after the experiment began (1999) and twenty years later (2019). Between these two sampling periods, two decades apart, we found that disease severity consistently increased with N and decreased with CO2. However, the relationship between diversity and disease reversed from a dilution effect in 1999 (more severe disease in monocultures) to an amplification effect in 2019 (more severe disease in mixtures). The best explanation for this reversal centered on host density (i.e., aboveground biomass), which was initially highest in monoculture, but became highest in mixtures two decades later. Thus, the diversity-disease pattern reversed, but disease consistently increased with host biomass. These results highlight the consistency of N and CO2 as drivers of plant disease in the Anthropocene and emphasize the critical role of host biomass-despite potentially variable effects of diversity-for relationships between biodiversity and disease.


Asunto(s)
Biodiversidad , Biomasa , Dióxido de Carbono , Nitrógeno , Enfermedades de las Plantas , Dióxido de Carbono/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Nitrógeno/metabolismo , Basidiomycota/genética , Poaceae/microbiología
4.
Microbiol Spectr ; 12(4): e0257423, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38488391

RESUMEN

The clavicipitaceous fungus Epichloë gansuensis forms symbiotic associations with drunken horse grass (Achnatherum inebrians), providing biotic and abiotic stress protection to its host. However, it is unclear how E. gansuensis affects the assembly of host plant-associated bacterial communities after ammonium nitrogen (NH4+-N) treatment. We examined the shoot- and root-associated bacterial microbiota and root metabolites of A. inebrians when infected (I) or uninfected (F) with E. gansuensis endophyte. The results showed more pronounced NH4+-N-induced microbial and metabolic changes in the endophyte-infected plants compared to the endophyte-free plants. E. gansuensis significantly altered bacterial community composition and ß-diversity in shoots and roots and increased bacterial α-diversity under NH4+-N treatment. The relative abundance of 117 and 157 root metabolites significantly changed with E. gansuensis infection under water and NH4+-N treatment compared to endophyte-free plants. Root bacterial community composition was significantly related to the abundance of the top 30 metabolites [variable importance in the projection (VIP) > 2 and VIP > 3] contributing to differences between I and F plants, especially alkaloids. The correlation network between root microbiome and metabolites was complex. Microorganisms in the Proteobacteria and Firmicutes phyla were significantly associated with the R00693 metabolic reaction of cysteine and methionine metabolism. Co-metabolism network analysis revealed common metabolites between host plants and microorganisms.IMPORTANCEOur results suggest that the effect of endophyte infection is sensitive to nitrogen availability. Endophyte symbiosis altered the composition of shoot and root bacterial communities, increasing bacterial diversity. There was also a change in the class and relative abundance of metabolites. We found a complex co-occurrence network between root microorganisms and metabolites, with some metabolites shared between the host plant and its microbiome. The precise ecological function of the metabolites produced in response to endophyte infection remains unknown. However, some of these compounds may facilitate plant-microbe symbiosis by increasing the uptake of beneficial soil bacteria into plant tissues. Overall, these findings advance our understanding of the interactions between the microbiome, metabolome, and endophyte symbiosis in grasses. The results provide critical insight into the mechanisms by which the plant microbiome responds to nutrient stress in the presence of fungal endophytes.


Asunto(s)
Endófitos , Epichloe , Endófitos/fisiología , Epichloe/metabolismo , Nitrógeno/metabolismo , Poaceae/metabolismo , Poaceae/microbiología , Simbiosis , Bacterias
5.
Environ Res ; 249: 118345, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331147

RESUMEN

Strategies seeking to increase the use efficiency of nitrogen (N) fertilizers and that benefit plant growth through multiple mechanisms can reduce production costs and contribute to more sustainable agriculture free of polluting residues. Under controlled conditions, we investigated the compatibility between foliar inoculation with an endophytic diazotrophic bacterium (Herbaspirillum seropedicae HRC54) at control and low, medium and high N fertilization levels (0, 25, 50 and 100 mg of N kg-1 as urea, respectively) in Marandu palisadegrass. Common procedures in our research field (biometric and nutritional assessments) were combined with isotopic techniques (natural abundance - δ15N‰ and 15N isotope dilution) and root scanning to determine the contribution of fixed N and recovery of N fertilizer by the grass. Overall, the combined use of 15N isotopic techniques revealed that inoculation not only improved the recovery of applied N-urea from the soil but also provided fixed nitrogen to Marandu palisade grass, resulting in an increase in the total accumulated N. When inoculated plants grew at control and low levels of N, a positive cascade effect encompassing root growth stimulation (nodes of smaller diameter roots), better soil and fertilizer resource exploitation and increased forage production was observed. In contrast, increasing N reduced the contributions of N fixed by H. seropedicae from 21.5% at the control level to 8.6% at the high N level. Given the minimal to no observed growth promotion, this condition was deemed inhibitory to the positive effects of H. seropedicae. We discuss how to make better use of H. seropedicae inoculation in Marandu palisadegrass, albeit on a small scale, thus contributing to a more rational and efficient use of N fertilizers. Finally, we pose questions for future investigations based on 15N isotopic techniques under field conditions, which have great applicability potential.


Asunto(s)
Fertilizantes , Herbaspirillum , Isótopos de Nitrógeno , Nitrógeno , Raíces de Plantas , Herbaspirillum/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Nitrógeno/metabolismo , Poaceae/microbiología , Poaceae/metabolismo , Poaceae/crecimiento & desarrollo
6.
Ann Bot ; 133(4): 509-520, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38320313

RESUMEN

BACKGROUND AND AIMS: In the subfamily Poöideae (Poaceae), certain grass species possess anti-herbivore alkaloids synthesized by fungal endophytes that belong to the genus Epichloë (Clavicipitaceae). The protective role of these symbiotic endophytes can vary, depending on alkaloid concentrations within specific plant-endophyte associations and plant parts. METHODS: We conducted a literature review to identify articles containing alkaloid concentration data for various plant parts in six important pasture species, Lolium arundinaceum, Lolium perenne, Lolium pratense, Lolium multiflorum|Lolium rigidum and Festuca rubra, associated with their common endophytes. We considered the alkaloids lolines (1-aminopyrrolizidines), peramine (pyrrolopyrazines), ergovaline (ergot alkaloids) and lolitrem B (indole-diterpenes). While all these alkaloids have shown bioactivity against insect herbivores, ergovaline and lolitrem B are harmful for mammals. KEY RESULTS: Loline alkaloid levels were higher in the perennial grasses L. pratense and L. arundinaceum compared to the annual species L. multiflorum and L. rigidum, and higher in reproductive tissues than in vegetative structures. This is probably due to the greater biomass accumulation in perennial species that can result in higher endophyte mycelial biomass. Peramine concentrations were higher in L. perenne than in L. arundinaceum and not affected by plant part. This can be attributed to the high within-plant mobility of peramine. Ergovaline and lolitrem B, both hydrophobic compounds, were associated with plant parts where fungal mycelium is usually present, and their concentrations were higher in plant reproductive tissues. Only loline alkaloid data were sufficient for below-ground tissue analyses and concentrations were lower than in above-ground parts. CONCLUSIONS: Our study provides a comprehensive synthesis of fungal alkaloid variation across host grasses and plant parts, essential for understanding the endophyte-conferred defence extent. The patterns can be understood by considering endophyte growth within the plant and alkaloid mobility. Our study identifies research gaps, including the limited documentation of alkaloid presence in roots and the need to investigate the influence of different environmental conditions.


Asunto(s)
Alcaloides , Endófitos , Epichloe , Festuca , Lolium , Poliaminas , Alcaloides/metabolismo , Alcaloides/análisis , Endófitos/química , Endófitos/fisiología , Epichloe/química , Epichloe/fisiología , Ergotaminas/metabolismo , Festuca/microbiología , Festuca/fisiología , Herbivoria , Compuestos Heterocíclicos con 2 Anillos , Alcaloides Indólicos/metabolismo , Lolium/microbiología , Lolium/fisiología , Micotoxinas , Defensa de la Planta contra la Herbivoria , Poaceae/microbiología , Poaceae/metabolismo , Simbiosis
7.
Environ Res ; 244: 117865, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103776

RESUMEN

Rhizosphere soil fungal and enzyme activities affect the nutrient cycling of terrestrial ecosystems, and rhizosphere fungi are also important participants in the ecological process of vegetation succession, responding to changes in plant communities. Stipa is an excellent forage grass with important ecological and economic value, and has the spatial distribution pattern of floristic geographical substitution. In order to systematically investigate the synergistic response strategies of fungal communities and enzyme activities in the rhizosphere under the vegetation succession. Here we explored the turnover and assembly mechanisms of Stipa rhizosphere fungal communities and the spatial variation of metabolic activity under the succession of seven Stipa communities in northern China grassland under large scale gradients. The results indicated that the composition, abundance and diversity of fungal communities and microbial enzyme activities in rhizosphere soil differed among different Stipa species and were strikingly varied along the Stipa community changes over the geographic gradient. As the geographical distribution of Stipa community changed from east to west in grassland transect, Mortierellomycetes tended to be gradually replaced by Dothideomycetes. The null models showed that the rhizosphere fungal communities were governed primarily by the dispersal limitation of stochastic assembly processes, which showed decreased relative importance from S. grandis to S. gobica. Moreover, the MAT and MAP were the most important factors influencing the changes in the fungal community (richness, ß-diversity and composition) and fungal community assembly, while SC and NP also mediated fungal community assembly processes. These findings deepen our understanding of the responses of the microbial functions and fungal community assembly processes in the rhizosphere to vegetation succession.


Asunto(s)
Micobioma , Rizosfera , Humanos , Suelo , Ecosistema , Pradera , Microbiología del Suelo , Poaceae/microbiología , China
8.
Front Biosci (Landmark Ed) ; 28(11): 290, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-38062814

RESUMEN

BACKGROUND: Bacterial communities play an important role in helping plants absorb nutrients, promoting plant development, and preventing diseases. Moso bamboo (Phyllostachys edulis [Carriere] J. Houzeau) has a long history of cultivation and important economic value. METHODS: In this study, high-throughput sequencing technology was utilized to analyze the differences in the diversity of endophytic and root zone soil bacterial communities between high-yielding (HY) and low-yielding (LY) P. edulis forests in subtropical China. RESULTS: Notably, the soil conditions and bacterial communities in Yong'an (YA) and Jiangle (JL) differed, but the bacterial community structures in the root zone soil of both regions were similar with the dominant bacterial phyla composed of Proteobacteria, Acidobacteriota, and Actinobacteriota. The Chao1 and Shannon indices of the root zone soil and endophytic bacterial communities in the LY were higher than those in the HY. Moreover, the bacterial community structures of HY and LY were significantly different. Notably, the relative abundances of Actinobacteriota, Myxococcota, and Cyanobacteria were higher in the HY soil samples. The bacterial community differences between the tissues and root zone soil of HY and LY indicated that healthy HY P. edulis plants were enriched with specific bacterial communities, suggesting associations between yield and both endophytic and root zone soil bacterial communities. CONCLUSIONS: The findings of this study provide a basis to regulate artificial bacterial communities to benefit the future cultivation of HY P. edulis.


Asunto(s)
Bacterias , Bosques , Bacterias/genética , Poaceae/microbiología , China , Suelo
9.
Microbiome ; 11(1): 216, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777794

RESUMEN

BACKGROUND: Microbiome recruitment is influenced by plant host, but how host plant impacts the assembly, functions, and interactions of perennial plant root microbiomes is poorly understood. Here we examined prokaryotic and fungal communities between rhizosphere soils and the root endophytic compartment in two native Miscanthus species (Miscanthus sinensis and Miscanthus floridulus) of Taiwan and further explored the roles of host plant on root-associated microbiomes. RESULTS: Our results suggest that host plant genetic variation, edaphic factors, and site had effects on the root endophytic and rhizosphere soil microbial community compositions in both Miscanthus sinensis and Miscanthus floridulus, with a greater effect of plant genetic variation observed for the root endophytic communities. Host plant genetic variation also exerted a stronger effect on core prokaryotic communities than on non-core prokaryotic communities in each microhabitat of two Miscanthus species. From rhizosphere soils to root endophytes, prokaryotic co-occurrence network stability increased, but fungal co-occurrence network stability decreased. Furthermore, we found root endophytic microbial communities in two Miscanthus species were more strongly driven by deterministic processes rather than stochastic processes. Root-enriched prokaryotic OTUs belong to Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Sphingobacteriia, and [Saprospirae] both in two Miscanthus species, while prokaryotic taxa enriched in the rhizosphere soil are widely distributed among different phyla. CONCLUSIONS: We provide empirical evidence that host genetic variation plays important roles in root-associated microbiome in Miscanthus. The results of this study have implications for future bioenergy crop management by providing baseline data to inform translational research to harness the plant microbiome to sustainably increase agriculture productivity. Video Abstract.


Asunto(s)
Bacterias , Microbiota , Bacterias/genética , Microbiología del Suelo , Poaceae/microbiología , Microbiota/genética , Rizosfera , Plantas , Suelo , Variación Genética , Raíces de Plantas/microbiología
10.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37073111

RESUMEN

AIMS: The aim of this study was to investigate the dynamics of bacterial communities and natural fermentation quality in three steppe types [meadow steppe (MS); typical steppe (TS); and desert steppe (DS)] on the Mongolian Plateau. METHODS AND RESULTS: PacBio single molecule with real-time sequencing technology was applied to provide insights into the dynamics of the physicochemical characteristics and the complex microbiome of native grass after 1, 7, 15, and 30 days of fermentation process. The dry matter, crude protein, and water soluble carbohydrate (WSC) contents of the three groups slowly decreased after 1 day of fermentation process, and the lowest WSC concentration after 30 days of ensiling was detected in the DS group compared to that in the MS and TS groups. There was no significant effect of steppe types on lactic acid and butyric acid content (P > 0.05). The pH was higher in the early stages of fermentation. After 30 days of fermentation, the pH of MS and DS dropped to ∼5.60, while TS was as high as 5.94. At different ensiling days, the pH of TS was significantly higher than that of MS (P < 0.05). The ammonia nitrogen content of MS was significantly higher than TS and DS (P < 0.05). During the whole fermentation process, Leuconostoc mesenteroides and Pseudocitrobacter faecalis were the main species of DS, while Enterobacter roggenkampii and Faecalibacterium prausnitzii dominated the fermentation process in MS and TS, respectively. CONCLUSIONS: The fermentation quality of native grass silage of different steppe types was less satisfactory, with the silage quality ranging from DS, MS, and TS in descending order. The epiphytic bacteria dominating the fermentation process differed between steppe types of silage. Leuconostoc mesenteroides as the main strain of DS had a modulating effect on pH and LA content, while the main strains of MS and TS (Enterobacter roggenkampii and Faecalibacterium prausnitzii) dominated the silage without significant effect on improving fermentation characteristics and nutritional quality.


Asunto(s)
Pradera , Poaceae , Poaceae/microbiología , Enterobacter , Carbohidratos , Ensilaje/microbiología , Fermentación
11.
Microb Ecol ; 86(3): 1686-1695, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36725749

RESUMEN

Symbiotic mutualisms are thought to be stabilized by correlations between the interacting genotypes which may be strengthened via vertical transmission and/or reduced genetic variability within each species. Vertical transmission, however, may weaken interactions over time as the endosymbionts would acquire mutations that could not be purged. Additionally, temporal variation in a conditional mutualism could create genetic variation and increased variation in the interaction outcome. In this study, we assessed genetic variation in both members of a symbiosis, the endosymbiotic fungal endophyte Epichloë canadensis and its grass host Canada wildrye (Elymus canadensis). Both species exhibited comparable levels of diversity, mostly within populations rather than between. There were significant differences between populations, although not in the same pattern for the two species, and the differences were not correlated with geographic distance for either species. Interindividual genetic distance matrices for the two species were significantly correlated, although all combinations of discriminant analysis of principle components (DAPC) defined multilocus genotype groups were found suggesting that strict genotype matching is not necessary. Variation in interaction outcome is common in grass/endophyte interactions, and our results suggest that the accumulation of mutations overtime combined with temporal variation in selection pressures increasing genetic variation in the symbiosis may be the cause.


Asunto(s)
Elymus , Epichloe , Endófitos/genética , Simbiosis , Epichloe/genética , Poaceae/microbiología , Elymus/genética , Elymus/microbiología
12.
Mycotoxin Res ; 39(1): 19-31, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36282420

RESUMEN

Grasses growing next to agricultural fields influence the Fusarium abundance, the species composition, and the mycotoxin accumulation of wheat plants, especially the field parts directly adjacent to grasses, are highly affected. Grasses are a more attractive and suitable habitat for Fusarium fungi compared to other arable weeds and occur at mostly every semi-natural landscape element (e.g., kettle holes, hedgerows, field-to-field-borders). In our study, we analyzed the ability of a highly Fusarium infected grass stripe (F. graminearum, F. culmorum, F. sporotrichioides) to infect an adjacent wheat field with these species. Results show that the primary inoculated Fusarium species were as well the dominant species isolated from the wheat field. Regarding transects originating from the grass stripe going into the field, the results demonstrate that wheat ears next to the infected grass stripe have a higher Fusarium abundance and furthermore show higher mycotoxin accumulation in the wheat kernels. This effect was highly promoted by irrigation. Therefore, grass stripes next to arable fields must be considered as reservoirs for fungal infections and as a source for a contamination with mycotoxins.


Asunto(s)
Fusarium , Micotoxinas , Poaceae/microbiología , Triticum/microbiología , Enfermedades de las Plantas
14.
Sci Total Environ ; 858(Pt 3): 159958, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343819

RESUMEN

Root fungal endophytes have been shown to play a positive role in soil phytoremediation by immobilizing or degrading contaminants. In comparison, little is known about their ecological functions and possible role in improving plant performance in treatment wetlands. In a greenhouse study, we compared the structure of fungal communities associated with Phragmites australis roots in treatment wetland mesocosms fed with pre-treated wastewater to mesocosms fed with drinking water. We evaluated the role of water source as an environmental filter structuring fungal communities, and correlated the relative abundances of fungal taxa with key services delivered by the wetlands (i.e., biomass production and nutrient removal). Mesocosms fed with wastewater had higher fungal alpha-diversity. Contrary to expectations, many fungi were unique to drinking water-fed mesocosms, suggesting that the oligotrophic conditions prevailing in these mesocosms benefited specific fungal taxa. On the other hand, wastewater-fed mesocosms had a slightly higher proportion of sequence reads belonging to fungal species recognized as potential endophytes and phytopathogens, highlighting the potential role of wastewater as a source of plant-associated fungi. Interestingly, we found contrasted association patterns between fungal species' relative abundances and different treatment wetland services (e.g., N vs P removal), such that some fungi were positively associated with N removal but negatively associated with P removal. This suggests that fungal endophytes may be functionally complementary in their contribution to distinct mesocosm services, thus supporting arguments in favor of microbial diversity in phytotechnologies. Because of the wide alpha-diversity of fungal communities, and the fact that with current databases, most species remained unassigned to a specific function (or even guild), further investigation is needed to link fungal community structure and service delivery in treatment wetlands.


Asunto(s)
Endófitos , Hongos , Raíces de Plantas , Poaceae , Humedales , Agua Potable , Raíces de Plantas/microbiología , Poaceae/microbiología , Aguas Residuales
15.
Microb Ecol ; 85(2): 604-616, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35194659

RESUMEN

Epichloë endophytes can not only affect the growth and resistance of the host plant but also change the biotic and abiotic properties of the soil where the host is situated. Here, we used endophyte-infected (EI) and endophyte-free (EF) Leymus chinensis as plant materials, to study the microbial diversity and composition in the host root endosphere and rhizosphere soil under both pot and field conditions. The results showed that endophyte infection did not affect the diversity of either bacteria or fungi in the root zone. There were significant differences in both bacterial and fungal communities between the root endosphere and the rhizosphere, and between the field and the pot, while endophytes only affected root endosphere microbial communities. The bacterial families affected by endophyte infection changed from 29.07% under field conditions to 40% under pot conditions. In contrast, the fungal families affected by endophyte infection were maintained at nearly 50% under both field and pot conditions. That is to say, bacterial communities in the root endosphere were more strongly affected by environmental conditions, and in comparison, the fungal communities were more strongly affected by species specificity. Endophytes significantly affected the fungal community composition of the host root endosphere in both potted and field plants, only the effect was more obvious in potted plants. Endophyte infection increased the abundance of three fungal families (Thelebolaceae, Herpotrichiellaceae and Trimorphomycetaceae) under both field and potted conditions. In potted plants, endophytes also altered the dominant fungi from pathogenic Pleosporales to saprophytic Chaetomiaceae. Endophyte infection increased the relative abundance of arbuscular mycorrhizal fungi and saprophytic fungi, especially under potted conditions.Overall, endophytes significantly affected the fungal community composition of the host root endosphere in both potted and field plants. Endophytes had a greater impact on root endosphere microorganisms than the rhizosphere, a greater impact on fungal communities than bacteria, and a greater impact on root endosphere microorganisms under potted conditions than at field sites.


Asunto(s)
Epichloe , Microbiota , Humanos , Endófitos , Poaceae/microbiología , Bacterias , Rizosfera , Plantas/microbiología , Suelo , Raíces de Plantas/microbiología , Microbiología del Suelo
16.
Front Biosci (Landmark Ed) ; 28(12): 329, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38179742

RESUMEN

BACKGROUND: The purpose of this study was to elucidate the community structure of rhizosphere soil bacteria and endophytic bacteria during the growth of moso bamboo (Phyllostachys edulis) shoots. METHODS: This study collected the rhizospheric soil samples, tissue samples of rhizome roots, shoot buds, winter bamboo shoots, spring bamboo shoots, and samples of forest soil. Their metagenomic DNA was extracted, and the bacterial community structure and diversity characteristics were compared and analyzed using high-throughput sequencing technology. RESULTS: These samples enabled the identification of 32 phyla, 52 classes, 121 orders, 251 families, and 593 genera of bacteria. The phyla primarily included Proteobacteria, Acidobacteria, and Cyanobacteria among others. Proteobacteria was the dominant phylum in the samples of bamboo shoots and rhizome roots, whereas Acidobacteria was dominant in the rhizosphere and forest soil samples. The predominant genera of the rhizome root samples were Acidothermus, Bradyrhizobium and Acidobacterium, and the predominant genera of the soil samples were Acidothermus and Acidobacterium. CONCLUSIONS: This study preliminarily revealed the regularity between the growth and development of bamboo shoots and the changes in the community structure of rhizosphere soil and endophytic bacteria, which provides insights into the relationship between growth and the bacterial community structure in different stages of bamboo shoots.


Asunto(s)
Cianobacterias , Suelo , Humanos , Rizosfera , Poaceae/microbiología
17.
Microbiol Spectr ; 10(6): e0216222, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36416558

RESUMEN

Azoarcus olearius BH72 is a diazotrophic model endophyte that contributes fixed nitrogen to its host plant, Kallar grass, and expresses nitrogenase genes endophytically. Despite extensive studies on biological nitrogen fixation (BNF) of diazotrophic endophytes, little is known about global genetic players involved in survival under respective physiological conditions. Here, we report a global genomic screen for putatively essential genes of A. olearius employing Tn5 transposon mutagenesis with a modified transposon combined with high-throughput sequencing (Tn-Seq). A large Tn5 master library of ~6 × 105 insertion mutants of strain BH72 was obtained. Next-generation sequencing identified 183,437 unique insertion sites into the 4,376,040-bp genome, displaying one insertion every 24 bp on average. Applying stringent criteria, we describe 616 genes as putatively essential for growth on rich medium. COG (Clusters of Orthologous Groups) assignment of the 564 identified protein-coding genes revealed enrichment of genes related to core cellular functions and cell viability. To mimic gradual adaptations toward BNF conditions, the Tn5 mutant library was grown aerobically in synthetic medium or microaerobically on either combined or atmospheric nitrogen. Enrichment and depletion analysis of Tn5 mutants not only demonstrated the role of BNF- and metabolism-related proteins but also revealed that, strikingly, many genes relevant for plant-microbe interactions decrease bacterial competitiveness in pure culture, such type IV pilus- and bacterial envelope-associated genes. IMPORTANCE A constantly growing world population and the daunting challenge of climate change demand new strategies in agricultural crop production. Intensive usage of chemical fertilizers, overloading the world's fields with organic input, threaten terrestrial and marine ecosystems as well as human health. Long overlooked, the beneficial interaction of endophytic bacteria and grasses has attracted ever-growing interest in research in the last decade. Capable of biological nitrogen fixation, diazotrophic endophytes not only provide a valuable source of combined nitrogen but also are known for diverse plant growth-promoting effects, thereby contributing to plant productivity. Elucidation of an essential gene set for a prominent model endophyte such as A. olearius BH72 provides us with powerful insights into its basic lifestyle. Knowledge about genes detrimental or advantageous under defined physiological conditions may point out a way of manipulating key steps in the bacterium's lifestyle and plant interaction toward a more sustainable agriculture.


Asunto(s)
Azoarcus , Genes Esenciales , Fijación del Nitrógeno , Poaceae , Ecosistema , Endófitos/genética , Nitrógeno , Fijación del Nitrógeno/genética , Poaceae/genética , Poaceae/microbiología , Azoarcus/genética
18.
Microbiome ; 10(1): 186, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329505

RESUMEN

BACKGROUND: Phytoremediation is a potentially cost-effective way to remediate highly contaminated mine tailing sites. However, nutrient limitations, especially the deficiency of nitrogen (N), can hinder the growth of plants and impair the phytoremediation of mine tailings. Nevertheless, pioneer plants can successfully colonize mine tailings and exhibit potential for tailing phytoremediation. Diazotrophs, especially diazotrophic endophytes, can promote the growth of their host plants. This was tested in a mine-tailing habitat by a combination of field sampling, DNA-stable isotope probing (SIP) analysis, and pot experiments. RESULTS: Bacteria belonging to the genera Herbaspirillum, Rhizobium, Devosia, Pseudomonas, Microbacterium, and Delftia are crucial endophytes for Chinese silvergrass (Miscanthus sinensis) grown in the tailing, the model pioneer plant selected in this study. Further, DNA-SIP using 15N2 identified Pseudomonas, Rhizobium, and Exiguobacterium as putative diazotrophic endophytes of M. sinensis. Metagenomic-binning suggested that these bacteria contained essential genes for nitrogen fixation and plant growth promotion. Finally, two diazotrophic endophytes Rhizobium sp. G-14 and Pseudomonas sp. Y-5 were isolated from M. sinensis. Inoculation of another pioneer plant in mine tailings, Bidens pilosa, with diazotrophic endophytes resulted in successful plant colonization, significantly increased nitrogen fixation activity, and promotion of plant growth. CONCLUSIONS: This study indicated that diazotrophic endophytes have the potential to promote the growth of pioneer plant B. pilosa in mine tailings. Video Abstract.


Asunto(s)
Endófitos , Poaceae , Poaceae/microbiología , Fijación del Nitrógeno , Bacterias , Plantas/genética , Pseudomonas/genética , China , ADN , Raíces de Plantas/microbiología
19.
BMC Plant Biol ; 22(1): 418, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042398

RESUMEN

Zizania latifolia is a popular aquatic vegetable in China because of its enlarged edible stems resulting from persistent infection by a fungal endophyte, Ustilago esculenta. Fenaminosulf (FM) is a germicide that can be used to improve agricultural crop yields. In Z. latifolia fields, appropriate spraying of FM not just controls diseases, but also promotes an earlier harvest of Z. latifolia. In this study, we show that the timing of gall formation was advanced and the plant's yield was increased significantly under a high concentration treatment of FM. Yet FM had a strong inhibitory effect on the growth of U. esculenta in vitro, while the transcript levels of mating-type alleles, cell metabolism-related genes and chitin synthase genes were all substantially downregulated. Through a transcriptome analysis, we investigated changes in gene expression of the host Z. latifolia and fungal endophyte U. esculenta in response to FM. FM directly affected the growth of Z. latifolia by altering the expression level of genes involved in plant-pathogen interactions, plant hormone signal transduction and some metabolism pathways. By contrast, FM had little effect on U. esculenta growing inside of Z. latifolia. Collectively, our results provide a more in-depth understanding of the molecular processes that promote gall formation in Z. latifolia, while also identifying potential targets for genetic manipulation to improve the yield and quality of Z. latifolia, in a safer and more effective way.


Asunto(s)
Ustilago , Basidiomycota , Bencenosulfonatos , Hongos , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología , Poaceae/genética , Poaceae/microbiología , Ustilago/genética
20.
Nucleic Acids Res ; 50(11): 6190-6210, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35687128

RESUMEN

Poaceae plants can locally accumulate iron to suppress pathogen infection. It remains unknown how pathogens overcome host-derived iron stress during their successful infections. Here, we report that Fusarium graminearum (Fg), a destructive fungal pathogen of cereal crops, is challenged by host-derived high-iron stress. Fg infection induces host alkalinization, and the pH-dependent transcription factor FgPacC undergoes a proteolytic cleavage into the functional isoform named FgPacC30 under alkaline host environment. Subsequently FgPacC30 binds to a GCCAR(R = A/G)G element at the promoters of the genes involved in iron uptake and inhibits their expression, leading to adaption of Fg to high-iron stress. Mechanistically, FgPacC30 binds to FgGcn5 protein, a catalytic subunit of Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, leading to deregulation of histone acetylation at H3K18 and H2BK11, and repression of iron uptake genes. Moreover, we identified a protein kinase FgHal4, which is highly induced by extracellular high-iron stress and protects FgPacC30 against 26S proteasome-dependent degradation by promoting FgPacC30 phosphorylation at Ser2. Collectively, this study uncovers a novel inhibitory mechanism of the SAGA complex by a transcription factor that enables a fungal pathogen to adapt to dynamic microenvironments during infection.


Asunto(s)
Proteínas Fúngicas , Fusarium , Histona Acetiltransferasas , Hierro , Factores de Transcripción , Acetilación , Adaptación Fisiológica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/patogenicidad , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Hierro/metabolismo , Enfermedades de las Plantas/microbiología , Poaceae/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...