Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.052
Filtrar
1.
Pak J Pharm Sci ; 37(1): 155-161, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38741412

RESUMEN

Nephrin is a transmembrane protein that maintains the slit diaphragm of renal podocyte. In chronic kidney disease (CKD), podocyte effacement causes damage to glomerular basement membrane barrier leading to proteinuria. Boerhavia diffusa, (BD), an Ayurveda herb, is used in treatment of various diseases particularly in relation to the urinary system. This study attempts to evaluate the effect of ethanolic extract of BD on the expression of nephrin in adenine induced CKD rats. CKD was induced in Wistar albino rats using adenine (600/mg/kg, orally for 10 days). CKD rats were treated with BD (400/mg/kg) and pirfenidone (500/mg/kg) orally for 14 days. The kidneys were harvested from euthanized animals and processed for histopathology, electron microscopy and immunohistochemistry, gene and protein expression of nephrin. Diseased rats treated with BD and pirfenidone showed reduction in the thickening of renal basement membranes and reduced haziness in brush border of PCT and glomeruli. Nephrin gene and protein expressions were higher in BD and pirfenidone treated group when compared to the disease control group. The structural and functional damage brought on by adenine-induced nephrotoxicity was countered by protective action of BD by up regulating the expression of nephrin. Therefore, BD can be utilized as a nutraceutical for the prevention and treatment of CKD.


Asunto(s)
Adenina , Proteínas de la Membrana , Extractos Vegetales , Podocitos , Ratas Wistar , Insuficiencia Renal Crónica , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Extractos Vegetales/farmacología , Adenina/farmacología , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Masculino , Ratas , Modelos Animales de Enfermedad
2.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732210

RESUMEN

Investigating the role of podocytes in proteinuric disease is imperative to address the increasing global burden of chronic kidney disease (CKD). Studies strongly implicate increased levels of monocyte chemoattractant protein-1 (MCP-1/CCL2) in proteinuric CKD. Since podocytes express the receptor for MCP-1 (i.e., CCR2), we hypothesized that podocyte-specific MCP-1 production in response to stimuli could activate its receptor in an autocrine manner, leading to further podocyte injury. To test this hypothesis, we generated podocyte-specific MCP-1 knockout mice (Podo-Mcp-1fl/fl) and exposed them to proteinuric injury induced by either angiotensin II (Ang II; 1.5 mg/kg/d, osmotic minipump) or Adriamycin (Adr; 18 mg/kg, intravenous bolus). At baseline, there were no between-group differences in body weight, histology, albuminuria, and podocyte markers. After 28 days, there were no between-group differences in survival, change in body weight, albuminuria, kidney function, glomerular injury, and tubulointerstitial fibrosis. The lack of protection in the knockout mice suggests that podocyte-specific MCP-1 production is not a major contributor to either Ang II- or Adr-induced glomerular disease, implicating that another cell type is the source of pathogenic MCP-1 production in CKD.


Asunto(s)
Angiotensina II , Quimiocina CCL2 , Doxorrubicina , Ratones Noqueados , Podocitos , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Podocitos/metabolismo , Podocitos/patología , Podocitos/efectos de los fármacos , Doxorrubicina/efectos adversos , Ratones , Masculino , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Eliminación de Gen , Modelos Animales de Enfermedad
3.
Diabetes Metab Res Rev ; 40(4): e3809, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38708843

RESUMEN

Diabetic kidney disease (DKD), one of the common microvascular complications of diabetes, is increasing in prevalence worldwide and can lead to End-stage renal disease. However, there are still gaps in our understanding of the pathophysiology of DKD, and both current clinical diagnostic methods and treatment strategies have drawbacks. According to recent research, long non-coding RNAs (lncRNAs) are intimately linked to the developmental process of DKD and could be viable targets for clinical diagnostic decisions and therapeutic interventions. Here, we review recent insights gained into lncRNAs in pathological changes of DKD such as mesangial expansion, podocyte injury, renal tubular injury, and interstitial fibrosis. We also discuss the clinical applications of DKD-associated lncRNAs as diagnostic biomarkers and therapeutic targets, as well as their limitations and challenges, to provide new methods for the prevention, diagnosis, and treatment of DKD.


Asunto(s)
Nefropatías Diabéticas , ARN Largo no Codificante , Humanos , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/genética , ARN Largo no Codificante/fisiología , ARN Largo no Codificante/genética , Biomarcadores/análisis , Animales , Podocitos/patología , Podocitos/metabolismo
4.
Arch Endocrinol Metab ; 68: e230204, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38739524

RESUMEN

Lipodystrophies are characterized by complete or selective loss of adipose tissue and can be acquired or inherited. Familial partial lipodystrophy (FPLD) is a hereditary lipodystrophy commonly caused by mutations in the LMNA gene. Herein, we report two cases of FPLD associated with podocytopathies. Patient 1 was diagnosed with FPLD associated with the heterozygous p.Arg482Trp variant in LMNA and had normal glucose tolerance and hyperinsulinemia. During follow-up, she developed nephroticrange proteinuria. Renal biopsy was consistent with minimal change disease. Patient 2 was diagnosed with FPLD associated with a de novo heterozygous p.Arg349Trp variant in LMNA. Microalbuminuria progressed to macroalbuminuria within 6 years and tonephrotic range proteinuria in the last year. He remained without diabetes and with hyperinsulinemia. Renal biopsy revealed focal segmental glomerulosclerosis not otherwise specified. This report provides further evidence of variable features of lipodystrophy associated with LMNA variants and the importance of long-term follow-up with evaluation of kidney dysfunction.


Asunto(s)
Lamina Tipo A , Lipodistrofia Parcial Familiar , Humanos , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/complicaciones , Femenino , Masculino , Adulto , Podocitos/patología , Mutación
5.
FASEB J ; 38(10): e23662, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38752545

RESUMEN

The ubiquitination function in diabetic nephropathy (DN) has attracted much attention, but there is a lack of information on its ubiquitylome profile. To examine the differences in protein content and ubiquitination in the kidney between db/db mice and db/m mice, we deployed liquid chromatography-mass spectrometry (LC-MS/MS) to conduct analysis. We determined 145 sites in 86 upregulated modified proteins and 66 sites in 49 downregulated modified proteins at the ubiquitinated level. Moreover, 347 sites among the 319 modified proteins were present only in the db/db mouse kidneys, while 213 sites among the 199 modified proteins were present only in the db/m mouse kidneys. The subcellular localization study indicated that the cytoplasm had the highest proportion of ubiquitinated proteins (31.87%), followed by the nucleus (30.24%) and the plasma membrane (20.33%). The enrichment analysis revealed that the ubiquitinated proteins are mostly linked to tight junctions, oxidative phosphorylation, and thermogenesis. Podocin, as a typical protein of slit diaphragm, whose loss is a crucial cause of proteinuria in DN. Consistent with the results of ubiquitination omics, the K261R mutant of podocin induced the weakest ubiquitination compared with the K301R and K370R mutants. As an E3 ligase, c-Cbl binds to podocin, and the regulation of c-Cbl can impact the ubiquitination of podocin. In conclusion, in DN, podocin ubiquitination contributes to podocyte injury, and K261R is the most significant site. c-Cbl participates in podocin ubiquitination and may be a direct target for preserving the integrity of the slit diaphragm structure, hence reducing proteinuria in DN.


Asunto(s)
Nefropatías Diabéticas , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Podocitos , Proteínas Proto-Oncogénicas c-cbl , Ubiquitinación , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Podocitos/metabolismo , Podocitos/patología , Ratones , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Proteínas Proto-Oncogénicas c-cbl/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Masculino , Ratones Endogámicos C57BL
6.
FASEB J ; 38(10): e23668, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38742811

RESUMEN

Podocyte injury plays a critical role in the progression of diabetic kidney disease (DKD), but the underlying cellular and molecular mechanisms remain poorly understanding. MicroRNAs (miRNAs) can disrupt gene expression by inducing translation inhibition and mRNA degradation, and recent evidence has shown that miRNAs may play a key role in many kidney diseases. In this study, we identified miR-4645-3p by global transcriptome expression profiling as one of the major downregulated miRNAs in high glucose-cultured podocytes. Moreover, whether DKD patients or STZ-induced diabetic mice, expression of miR-4645-3p was also significantly decreased in kidney. In the podocytes cultured by normal glucose, inhibition of miR-4645-3p expression promoted mitochondrial damage and podocyte apoptosis. In the podocytes cultured by high glucose (30 mM glucose), overexpression of miR-4645-3p significantly attenuated mitochondrial dysfunction and podocyte apoptosis induced by high glucose. Furthermore, we found that miR-4645-3p exerted protective roles by targeting Cdk5 inhibition. In vitro, miR-4645-3p obviously antagonized podocyte injury by inhibiting overexpression of Cdk5. In vivo of diabetic mice, podocyte injury, proteinuria, and impaired renal function were all effectively ameliorated by treatment with exogenous miR-4645-3p. Collectively, these findings demonstrate that miR-4645-3p can attenuate podocyte injury and mitochondrial dysfunction in DKD by targeting Cdk5. Sustaining the expression of miR-4645-3p in podocytes may be a novel strategy to treat DKD.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratones Endogámicos C57BL , MicroARNs , Mitocondrias , Podocitos , Podocitos/metabolismo , Podocitos/patología , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , MicroARNs/genética , MicroARNs/metabolismo , Ratones , Mitocondrias/metabolismo , Masculino , Humanos , Diabetes Mellitus Experimental/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Apoptosis , Glucosa
7.
Life Sci ; 347: 122667, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670449

RESUMEN

BACKGROUND: Zinc deficiency is strongly correlated with prolonged diabetes mellitus and diabetic nephropathy (DN). Previously, glucose-lowering, insulinomimetic, and ß-cell proliferative activities of zinc oxide nanoparticles (ZON) have been reported. Considering these pleiotropic effects, we hypothesized that ZON modulates multiple cellular pathways associated with necroptosis, inflammation, and renal fibrosis, which are involved in progressive loss of renal function. AIM: This study evaluated the effect of ZON on renal function, leading to the alleviation of DN in streptozotocin (STZ)-induced type 1 diabetic Wistar rats and proposed a probable mechanism for its activity. METHODS: Wistar rats (n = 6/group) were used as healthy controls, diabetic controls, diabetic rats treated with ZON (1, 3, and 10 mg/kg), and insulin controls. Urine and serum biochemical parameters, glomerular filtration rate (GFR), and renal histology were also evaluated. Cultured E11 podocytes were evaluated in vitro for markers of oxidative stress, proteins associated with the loss of renal function, and genes associated with renal damage. KEY FINDINGS: STZ-treated rats receiving oral doses of ZON showed enhanced renal function, with no histological alterations in the kidney tissue. ZON inhibited the TGF-ß/Samd3 pathway in renal fibrosis; blocked Ripk1/Ripk3/Mlkl mediated necroptosis and protected against hyperglycemia-induced pyroptosis. In E11 podocytes, ZON reduced oxidative stress under high glucose conditions and retained podocyte-specific proteins. SIGNIFICANCE: A probable mechanism by which ZON prevents DN has been proposed, suggesting its use as a complementary therapeutic agent for the treatment of diabetic complications. To the best of our knowledge, this is the first study to demonstrate the in vitro effects of ZON in cultured podocytes.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Estrés Oxidativo , Ratas Wistar , Óxido de Zinc , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Masculino , Óxido de Zinc/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nanopartículas , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Fibrosis , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Estreptozocina , Transducción de Señal/efectos de los fármacos
8.
Dis Model Mech ; 17(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602042

RESUMEN

Diabetes is a metabolic disorder characterized by high blood glucose levels and is a leading cause of kidney disease. Diabetic nephropathy has been attributed to dysfunctional mitochondria. However, many questions remain about the exact mechanism. The structure, function and molecular pathways are highly conserved between mammalian podocytes and Drosophila nephrocytes; therefore, we used flies on a high-sucrose diet to model type 2 diabetic nephropathy. The nephrocytes from flies on a high-sucrose diet showed a significant functional decline and decreased cell size, associated with a shortened lifespan. Structurally, the nephrocyte filtration structure, known as the slit diaphragm, was disorganized. At the cellular level, we found altered mitochondrial dynamics and dysfunctional mitochondria. Regulating mitochondrial dynamics by either genetic modification of the Pink1-Park (mammalian PINK1-PRKN) pathway or treatment with BGP-15, mitigated the mitochondrial defects and nephrocyte functional decline. These findings support a role for Pink1-Park-mediated mitophagy and associated control of mitochondrial dynamics in diabetic nephropathy, and demonstrate that targeting this pathway might provide therapeutic benefits for type 2 diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas , Proteínas de Drosophila , Drosophila melanogaster , Mitocondrias , Dinámicas Mitocondriales , Transducción de Señal , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Mitocondrias/metabolismo , Podocitos/patología , Podocitos/metabolismo , Mitofagia , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas/metabolismo
10.
Cell Rep ; 43(4): 114075, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38583151

RESUMEN

Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and no specific drugs are clinically available. We have previously demonstrated that inhibiting microsomal prostaglandin E synthase-2 (mPGES-2) alleviated type 2 diabetes by enhancing ß cell function and promoting insulin production. However, the involvement of mPGES-2 in DKD remains unclear. Here, we aimed to analyze the association of enhanced mPGES-2 expression with impaired metabolic homeostasis of renal lipids and subsequent renal damage. Notably, global knockout or pharmacological blockage of mPGES-2 attenuated diabetic podocyte injury and tubulointerstitial fibrosis, thereby ameliorating lipid accumulation and lipotoxicity. These findings were further confirmed in podocyte- or tubule-specific mPGES-2-deficient mice. Mechanistically, mPGES-2 and Rev-Erbα competed for heme binding to regulate fatty acid binding protein 5 expression and lipid metabolism in the diabetic kidney. Our findings suggest a potential strategy for treating DKD via mPGES-2 inhibition.


Asunto(s)
Nefropatías Diabéticas , Metabolismo de los Lípidos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Podocitos , Prostaglandina-E Sintasas , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/tratamiento farmacológico , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Fibrosis , Riñón/patología , Riñón/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Podocitos/metabolismo , Podocitos/patología , Podocitos/efectos de los fármacos , Prostaglandina-E Sintasas/metabolismo , Prostaglandina-E Sintasas/genética , Transducción de Señal/efectos de los fármacos
11.
Genes (Basel) ; 15(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38674390

RESUMEN

The Adriamycin (ADR) nephropathy model, which induces podocyte injury, is limited to certain mouse strains due to genetic susceptibilities, such as the PrkdcR2140C polymorphism. The FVB/N strain without the R2140C mutation resists ADR nephropathy. Meanwhile, a detailed analysis of the progression of ADR nephropathy in the FVB/N strain has yet to be conducted. Our research aimed to create a novel mouse model, the FVB-PrkdcR2140C, by introducing PrkdcR2140C into the FVB/NJcl (FVB) strain. Our study showed that FVB-PrkdcR2140C mice developed severe renal damage when exposed to ADR, as evidenced by significant albuminuria and tubular injury, exceeding the levels observed in C57BL/6J (B6)-PrkdcR2140C. This indicates that the FVB/N genetic background, in combination with the R2140C mutation, strongly predisposes mice to ADR nephropathy, highlighting the influence of genetic background on disease susceptibility. Using RNA sequencing and subsequent analysis, we identified several genes whose expression is altered in response to ADR nephropathy. In particular, Mmp7, Mmp10, and Mmp12 were highlighted for their differential expression between strains and their potential role in influencing the severity of kidney damage. Further genetic analysis should lead to identifying ADR nephropathy modifier gene(s), aiding in early diagnosis and providing novel approaches to kidney disease treatment and prevention.


Asunto(s)
Modelos Animales de Enfermedad , Doxorrubicina , Enfermedades Renales , Animales , Doxorrubicina/efectos adversos , Ratones , Enfermedades Renales/inducido químicamente , Enfermedades Renales/genética , Enfermedades Renales/patología , Masculino , Ratones Endogámicos C57BL , Predisposición Genética a la Enfermedad , Podocitos/metabolismo , Podocitos/patología , Podocitos/efectos de los fármacos
12.
Biomed Pharmacother ; 174: 116583, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626520

RESUMEN

BACKGROUND: Primary membranous nephropathy (PMN) is an autoimmune glomerular disease. IL-6 is a potential therapeutic target for PMN. Previous clinical studies have demonstrated the effectiveness of Mahuang Fuzi and Shenzhuo Decoction (MFSD) in treating membranous nephropathy. However, the mechanism of action of MFSD remains unclear. METHODS: Serum IL-6 levels were measured in patients with PMN and healthy subjects. The passive Heymann nephritis (PHN) rat model was established, and high and low doses of MFSD were used for intervention to observe the repair effect of MFSD on renal pathological changes and podocyte injury. RNA-seq was used to screen the possible targets of MFSD, and the effect of MFSD targeting IL-6/STAT3 was further verified by combining the experimental results. Finally, the efficacy of tocilizumab in PHN rats was observed. RESULTS: Serum IL-6 levels were significantly higher in PMN patients than in healthy subjects. These levels significantly decreased in patients in remission after MFSD treatment. MFSD treatment improved laboratory indicators in PHN rats, as well as glomerular filtration barrier damage and podocyte marker protein expression. Renal transcriptome changes showed that MFSD-targeted differential genes were enriched in JAK/STAT and cytokine-related pathways. MFSD inhibits the IL6/STAT3 pathway in podocytes. Additionally, MFSD significantly reduced serum levels of IL-6 and other cytokines in PHN rats. However, treatment of PHN with tocilizumab did not achieve the expected effect. CONCLUSION: The IL-6/STAT3 signaling pathway is activated in podocytes of experimental membranous nephropathy. MFSD alleviates podocyte damage by inhibiting the IL-6/STAT3 pathway.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Medicamentos Herbarios Chinos , Glomerulonefritis Membranosa , Interleucina-6 , Podocitos , Factor de Transcripción STAT3 , Transducción de Señal , Glomerulonefritis Membranosa/tratamiento farmacológico , Glomerulonefritis Membranosa/patología , Glomerulonefritis Membranosa/metabolismo , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Factor de Transcripción STAT3/metabolismo , Animales , Interleucina-6/metabolismo , Interleucina-6/sangre , Medicamentos Herbarios Chinos/farmacología , Humanos , Masculino , Ratas , Transducción de Señal/efectos de los fármacos , Ratas Sprague-Dawley , Femenino , Persona de Mediana Edad , Modelos Animales de Enfermedad , Adulto
13.
Clin Immunol ; 262: 110180, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38462157

RESUMEN

Lupus nephritis (LN) is a severe complication of systemic lupus erythematosus, with high mortality rates despite medical advancements. The complexity of its pathogenesis, including the pivotal role of podocytes - kidney-localized cells - remains a challenge, lacking effective treatments and biomarkers. Recent studies highlight the significant contribution of these cells to LN's development, particularly through their immune-related functions and interaction with other kidney cells. This new understanding opens possibilities for targeted therapies aimed at these cellular mechanisms. This review aims to summarize these recent developments, shedding light on the intricate involvement of podocytes in LN and potential avenues for innovative treatments.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Podocitos , Humanos , Nefritis Lúpica/patología , Podocitos/patología , Riñón/patología , Lupus Eritematoso Sistémico/complicaciones , Biomarcadores
14.
Adv Sci (Weinh) ; 11(19): e2308378, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38483947

RESUMEN

Nuclear receptors (NRs) are important transcriptional factors that mediate autophagy, preventing podocyte injury and the progression of diabetic kidney disease (DKD). However, the role of nuclear receptor coactivators that are powerful enhancers for the transcriptional activity of NRs in DKD remains unclear. In this study, a significant decrease in Nuclear Receptor Coactivator 3 (NCOA3) is observed in injured podocytes caused by high glucose treatment. Additionally, NCOA3 overexpression counteracts podocyte damage by improving autophagy. Further, Src family member, Fyn is identified to be the target of NCOA3 that mediates the podocyte autophagy process. Mechanistically, NCOA3 regulates the transcription of Fyn in a nuclear receptor, PPAR-γ dependent way. Podocyte-specific NCOA3 knockout aggravates albuminuria, glomerular sclerosis, podocyte injury, and autophagy in DKD mice. However, the Fyn inhibitor, AZD0530, rescues podocyte injury of NCOA3 knockout DKD mice. Renal NCOA3 overexpression with lentivirus can ameliorate podocyte damage and improve podocyte autophagy in DKD mice. Taken together, the findings highlight a novel target, NCOA3, that protects podocytes from high glucose injury by maintaining autophagy.


Asunto(s)
Autofagia , Nefropatías Diabéticas , Ratones Noqueados , Coactivador 3 de Receptor Nuclear , Podocitos , Animales , Podocitos/metabolismo , Podocitos/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Ratones , Autofagia/genética , Coactivador 3 de Receptor Nuclear/metabolismo , Coactivador 3 de Receptor Nuclear/genética , Modelos Animales de Enfermedad , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas Proto-Oncogénicas c-fyn/genética , Masculino , Ratones Endogámicos C57BL
15.
Mol Ther ; 32(5): 1540-1560, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38449312

RESUMEN

Podocytes are essential to maintaining the integrity of the glomerular filtration barrier, but they are frequently affected in lupus nephritis (LN). Here, we show that the significant upregulation of Drp1S616 phosphorylation in podocytes promotes mitochondrial fission, leading to mitochondrial dysfunction and podocyte injury in LN. Inhibition or knockdown of Drp1 promotes mitochondrial fusion and protects podocytes from injury induced by LN serum. In vivo, pharmacological inhibition of Drp1 reduces the phosphorylation of Drp1S616 in podocytes in lupus-prone mice. Podocyte injury is reversed when Drp1 is inhibited, resulting in the alleviation of proteinuria. Mechanistically, complement component C5a (C5a) upregulates the phosphorylation of Drp1S616 and promotes mitochondrial fission in podocytes. Moreover, the expression of C5a receptor 1 (C5aR1) is notably upregulated in podocytes in LN. C5a-C5aR1 axis-controlled phosphorylation of Drp1S616 and mitochondrial fission are substantially suppressed when C5aR1 is knocked down by siRNA. Moreover, lupus-prone mice treated with C5aR inhibitor show reduced phosphorylation of Drp1S616 in podocytes, resulting in significantly less podocyte damage. Together, this study uncovers a novel mechanism by which the C5a-C5aR1 axis promotes podocyte injury by enhancing Drp1-mediated mitochondrial fission, which could have significant implications for the treatment of LN.


Asunto(s)
Complemento C5a , Dinaminas , Nefritis Lúpica , Dinámicas Mitocondriales , Podocitos , Receptor de Anafilatoxina C5a , Podocitos/metabolismo , Podocitos/patología , Nefritis Lúpica/metabolismo , Nefritis Lúpica/patología , Nefritis Lúpica/etiología , Animales , Receptor de Anafilatoxina C5a/metabolismo , Receptor de Anafilatoxina C5a/genética , Ratones , Dinaminas/metabolismo , Dinaminas/genética , Complemento C5a/metabolismo , Humanos , Fosforilación , Modelos Animales de Enfermedad , Mitocondrias/metabolismo , Transducción de Señal , Femenino
16.
Diabetes ; 73(6): 879-895, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38506804

RESUMEN

Defective fatty acid oxidation (FAO) has been implicated in diabetic kidney disease (DKD), yet little is known about the role of carnitine palmitoyltransferase-1A (CPT1A), a pivotal rate-limiting enzyme of FAO, in the progression of DKD. Here, we investigate whether CPT1A is a reliable therapeutic target for DKD. We first confirmed the downregulation expression of CPT1A in glomeruli from patients with diabetes. We further evaluated the function of CPT1A in diabetic models. Overexpression of CPT1A exhibited protective effects in diabetic conditions, improving albuminuria and glomerular sclerosis as well as mitigating glomerular lipid deposits and podocyte injury in streptozotocin-induced diabetic mice. Mechanistically, CPT1A not only fostered lipid consumption via fatty acid metabolism pathways, thereby reducing lipotoxicity, but also anchored Bcl2 to the mitochondrial membrane, thence preventing cytochrome C release and inhibiting the mitochondrial apoptotic process. Furthermore, a novel transcription factor of CPT1A, FOXA1, was identified. We elucidate the crucial role of CPT1A in mitigating podocyte injury and the progression of DKD, indicating that targeting CPT1A may be a promising avenue for DKD treatment.


Asunto(s)
Apoptosis , Carnitina O-Palmitoiltransferasa , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Podocitos , Podocitos/metabolismo , Podocitos/patología , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , Animales , Ratones , Diabetes Mellitus Experimental/metabolismo , Humanos , Masculino , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Metabolismo de los Lípidos , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL , Albuminuria/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética
17.
Am J Physiol Renal Physiol ; 326(5): F704-F726, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38482556

RESUMEN

PAX2 regulates kidney development, and its expression persists in parietal epithelial cells (PECs), potentially serving as a podocyte reserve. We hypothesized that mice with a Pax2 pathogenic missense variant (Pax2A220G/+) have impaired PEC-mediated podocyte regeneration. Embryonic wild-type mouse kidneys showed overlapping expression of PAX2/Wilms' tumor-1 (WT-1) until PEC and podocyte differentiation, reflecting a close lineage relationship. Embryonic and adult Pax2A220G/+ mice have reduced nephron number but demonstrated no glomerular disease under baseline conditions. Pax2A220G/+ mice compared with wild-type mice were more susceptible to glomerular disease after adriamycin (ADR)-induced podocyte injury, as demonstrated by worsened glomerular scarring, increased podocyte foot process effacement, and podocyte loss. There was a decrease in PAX2-expressing PECs in wild-type mice after adriamycin injury accompanied by the occurrence of PAX2/WT-1-coexpressing glomerular tuft cells. In contrast, Pax2A220G/+ mice showed no changes in the numbers of PAX2-expressing PECs after adriamycin injury, associated with fewer PAX2/WT-1-coexpressing glomerular tuft cells compared with injured wild-type mice. A subset of PAX2-expressing glomerular tuft cells after adriamycin injury was increased in Pax2A220G/+ mice, suggesting a pathological process given the worse outcomes observed in this group. Finally, Pax2A220G/+ mice have increased numbers of glomerular tuft cells expressing Ki-67 and cleaved caspase-3 compared with wild-type mice after adriamycin injury, consistent with maladaptive responses to podocyte loss. Collectively, our results suggest that decreased glomerular numbers in Pax2A220G/+ mice are likely compounded with the inability of their mutated PECs to regenerate podocyte loss, and together these two mechanisms drive the worsened focal segmental glomerular sclerosis phenotype in these mice.NEW & NOTEWORTHY Congenital anomalies of the kidney and urinary tract comprise some of the leading causes of kidney failure in children, but our previous study showed that one of its genetic causes, PAX2, is also associated with adult-onset focal segmental glomerular sclerosis. Using a clinically relevant model, our present study demonstrated that after podocyte injury, parietal epithelial cells expressing PAX2 are deployed into the glomerular tuft to assist in repair in wild-type mice, but this mechanism is impaired in Pax2A220G/+ mice.


Asunto(s)
Doxorrubicina , Glomérulos Renales , Mutación Missense , Factor de Transcripción PAX2 , Podocitos , Animales , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo , Podocitos/metabolismo , Podocitos/patología , Glomérulos Renales/patología , Glomérulos Renales/metabolismo , Doxorrubicina/toxicidad , Ratones , Regeneración , Modelos Animales de Enfermedad , Proliferación Celular , Ratones Endogámicos C57BL , Fenotipo , Apoptosis , Masculino , Enfermedades Renales/genética , Enfermedades Renales/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/inducido químicamente
18.
Redox Biol ; 72: 103127, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38527400

RESUMEN

Emerging evidence suggests that GSK3ß, a redox-sensitive transducer downstream of insulin signaling, acts as a convergent point for myriad pathways implicated in kidney injury, repair, and regeneration. However, its role in diabetic kidney disease remains controversial. In cultured glomerular podocytes, exposure to a milieu of type 2 diabetes elicited prominent signs of podocyte injury and degeneration, marked by loss of homeostatic marker proteins like synaptopodin, actin cytoskeleton disruption, oxidative stress, apoptosis, and stress-induced premature senescence, as shown by increased staining for senescence-associated ß-galactosidase activity, amplified formation of γH2AX foci, and elevated expression of mediators of senescence signaling, like p21 and p16INK4A. These degenerative changes coincided with GSK3ß hyperactivity, as evidenced by GSK3ß overexpression and reduced inhibitory phosphorylation of GSK3ß, and were averted by tideglusib, a highly-selective small molecule inhibitor of GSK3ß. In agreement, post-hoc analysis of a publicly-available glomerular transcriptomics dataset from patients with type 2 diabetic nephropathy revealed that the curated diabetic nephropathy-related gene set was enriched in high GSK3ß expression group. Mechanistically, GSK3ß-modulated nuclear factor Nrf2 signaling is involved in diabetic podocytopathy, because GSK3ß knockdown reinforced Nrf2 antioxidant response and suppressed oxidative stress, resulting in an improvement in podocyte injury and senescence. Conversely, ectopic expression of the constitutively active mutant of GSK3ß impaired Nrf2 antioxidant response and augmented oxidative stress, culminating in an exacerbated diabetic podocyte injury and senescence. Moreover, IRS-1 was found to be a cognate substrate of GSK3ß for phosphorylation at IRS-1S332, which negatively regulates IRS-1 activity. GSK3ß hyperactivity promoted IRS-1 phosphorylation, denoting a desensitized insulin signaling. Consistently, in vivo in db/db mice with diabetic nephropathy, GSK3ß was hyperactive in glomerular podocytes, associated with IRS-1 hyperphosphorylation, impaired Nrf2 response and premature senescence. Our finding suggests that GSK3ß is likely a novel therapeutic target for treating type 2 diabetic glomerular injury.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Glucógeno Sintasa Quinasa 3 beta , Factor 2 Relacionado con NF-E2 , Oxidación-Reducción , Estrés Oxidativo , Podocitos , Podocitos/metabolismo , Podocitos/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Animales , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Transducción de Señal , Masculino
19.
Ann Diagn Pathol ; 70: 152292, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38484478

RESUMEN

Minimal Change Disease (MCD) and Focal Segmental Glomerulosclerosis (FSGS) are the main causes of nephrotic syndrome in the world. The complement system appears to play an important role in the pathogenesis of these diseases. To evaluate the deposition of immunoglobulins and particles of the complement system in renal biopsies of patients with FSGS and MCD and relate to laboratory data, we selected 59 renal biopsies from patients with podocytopathies, 31 from patients with FSGS and 28 with MCD. Epidemiological, clinical, laboratory information and the prognosis of these patients were evaluated. Analysis of the deposition of IgM, IgG, C3, C1q and C4d in renal biopsies was performed. We related IgM and C3 deposition with laboratory parameters. Statistical analysis was performed using GraphPad Prism version 7.0. Glomerular deposition of IgM was significantly higher in the FSGS group, as was codeposition of IgM and C3. The clinical course of patients and laboratory data were also worse in cases of FSGS, with a higher percentage progressing to chronic kidney disease and death. Patients with C3 deposition had significantly higher mean serum creatinine and significantly lower eGFR, regardless of disease. Patients with FSGS had more IgM and C3 deposition in renal biopsies, worse laboratory data and prognosis than patients with MCD. C3 deposition, both in FSGS and MCD, appears to be related to worsening renal function.


Asunto(s)
Complemento C3 , Glomeruloesclerosis Focal y Segmentaria , Inmunoglobulina M , Glomérulos Renales , Nefrosis Lipoidea , Humanos , Inmunoglobulina M/metabolismo , Complemento C3/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/inmunología , Femenino , Masculino , Adulto , Glomérulos Renales/patología , Glomérulos Renales/metabolismo , Persona de Mediana Edad , Nefrosis Lipoidea/patología , Nefrosis Lipoidea/metabolismo , Podocitos/patología , Podocitos/metabolismo , Adulto Joven , Adolescente , Pronóstico , Biopsia , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/patología , Síndrome Nefrótico/inmunología , Anciano
20.
J Cell Mol Med ; 28(7): e18204, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38506068

RESUMEN

Podocyte apoptosis exerts a crucial role in the pathogenesis of DN. Recently, long noncoding RNAs (lncRNAs) have been gradually identified to be functional in a variety of different mechanisms associated with podocyte apoptosis. This study aimed to investigate whether lncRNA Glis2 could regulate podocyte apoptosis in DN and uncover the underlying mechanism. The apoptosis rate was detected by flow cytometry. Mitochondrial membrane potential (ΔΨM) was measured using JC-1 staining. Mitochondrial morphology was detected by MitoTracker Deep Red staining. Then, the histopathological and ultrastructure changes of renal tissues in diabetic mice were observed using periodic acid-Schiff (PAS) staining and transmission electron microscopy. We found that lncRNA Glis2 was significantly downregulated in high-glucose cultured podocytes and renal tissues of db/db mice. LncRNA Glis2 overexpression was found to alleviate podocyte mitochondrial dysfunction and apoptosis. The direct interaction between lncRNA Glis2 and miR-328-5p was confirmed by dual luciferase reporter assay. Furthermore, lncRNA Glis2 overexpression alleviated podocyte apoptosis in diabetic mice. Taken together, this study demonstrated that lncRNA Glis2, acting as a competing endogenous RNA (ceRNA) of miRNA-328-5p, regulated Sirt1-mediated mitochondrial dysfunction and podocyte apoptosis in DN.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , MicroARNs , Enfermedades Mitocondriales , Podocitos , ARN Largo no Codificante , Ratones , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , ARN Largo no Codificante/genética , MicroARNs/genética , Podocitos/patología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Factores de Transcripción , Apoptosis/genética , Enfermedades Mitocondriales/patología , Glucosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...