Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.803
Filtrar
1.
Physiol Plant ; 176(3): e14331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38710477

RESUMEN

Sporopollenin, as the main component of the pollen exine, is a highly resistant polymer that provides structural integrity under unfavourable environmental conditions. Tetraketone α-pyrone reductase 1 (TKPR1) is essential for sporopollenin formation, catalyzing the reduction of tetraketone carbonyl to hydroxylated α-pyrone. The functional role of TKPR1 in male sterility has been reported in flowering plants such as maize, rice, and Arabidopsis. However, the molecular cloning and functional characterization of TKPR1 in cotton remain unaddressed. In this study, we identified 68 TKPR1s from four cotton species, categorized into three clades. Transcriptomics and RT-qPCR demonstrated that GhTKPR1_8 exhibited typical expression patterns in the tetrad stage of the anther. GhTKPR1_8 was localized to the endoplasmic reticulum. Moreover, ABORTED MICROSPORES (GhAMS) transcriptionally activated GhTKPR1_8 as indicated by luciferase complementation tests. GhTKPR1_8-knockdown inhibited anther dehiscence and reduced pollen viability in cotton. Additionally, overexpression of GhTKPR1_8 in the attkpr1 mutant restored its male sterile phenotype. This study offers novel insights into the investigation of TKPR1 in cotton while providing genetic resources for studying male sterility.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Proteínas de Plantas , Polen , Polen/genética , Polen/fisiología , Gossypium/genética , Gossypium/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/fisiología , Infertilidad Vegetal/genética , Filogenia
2.
Yi Chuan ; 46(4): 333-345, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38632095

RESUMEN

China has a high dependence on soybean imports, yield increase at a faster rate is an urgent problem that need to be solved at present. The application of heterosis is one of the effective ways to significantly increase crop yield. In recent years, the development of an intelligent male sterility system based on recessive nuclear sterile genes has provided a potential solution for rapidly harnessing the heterosis in soybean. However, research on male sterility genes in soybean has been lagged behind. Based on transcriptome data of soybean floral organs in our research group, a soybean stamen-preferentially expressed gene GmFLA22a was identified. It encodes a fasciclin-like arabinogalactan protein with the FAS1 domain, and subcellular localization studies revealed that it may play roles in the endoplasmic reticulum. Take advantage of the gene editing technology, the Gmfla22a mutant was generated in this study. However, there was a significant reduction in the seed-setting rate in the mutant plants at the reproductive growth stage. The pollen viability and germination rate of Gmfla22a mutant plants showed no apparent abnormalities. Histological staining demonstrated that the release of pollen grains in the mutant plants was delayed and incomplete, which may due to the locule wall thickening in the anther development. This could be the reason of the reduced seed-setting rate in Gmfla22a mutants. In summary, our study has preliminarily revealed that GmFLA22a may be involved in regulating soybean male fertility. It provides crucial genetic materials for further uncovering its molecular function and gene resources and theoretical basis for the utilization of heterosis in soybean.


Asunto(s)
Glycine max , Infertilidad Masculina , Masculino , Humanos , Plantas , Polen/genética , Fertilidad , Infertilidad Vegetal/genética , Regulación de la Expresión Génica de las Plantas
3.
Planta ; 259(6): 137, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683389

RESUMEN

MAIN CONCLUSION: Self-incompatibility studies have revealed a potential use of Tunisian apple resources for crop improvement and modern breeding programs and a likely correlation between the pollen tube growth and flowering period. Apples [Malus domestica. Borkh] exhibit an S-RNase-based gametophytic self-incompatibility (GSI) system. Four primer combinations were used to S-genotype eighteen Tunisian local apple accessions and twelve introduced accessions that served as references. Within the Tunisian local accessions, S2, S3, S7, and S28 S-alleles were the most frequent and were assigned to 14 S-genotypes; among them, S7S28, S3S7, S2S5, and S2S3 were the most abundant. PCA plot showed that population structuring was affected by the S-alleles frequencies and revealed a modern origin of the Tunisian varieties rather than being ancient ones. Nonetheless, the results obtained with 17 SSR markers showed a separate grouping of local Tunisian accessions that calls into question the hypothesis discussed. Pollination experiments showed that the pollen started to germinate within 24 h of pollination but 48 h after pollination in the "El Fessi" accession. The first pollen tubes arrived in the styles within 36 h of pollination in two early flowering accessions known as "Arbi" and "Bokri", and after 72 h of pollination in late flowering "El Fessi" and 48 h after pollination in remaining accessions. The first pollen tube arrests were observed in accessions "Arbi" and "Bokri" within 84 h of pollination, within 108 h of pollination in "El Fessi" and within 108 h of pollination in remaining accessions. In the apple accession called "Boutabgaya," the pollen tubes reached the base of the style within 120 h of pollination without being aborted. Nevertheless, the self-compatible nature of "Boutabgaya" needs more studies to be confirmed. However, our results revealed the malfunction of the female component of the GSI in this accession. To conclude, this work paved the path for further studies to enhance the insight (i) into the relation between the flowering period and the pollen tube growth, (ii) self-compatible nature of "Boutabgaya", and (iii) the origin of the Tunisian apple.


Asunto(s)
Genotipo , Malus , Tubo Polínico , Polinización , Autoincompatibilidad en las Plantas con Flores , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/fisiología , Tubo Polínico/genética , Malus/genética , Malus/crecimiento & desarrollo , Malus/fisiología , Túnez , Autoincompatibilidad en las Plantas con Flores/genética , Alelos , Polen/genética , Polen/fisiología , Polen/crecimiento & desarrollo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Flores/crecimiento & desarrollo , Flores/genética , Flores/fisiología
4.
Plant Physiol Biochem ; 210: 108654, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38663264

RESUMEN

Fatty acid de novo biosynthesis in plant plastids is initiated from acetyl-CoA and catalyzed by a series of enzymes, which is required for the vegetative growth, reproductive growth, seed development, stress response, chloroplast development and other biological processes. In this review, we systematically summarized the fatty acid de novo biosynthesis-related genes/enzymes and their critical roles in various plant developmental processes. Based on bioinformatic analysis, we identified fatty acid synthase encoding genes and predicted their potential functions in maize growth and development, especially in anther and pollen development. Finally, we highlighted the potential applications of these fatty acid synthases in male-sterility hybrid breeding, seed oil content improvement, herbicide and abiotic stress resistance, which provides new insights into future molecular crop breeding.


Asunto(s)
Ácidos Grasos , Plastidios , Ácidos Grasos/biosíntesis , Ácidos Grasos/metabolismo , Plastidios/metabolismo , Plastidios/enzimología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Reproducción , Polen/genética , Polen/metabolismo , Polen/crecimiento & desarrollo , Polen/enzimología , Ácido Graso Sintasas/metabolismo , Ácido Graso Sintasas/genética , Zea mays/genética , Zea mays/metabolismo , Zea mays/enzimología , Plantas/metabolismo , Plantas/genética , Plantas/enzimología
5.
Gene ; 915: 148423, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38575100

RESUMEN

Rice cytoplasmic male sterility (CMS) provides an exceptional model for studying genetic interaction within plant nuclei given its inheritable trait of non-functional male gametophyte. Gaining a comprehensive understanding of the genes and pathways associated with the CMS mechanism is imperative for improving the vigor of hybrid rice agronomically, such as its productivity. Here, we observed a significant decrease in the expression of a gene named OsRab7 in the anther of the CMS line (SJA) compared to the maintainer line (SJB). OsRab7 is responsible for vesicle trafficking and loss function of OsRab7 significantly reduced pollen fertility and setting rate relative to the wild type. Meanwhile, over-expression of OsRab7 enhanced pollen fertility in the SJA line while a decrease in its expression in the SJB line led to the reduced pollen fertility. Premature tapetum and abnormal development of microspores were observed in the rab7 mutant. The expression of critical genes involved in tapetum development (OsMYB103, OsPTC1, OsEAT1 and OsAP25) and pollen development (OsMSP1, OsDTM1 and OsC4) decreased significantly in the anther of rab7 mutant. Reduced activities of the pDR5::GUS marker in the young panicle and anther of the rab7 mutant were also observed. Furthermore, the mRNA levels of genes involved in auxin biosynthesis (YUCCAs), auxin transport (PINs), auxin response factors (ARFs), and members of the IAA family (IAAs) were all downregulated in the rab7 mutant, indicating its impact on auxin signaling and distribution. In summary, these findings underscore the importance of OsRab7 in rice pollen development and its potential link to cytoplasmic male sterility.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Infertilidad Vegetal , Proteínas de Plantas , Polen , Oryza/genética , Oryza/crecimiento & desarrollo , Polen/genética , Polen/crecimiento & desarrollo , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fertilidad/genética , Citoplasma/metabolismo , Citoplasma/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
6.
Funct Plant Biol ; 512024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687848

RESUMEN

Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.


Asunto(s)
Flores , Polinización , Flores/genética , Flores/crecimiento & desarrollo , Magnoliopsida/genética , Magnoliopsida/fisiología , Regulación de la Expresión Génica de las Plantas , Polen/genética
7.
BMC Plant Biol ; 24(1): 348, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684961

RESUMEN

BACKGROUND: The La-related proteins (LARPs) are a superfamily of RNA-binding proteins associated with regulation of gene expression. Evidence points to an important role for post-transcriptional control of gene expression in germinating pollen tubes, which could be aided by RNA-binding proteins. RESULTS: In this study, a genome-wide investigation of the LARP proteins in eight plant species was performed. The LARP proteins were classified into three families based on a phylogenetic analysis. The gene structure, conserved motifs, cis-acting elements in the promoter, and gene expression profiles were investigated to provide a comprehensive overview of the evolutionary history and potential functions of ZmLARP genes in maize. Moreover, ZmLARP6c1 was specifically expressed in pollen and ZmLARP6c1 was localized to the nucleus and cytoplasm in maize protoplasts. Overexpression of ZmLARP6c1 enhanced the percentage pollen germination compared with that of wild-type pollen. In addition, transcriptome profiling analysis revealed that differentially expressed genes included PABP homologous genes and genes involved in jasmonic acid and abscisic acid biosynthesis, metabolism, signaling pathways and response in a Zmlarp6c1::Ds mutant and ZmLARP6c1-overexpression line compared with the corresponding wild type. CONCLUSIONS: The findings provide a basis for further evolutionary and functional analyses, and provide insight into the critical regulatory function of ZmLARP6c1 in maize pollen germination.


Asunto(s)
Perfilación de la Expresión Génica , Filogenia , Proteínas de Plantas , Polen , Zea mays , Zea mays/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Genoma de Planta , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
8.
Science ; 383(6689): eadk5466, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38513029

RESUMEN

In many eukaryotes, genetic sex determination is not governed by XX/XY or ZW/ZZ systems but by a specialized region on the poorly studied U (female) or V (male) sex chromosomes. Previous studies have hinted at the existence of a dominant male-sex factor on the V chromosome in brown algae, a group of multicellular eukaryotes distantly related to animals and plants. The nature of this factor has remained elusive. Here, we demonstrate that an HMG-box gene acts as the male-determining factor in brown algae, mirroring the role HMG-box genes play in sex determination in animals. Over a billion-year evolutionary timeline, these lineages have independently co-opted the HMG box for male determination, representing a paradigm for evolution's ability to recurrently use the same genetic "toolkit" to accomplish similar tasks.


Asunto(s)
Algas Comestibles , Proteínas HMGB , Laminaria , Phaeophyceae , Cromosomas Sexuales , Procesos de Determinación del Sexo , Animales , Evolución Biológica , Phaeophyceae/genética , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Cromosoma Y , Proteínas HMGB/genética , Cromosomas de las Plantas/genética , Dominios HMG-Box , Algas Comestibles/genética , Laminaria/genética , Polen/genética
9.
Theor Appl Genet ; 137(4): 79, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472376

RESUMEN

KEY MESSAGE: Multiple QTLs control unreduced pollen production in potato. Two major-effect QTLs co-locate with mutant alleles of genes with homology to AtJAS, a known regulator of meiotic spindle orientation. In diploid potato the production of unreduced gametes with a diploid (2n) rather than a haploid (n) number of chromosomes has been widely reported. Besides their evolutionary important role in sexual polyploidisation, unreduced gametes also have a practical value for potato breeding as a bridge between diploid and tetraploid germplasm. Although early articles argued for a monogenic recessive inheritance, the genetic basis of unreduced pollen production in potato has remained elusive. Here, three diploid full-sib populations were genotyped with an amplicon sequencing approach and phenotyped for unreduced pollen production across two growing seasons. We identified two minor-effect and three major-effect QTLs regulating this trait. The two QTLs with the largest effect displayed a recessive inheritance and an additive interaction. Both QTLs co-localised with genes encoding for putative AtJAS homologs, a key regulator of meiosis II spindle orientation in Arabidopsis thaliana. The function of these candidate genes is consistent with the cytological phenotype of mis-oriented metaphase II plates observed in the parental clones. The alleles associated with elevated levels of unreduced pollen showed deleterious mutation events: an exonic transposon insert causing a premature stop, and an amino acid change within a highly conserved domain. Taken together, our findings shed light on the natural variation underlying unreduced pollen production in potato and will facilitate interploidy breeding by enabling marker-assisted selection for this trait.


Asunto(s)
Arabidopsis , Solanum tuberosum , Fitomejoramiento , Polen/genética , Genotipo , Arabidopsis/genética , Meiosis
10.
Mol Ecol ; 33(7): e17306, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38414303

RESUMEN

Variation in how individuals interact with food resources can directly impact, and be affected by, their microbial interactions due to the potential for transmission. The degree to which this transmission occurs, however, may depend on the structure of forager networks, which determine the community-scale transmission opportunities. In particular, how the community-scale opportunity for transfer balances individual-scale barriers to transmission is unclear. Examining the bee-flower and bee-microbial interactions of over 1000 individual bees, we tested (1) the degree to which individual floral visits predicted microbiome composition and (2) whether plant-bee networks with increased opportunity for microbial transmission homogenized the microbiomes of bees within that network. The pollen community composition carried by bees was associated with microbiome composition at some sites, suggesting that microbial transmission at flowers occurred. Contrary to our predictions, however, microbiome variability did not differ based on transfer opportunity: bee microbiomes in asymmetric networks with high opportunity for microbial transfer were similarly variable compared to microbiomes in networks with more evenly distributed links. These findings suggest that microbial transmission at flowers is frequent enough to be observed at the community level, but that community network structure did not substantially change the dynamics of this transmission, perhaps due to filtering processes in host guts.


Asunto(s)
Microbioma Gastrointestinal , Plantas , Humanos , Abejas/genética , Animales , Polen/genética , Flores , Polinización
11.
Biochem Biophys Res Commun ; 703: 149637, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38354464

RESUMEN

The normal development of pollen grains and the completion of double fertilization in embryos are crucial for both the sexual reproduction of angiosperms and grain production. Actin depolymerizing factor (ADF) regulates growth, development, and responses to biotic and abiotic stress by binding to actin in plants. In this study, the function of the ZmADF1 gene was validated through bioinformatic analysis, subcellular localization, overexpression in maize and Arabidopsis, and knockout via CRISPR/Cas9. The amino acid sequence of ZmADF1 exhibited high conservation and a similar tertiary structure to that of ADF homologs. Subcellular localization analysis revealed that ZmADF1 is localized mainly to the nucleus and cytoplasm. The ZmADF1 gene was specifically expressed in maize pollen, and overexpression of the ZmADF1 gene decreased the number of pollen grains in the anthers of transgenic Arabidopsis plants. The germination rate of pollen and the empty seed shell rate in the fruit pods of the overexpressing plants were significantly greater than those in the wild-type (WT) plants. In maize, the pollen viability of the knockout lines was significantly greater than that of both the WT and the overexpressing lines. Our results confirmed that the ZmADF1 gene was specifically expressed in pollen and negatively regulated pollen quantity, vigor, germination rate, and seed setting rate. This study provides insights into ADF gene function and possible pathways for improving high-yield maize breeding.


Asunto(s)
Arabidopsis , Destrina , Polen , Zea mays , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Destrina/genética , Destrina/metabolismo , Gelsolina/metabolismo , Regulación de la Expresión Génica de las Plantas , Polen/genética , Polen/crecimiento & desarrollo , Zea mays/metabolismo
12.
Plant Cell ; 36(5): 1697-1717, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299434

RESUMEN

Proper anther dehiscence is essential for successful pollination and reproduction in angiosperms, and jasmonic acid (JA) is crucial for the process. However, the mechanisms underlying the tight regulation of JA biosynthesis during anther development remain largely unknown. Here, we demonstrate that the rice (Oryza sativa L.) ethylene-response factor-associated amphiphilic repression (EAR) motif-containing protein TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS (TCP) INTERACTOR CONTAINING EAR MOTIF PROTEIN1 (OsTIE1) tightly regulates JA biosynthesis by repressing TCP transcription factor OsTCP1/PCF5 during anther development. The loss of OsTIE1 function in Ostie1 mutants causes male sterility. The Ostie1 mutants display inviable pollen, early stamen filament elongation, and precocious anther dehiscence. In addition, JA biosynthesis is activated earlier and JA abundance is precociously increased in Ostie1 anthers. OsTIE1 is expressed during anther development, and OsTIE1 is localized in nuclei and has transcriptional repression activity. OsTIE1 directly interacts with OsTCP1, and overexpression of OsTCP1 caused early anther dehiscence resembling that of Ostie1. JA biosynthesis genes including rice LIPOXYGENASE are regulated by the OsTIE1-OsTCP1 complex. Our findings reveal that the OsTIE1-OsTCP1 module plays a critical role in anther development by finely tuning JA biosynthesis and provide a foundation for the generation of male sterile plants for hybrid seed production.


Asunto(s)
Ciclopentanos , Flores , Regulación de la Expresión Génica de las Plantas , Oryza , Oxilipinas , Infertilidad Vegetal , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/genética , Flores/metabolismo , Flores/crecimiento & desarrollo , Flores/fisiología , Infertilidad Vegetal/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Polen/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Plantas Modificadas Genéticamente , Mutación
13.
Plant Physiol ; 195(1): 865-878, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38365204

RESUMEN

Pollen development in flowering plants has strong implications for reproductive success. Pollen DNA can be targeted to improve plant traits for yield and stress tolerance. In this study, we demonstrated that the Mediator subunit CYCLIN-DEPENDENT KINASE 8 (CDK8) is a key modulator of pollen development in tomato (Solanum lycopersicum). SlCDK8 knockout led to significant decreases in pollen viability, fruit yield, and fruit seed number. We also found that SlCDK8 directly interacts with transcription factor TEOSINTE BRANCHED1-CYCLOIDEA-PCF15 (SlTCP15) using yeast two-hybrid screens. We subsequently showed that SlCDK8 phosphorylates Ser 187 of SlTCP15 to promote SlTCP15 stability. Phosphorylated TCP15 directly bound to the TGGGCY sequence in the promoters of DYSFUNCTIONAL TAPETUM 1 (SlDYT1) and MYB DOMAIN PROTEIN 103 (SlMYB103), which are responsible for pollen development. Consistently, disruption of SlTCP15 resembled slcdk8 tomato mutants. In sum, our work identified a new substrate of Mediator CDK8 and revealed an important regulatory role of SlCDK8 in pollen development via cooperation with SlTCP15.


Asunto(s)
Quinasa 8 Dependiente de Ciclina , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Polen , Solanum lycopersicum , Factores de Transcripción , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Polen/crecimiento & desarrollo , Polen/genética , Polen/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasa 8 Dependiente de Ciclina/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Fosforilación , Mutación/genética
14.
PeerJ ; 12: e16567, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313030

RESUMEN

Metabarcoding is a powerful tool, increasingly used in many disciplines of environmental sciences. However, to assign a taxon to a DNA sequence, bioinformaticians need to choose between different strategies or parameter values and these choices sometimes seem rather arbitrary. In this work, we present a case study on ITS2 and rbcL databases used to identify pollen collected by bees in Belgium. We blasted a random sample of sequences from the reference database against the remainder of the database using different strategies and compared the known taxonomy with the predicted one. This in silico cross-validation (CV) approach proved to be an easy yet powerful way to (1) assess the relative accuracy of taxonomic predictions, (2) define rules to discard dubious taxonomic assignments and (3) provide a more objective basis to choose the best strategy. We obtained the best results with the best blast hit (best bit score) rather than by selecting the majority taxon from the top 10 hits. The predictions were further improved by favouring the most frequent taxon among those with tied best bit scores. We obtained better results with databases containing the full sequences available on NCBI rather than restricting the sequences to the region amplified by the primers chosen in our study. Leaked CV showed that when the true sequence is present in the database, blast might still struggle to match the right taxon at the species level, particularly with rbcL. Classical 10-fold CV-where the true sequence is removed from the database-offers a different yet more realistic view of the true error rates. Taxonomic predictions with this approach worked well up to the genus level, particularly for ITS2 (5-7% of errors). Using a database containing only the local flora of Belgium did not improve the predictions up to the genus level for local species and made them worse for foreign species. At the species level, using a database containing exclusively local species improved the predictions for local species by ∼12% but the error rate remained rather high: 25% for ITS2 and 42% for rbcL. Foreign species performed worse even when using a world database (59-79% of errors). We used classification trees and GLMs to model the % of errors vs. identity and consensus scores and determine appropriate thresholds below which the taxonomic assignment should be discarded. This resulted in a significant reduction in prediction errors, but at the cost of a much higher proportion of unassigned sequences. Despite this stringent filtering, at least 1/5 sequences deemed suitable for species-level identification ultimately proved to be misidentified. An examination of the variability in prediction accuracy between plant families showed that rbcL outperformed ITS2 for only two of the 27 families examined, and that the % correct species-level assignments were much better for some families (e.g. 95% for Sapindaceae) than for others (e.g. 35% for Salicaceae).


Asunto(s)
Código de Barras del ADN Taxonómico , Polen , Abejas/genética , Animales , Código de Barras del ADN Taxonómico/métodos , Polen/genética , Plantas , Bases de Datos Factuales , Bélgica
15.
Gene ; 893: 147936, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38381507

RESUMEN

Pollen intine serves as a protective layer situated between the pollen exine and the plasma membrane. It performs essential functions during pollen development, including maintaining the morphological structure of the pollen, preventing the loss of pollen contents, and facilitating pollen germination. The formation of the intine layer commences at the bicellular pollen stage. Pectin, cellulose, hemicellulose and structural proteins are the key constituents of the pollen intine. In Arabidopsis and rice, numerous regulatory factors associated with polysaccharide metabolism and material transport have been identified, which regulate intine development. In this review, we elucidate the developmental processes of the pollen wall and provide a concise summary of the research advancements in the development and genetic regulation of the pollen intine in Arabidopsis and rice. A comprehensive understanding of intine development and regulation is crucial for unraveling the genetic network underlying intine development in higher plants.


Asunto(s)
Arabidopsis , Oryza , Oryza/genética , Arabidopsis/genética , Redes Reguladoras de Genes , Regulación de la Expresión Génica , Polen/genética
16.
Planta ; 259(3): 64, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329576

RESUMEN

MAIN CONCLUSION: The loss of TaMYB305 function down-regulated the expression of jasmonic acid synthesis pathway genes, which may disturb the jasmonic acid synthesis, resulting in abnormal pollen development and reduced fertility. The MYB family, as one of the largest transcription factor families found in plants, regulates plant development, especially the development of anthers. Therefore, it is important to identify potential MYB transcription factors associated with pollen development and to study its role in pollen development. Here, the transcripts of an R2R3 MYB gene TaMYB305 from KTM3315A, a thermo-sensitive cytoplasmic male-sterility line with Aegilops kotschyi cytoplasm (K-TCMS) wheat, was isolated. Quantitative real-time PCR (qRT-PCR) and promoter activity analysis revealed that TaMYB305 was primarily expressed in anthers. The TaMYB305 protein was localized in the nucleus, as determined by subcellular localization analysis. Our data demonstrated that silencing of TaMYB305 was related to abnormal development of stamen, including anther indehiscence and pollen abortion in KAM3315A plants. In addition, TaMYB305-silenced plants exhibited alterations in the transcriptional levels of genes involved in the synthesis of jasmonic acid (JA), indicating that TaMYB305 may regulate the expression of genes related to JA synthesis and play an important role during anther and pollen development of KTM3315A. These results provide novel insight into the function and molecular mechanism of R2R3-MYB genes in pollen development.


Asunto(s)
Aegilops , Infertilidad , Oxilipinas , Ciclopentanos , Citoplasma/genética , Genes myb , Polen/genética , Triticum
17.
Plant Biotechnol J ; 22(5): 1372-1386, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38263872

RESUMEN

Fertile pollen is critical for the survival, fitness, and dispersal of flowering plants, and directly contributes to crop productivity. Extensive mutational screening studies have been carried out to dissect the genetic regulatory network determining pollen fertility, but we still lack fundamental knowledge about whether and how pollen fertility is controlled in natural populations. We used a genome-wide association study (GWAS) to show that ZmGEN1A and ZmMSH7, two DNA repair-related genes, confer natural variation in maize pollen fertility. Mutants defective in these genes exhibited abnormalities in meiotic or post-meiotic DNA repair, leading to reduced pollen fertility. More importantly, ZmMSH7 showed evidence of selection during maize domestication, and its disruption resulted in a substantial increase in grain yield for both inbred and hybrid. Overall, our study describes the first systematic examination of natural genetic effects on pollen fertility in plants, providing valuable genetic resources for optimizing male fertility. In addition, we find that ZmMSH7 represents a candidate for improvement of grain yield.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Zea mays/genética , Redes Reguladoras de Genes , Polen/genética , Fertilidad/genética , Grano Comestible/genética
18.
J Exp Bot ; 75(8): 2372-2384, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38206130

RESUMEN

Charged multivesicular protein 1 (CHMP1) is a member of the endosomal sorting complex required for transport-III (ESCRT-III) complex that targets membrane localized signaling receptors to intralumenal vesicles in the multivesicular body of the endosome and eventually to the lysosome for degradation. Although CHMP1 plays roles in various plant growth and development processes, little is known about its function in wheat. In this study, we systematically analysed the members of the ESCRT-III complex in wheat (Triticum aestivum) and found that their orthologs were highly conserved in eukaryotic evolution. We identified CHMP1 homologous genes, TaSAL1s, and found that they were constitutively expressed in wheat tissues and essential for plant reproduction. Subcellular localization assays showed these proteins aggregated with and closely associated with the endoplasmic reticulum when ectopically expressed in tobacco leaves. We also found these proteins were toxic and caused leaf death. A genetic and reciprocal cross analysis revealed that TaSAL1 leads to defects in male gametophyte biogenesis. Moreover, phenotypic and metabolomic analysis showed that TaSAL1 may regulate tillering and heading date through phytohormone pathways. Overall, our results highlight the role of CHMP1 in wheat, particularly in male gametophyte biogenesis, with implications for improving plant growth and developing new strategies for plant breeding and genetic engineering.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Triticum , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Triticum/genética , Fitomejoramiento , Endosomas/metabolismo , Polen/genética
19.
Environ Res ; 247: 117983, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163541

RESUMEN

BACKGROUND: Grasses populate most biogeographical zones, and their diversity influences allergic sensitisation to pollen. Previously, the contribution of different Poaceae subfamilies to airborne pollen has mostly been inferred from historical herbarium records. We recently applied environmental (e)DNA metabarcoding at one subtropical site revealing that successive airborne grass pollen peaks were derived from repeated flowering of Chloridoid and Panicoid grasses over a season. This study aimed to compare spatiotemporal patterns in grass pollen exposure across seasons and climate zones. METHODS: Airborne pollen concentrations across two austral pollen seasons spanning 2017-2019 at subtropical (Mutdapilly and Rocklea, Queensland) and temperate (Macquarie Park and Richmond, New South Wales) sites, were determined with a routine volumetric impaction sampler and counting by light microscopy. Poaceae rbcL metabarcode sequences amplified from daily pollen samples collected once per week were assigned to subfamily and genus using a ribosomal classifier and compared with Atlas of Living Australia sighting records. RESULTS: eDNA analysis revealed distinct dominance patterns of grass pollen at various sites: Panicoid grasses prevailed in both subtropical Mutdapilly and temperate Macquarie Park, whilst Chloridoid grasses dominated the subtropical Rocklea site. Overall, subtropical sites showed significantly higher proportion of pollen from Chloridoid grasses than temperate sites, whereas the temperate sites showed a significantly higher proportion of pollen from Pooideae grasses than subtropical sites. Timing of airborne Pooid (spring), Panicoid and Chloridoid (late spring to autumn), and Arundinoid (autumn) pollen were significantly related to number of days from mid-winter. Proportions of eDNA for subfamilies correlated with distributions grass sighting records between climate zones. CONCLUSIONS: eDNA analysis enabled finer taxonomic discernment of Poaceae pollen records across seasons and climate zones with implications for understanding adaptation of grasslands to climate change, and the complexity of pollen exposure for patients with allergic respiratory diseases.


Asunto(s)
ADN Ambiental , Poaceae , Humanos , Poaceae/genética , Estaciones del Año , Alérgenos/análisis , Polen/genética
20.
Plant Physiol ; 195(1): 343-355, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38270530

RESUMEN

Flowering plants contain tightly controlled pollen-pistil interactions required for promoting intraspecific fertilization and preventing interspecific hybridizations. In Arabidopsis (Arabidopsis thaliana), several receptor kinases (RKs) are known to regulate the later stages of intraspecific pollen tube growth and ovular reception in the pistil, but less is known about RK regulation of the earlier stages. The Arabidopsis RECEPTOR-LIKE KINASE IN FLOWERS1 (RKF1)/RKF1-LIKE (RKFL) 1-3 cluster of 4 leucine-rich repeat malectin (LRR-MAL) RKs was previously found to function in the stigma to promote intraspecific pollen hydration. In this study, we tested additional combinations of up to 7 Arabidopsis LRR-MAL RK knockout mutants, including RKF1, RKFL1-3, LysM RLK1-INTERACTING KINASE1, REMORIN-INTERACTING RECEPTOR1, and NEMATODE-INDUCED LRR-RLK2. These LRR-MAL RKs were discovered to function in the female stigma to support intraspecific Arabidopsis pollen tube growth and to establish a prezygotic interspecific barrier against Capsella rubella pollen. Thus, this study uncovered additional biological functions for this poorly understood group of RKs in regulating the early stages of Arabidopsis sexual reproduction.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Tubo Polínico , Polen , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/fisiología , Polen/genética , Polen/fisiología , Polen/crecimiento & desarrollo , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Polinización/fisiología , Capsella/genética , Capsella/fisiología , Capsella/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Repetidas Ricas en Leucina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...