Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 675
Filtrar
2.
Elife ; 132024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690995

RESUMEN

PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.


Asunto(s)
Cromatina , Proteínas de Drosophila , Histonas , Poli(ADP-Ribosa) Polimerasa-1 , Transcripción Genética , Animales , Cromatina/metabolismo , Cromatina/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Histonas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Metilación , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Respuesta al Choque Térmico
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167213, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714266

RESUMEN

Cytidine deaminase (CDA) is a pyrimidine salvage pathway enzyme that catalyzes the hydrolytic deamination of free cytidine and deoxycytidine to uridine and deoxyuridine, respectively. Our team discovered that CDA deficiency is associated with several aspects of genetic instability, such as increased sister chromatid exchange and ultrafine anaphase bridge frequencies. Based on these results, we sought (1) to determine how CDA deficiency contributes to genetic instability, (2) to explore the possible relationships between CDA deficiency and carcinogenesis, and (3) to develop a new anticancer treatment targeting CDA-deficient tumors. This review summarizes our major findings indicating that CDA deficiency is associated with a genetic instability that does not confer an increased cancer risk. In light of our results and published data, I propose a novel hypothesis that loss of CDA, by reducing basal PARP-1 activity and increasing Tau levels, may reflect an attempt to prevent, slow or reverse the process of carcinogenesis.


Asunto(s)
Carcinogénesis , Citidina Desaminasa , Poli(ADP-Ribosa) Polimerasa-1 , Humanos , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Carcinogénesis/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Animales , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Proteínas tau/metabolismo , Proteínas tau/genética , Inestabilidad Genómica
4.
Nat Struct Mol Biol ; 31(5): 791-800, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38714889

RESUMEN

The recognition that DNA can be ADP ribosylated provides an unexpected regulatory level of how ADP-ribosylation contributes to genome stability, epigenetics and immunity. Yet, it remains unknown whether DNA ADP-ribosylation (DNA-ADPr) promotes genome stability and how it is regulated. Here, we show that telomeres are subject to DNA-ADPr catalyzed by PARP1 and removed by TARG1. Mechanistically, we show that DNA-ADPr is coupled to lagging telomere DNA strand synthesis, forming at single-stranded DNA present at unligated Okazaki fragments and on the 3' single-stranded telomere overhang. Persistent DNA-linked ADPr, due to TARG1 deficiency, eventually leads to telomere shortening. Furthermore, using the bacterial DNA ADP-ribosyl-transferase toxin to modify DNA at telomeres directly, we demonstrate that unhydrolyzed DNA-linked ADP-ribose compromises telomere replication and telomere integrity. Thus, by identifying telomeres as chromosomal targets of PARP1 and TARG1-regulated DNA-ADPr, whose deregulation compromises telomere replication and integrity, our study highlights and establishes the critical importance of controlling DNA-ADPr turnover for sustained genome stability.


Asunto(s)
ADP-Ribosilación , Replicación del ADN , ADN , Poli(ADP-Ribosa) Polimerasa-1 , Telómero , Telómero/metabolismo , Telómero/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Humanos , ADN/metabolismo , Animales , Ratones , Adenosina Difosfato Ribosa/metabolismo , Inestabilidad Genómica , Acortamiento del Telómero
5.
Signal Transduct Target Ther ; 9(1): 135, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760366

RESUMEN

DNA double-strand break (DSB) sites that prevent the disjunction of broken DNA ends are formed through poly (ADP-ribose) (PAR) polymerase 1 (PARP1)-DNA co-condensation. The co-condensates apply mechanical forces to hold the DNA ends together and generate enzymatic activity for the synthesis of PAR. PARylation can promote the release of PARP1 from DNA ends and recruit various proteins, such as Fused in sarcoma (FUS) proteins, thereby stabilizing broken DNA ends and preventing their separation.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN , Poli(ADP-Ribosa) Polimerasa-1 , Humanos , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Reparación del ADN/genética , ADN/genética , ADN/metabolismo
6.
Nat Commun ; 15(1): 2857, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565848

RESUMEN

PARP2 is a DNA-dependent ADP-ribosyl transferase (ARTs) enzyme with Poly(ADP-ribosyl)ation activity that is triggered by DNA breaks. It plays a role in the Base Excision Repair pathway, where it has overlapping functions with PARP1. However, additional roles for PARP2 have emerged in the response of cells to replication stress. In this study, we demonstrate that PARP2 promotes replication stress-induced telomere fragility and prevents telomere loss following chronic induction of oxidative DNA lesions and BLM helicase depletion. Telomere fragility results from the activity of the break-induced replication pathway (BIR). During this process, PARP2 promotes DNA end resection, strand invasion and BIR-dependent mitotic DNA synthesis by orchestrating POLD3 recruitment and activity. Our study has identified a role for PARP2 in the response to replication stress. This finding may lead to the development of therapeutic approaches that target DNA-dependent ART enzymes, particularly in cancer cells with high levels of replication stress.


Asunto(s)
Reparación del ADN , ADN , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , ADN/metabolismo , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Telómero/genética , Telómero/metabolismo
7.
JCO Precis Oncol ; 8: e2300495, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38635931

RESUMEN

PURPOSE: High-grade neuroendocrine carcinoma (HGNEC) of the lung is an aggressive cancer with a complex biology. We aimed to explore the prognostic value of genetic aberrations and poly(ADP-ribose) polymerase-1 (PARP1) expression in HGNEC and to establish a novel prognostic model. MATERIALS AND METHODS: We retrospectively enrolled 191 patients with histologically confirmed HGNEC of the lung. Tumor tissues were analyzed using PARP1 immunohistochemistry (IHC; N = 191) and comprehensive cancer panel sequencing (n = 102). Clinical and genetic data were used to develop an integrated Cox hazards model. RESULTS: Strong PARP1 IHC expression (intensity 3) was observed in 153 of 191 (80.1%) patients, and the mean PARP1 H-score was 285 (range, 5-300). To develop an integrated Cox hazard model, our data set included information from 357 gene mutations and 19 clinical profiles. When the targeted mutation profiles were combined with clinical profiles, 12 genes (ATRX, CCND2, EXT2, FGFR2, FOXO1, IL21R, MAF, TGM7, TNFAIP3, TP53, TSHR, and DDR2) were identified as prognostic factors for survival. The integrated Cox hazard model, which combines mutation profiles with a baseline model, outperformed the baseline model (incremental area under the curve 0.84 v 0.78; P = 8.79e-12). The integrated model stratified patients into high- and low-risk groups with significantly different disease-free and overall survival (integrated model: hazard ratio, 7.14 [95% CI, 4.07 to 12.54]; P < .01; baseline model: 4.38 [2.56 to 7.51]; P < .01). CONCLUSION: We introduced a new prognostic model for HGNEC that combines genetic and clinical data. The integrated Cox hazard model outperformed the baseline model in predicting the survival of patients with HGNEC.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias Pulmonares , Humanos , Pronóstico , Poli(ADP-Ribosa) Polimerasa-1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Estudios Retrospectivos , Carcinoma Neuroendocrino/genética , Pulmón/metabolismo , Pulmón/patología , Genómica
8.
Proc Natl Acad Sci U S A ; 121(18): e2322520121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657044

RESUMEN

The S-phase checkpoint involving CHK1 is essential for fork stability in response to fork stalling. PARP1 acts as a sensor of replication stress and is required for CHK1 activation. However, it is unclear how the activity of PARP1 is regulated. Here, we found that UFMylation is required for the efficient activation of CHK1 by UFMylating PARP1 at K548 during replication stress. Inactivation of UFL1, the E3 enzyme essential for UFMylation, delayed CHK1 activation and inhibits nascent DNA degradation during replication blockage as seen in PARP1-deficient cells. An in vitro study indicated that PARP1 is UFMylated at K548, which enhances its catalytic activity. Correspondingly, a PARP1 UFMylation-deficient mutant (K548R) and pathogenic mutant (F553L) compromised CHK1 activation, the restart of stalled replication forks following replication blockage, and chromosome stability. Defective PARP1 UFMylation also resulted in excessive nascent DNA degradation at stalled replication forks. Finally, we observed that PARP1 UFMylation-deficient knock-in mice exhibited increased sensitivity to replication stress caused by anticancer treatments. Thus, we demonstrate that PARP1 UFMylation promotes CHK1 activation and replication fork stability during replication stress, thus safeguarding genome integrity.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Replicación del ADN , Poli(ADP-Ribosa) Polimerasa-1 , Animales , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Ratones , Humanos , Daño del ADN , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
9.
EBioMedicine ; 103: 105129, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38640836

RESUMEN

BACKGROUND: Poly(ADP-ribose) polymerase (PARP) inhibitors have emerged as promising chemotherapeutic drugs primarily against BRCA1/2-associated tumours, known as synthetic lethality. However, recent clinical trials reported patients' survival benefits from PARP inhibitor treatments, irrelevant to homologous recombination deficiency. Therefore, revealing the therapeutic mechanism of PARP inhibitors beyond DNA damage repair is urgently needed, which can facilitate precision medicine. METHODS: A CRISPR-based knock-in technology was used to establish stable BRCA1 mutant cancer cells. The effects of PARP inhibitors on BRCA1 mutant cancer cells were evaluated by biochemical and cell biological experiments. Finally, we validated its in vivo effects in xenograft and patient-derived xenograft (PDX) tumour mice. FINDINGS: In this study, we uncovered that the majority of clinical BRCA1 mutations in breast cancers were in and near the middle of the gene, rather than in essential regions for DNA damage repair. Representative mutations such as R1085I and E1222Q caused transient extra spindle poles during mitosis in cancer cells. PAR, which is synthesized by PARP2 but not PARP1 at mitotic centrosomes, clustered these transient extra poles, independent of DNA damage response. Common PARP inhibitors could effectively suppress PARP2-synthesized PAR and induce cell senescence by abrogating the correction of mitotic extra-pole error. INTERPRETATION: Our findings uncover an alternative mechanism by which PARP inhibitors efficiently suppress tumours, thereby pointing to a potential new therapeutic strategy for centrosome error-related tumours. FUNDING: Funded by National Natural Science Foundation of China (NSFC) (T2225006, 82272948, 82103106), Beijing Municipal Natural Science Foundation (Key program Z220011), and the National Clinical Key Specialty Construction Program, P. R. China (2023).


Asunto(s)
Proteína BRCA1 , Senescencia Celular , Centrosoma , Daño del ADN , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Ensayos Antitumor por Modelo de Xenoinjerto , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Humanos , Animales , Centrosoma/metabolismo , Centrosoma/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Ratones , Proteína BRCA1/genética , Línea Celular Tumoral , Femenino , Mutación , Reparación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética
10.
Int J Biol Sci ; 20(5): 1602-1616, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481797

RESUMEN

Myocardial infarction causes cardiomyocyte loss, and depleted cardiomyocyte proliferative capacity after birth impinges the heart repair process, eventually leading to heart failure. This study aims to investigate the role of Poly(ADP-Ribose) Polymerase 1 (PARP1) in the regulation of cardiomyocyte proliferation and heart regeneration. Our findings demonstrated that PARP1 knockout impaired cardiomyocyte proliferation, cardiac function, and scar formation, while PARP1 overexpression improved heart regeneration in apical resection-operated mice. Mechanistically, we found that PARP1 interacts with and poly(ADP-ribosyl)ates Heat Shock Protein 90 Alpha Family Class B Member 1 (HSP90AB1) and increases binding between HSP90AB1 and Cell Division Cycle 37 (CDC37) and cell cycle kinase activity, thus activating cardiomyocyte cell cycle. Our results reveal that PARP1 promotes heart regeneration and cardiomyocyte proliferation via poly(ADP-ribosyl)ation of HSP90AB1 activating the cardiomyocyte cell cycle, suggesting that PARP1 may be a potential therapeutic target in treating cardiac injury.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Animales , Ratones , Proliferación Celular/genética , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
11.
Sci Rep ; 14(1): 7530, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553566

RESUMEN

Poly (ADP)-ribose polymerase 1 (PARP1) is an abundant nuclear protein well-known for its role in DNA repair yet also participates in DNA replication, transcription, and co-transcriptional splicing, where DNA is undamaged. Thus, binding to undamaged regions in DNA and RNA is likely a part of PARP1's normal repertoire. Here we describe analyses of PARP1 binding to two short single-stranded DNAs, a single-stranded RNA, and a double stranded DNA. The investigations involved comparing the wild-type (WT) full-length enzyme with mutants lacking the catalytic domain (∆CAT) or zinc fingers 1 and 2 (∆Zn1∆Zn2). All three protein types exhibited monomeric characteristics in solution and formed saturated 2:1 complexes with single-stranded T20 and U20 oligonucleotides. These complexes formed without accumulation of 1:1 intermediates, a pattern suggestive of positive binding cooperativity. The retention of binding activities by ∆CAT and ∆Zn1∆Zn2 enzymes suggests that neither the catalytic domain nor zinc fingers 1 and 2 are indispensable for cooperative binding. In contrast, when a double stranded 19mer DNA was tested, WT PARP1 formed a 4:1 complex while the ∆Zn1Zn2 mutant binding saturated at 1:1 stoichiometry. These deviations from the 2:1 pattern observed with T20 and U20 oligonucleotides show that PARP's binding mechanism can be influenced by the secondary structure of the nucleic acid. Our studies show that PARP1:nucleic acid interactions are strongly dependent on the nucleic acid type and properties, perhaps reflecting PARP1's ability to respond differently to different nucleic acid ligands in cells. These findings lay a platform for understanding how the functionally versatile PARP1 recognizes diverse oligonucleotides within the realms of chromatin and RNA biology.


Asunto(s)
Cromatina , Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , ADN/metabolismo , Reparación del ADN , ARN , Adenosina Difosfato Ribosa/metabolismo , Oligonucleótidos
12.
Adv Biol (Weinh) ; 8(5): e2400028, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38463014

RESUMEN

Emerging evidence has implicated nicotinamide adenine dinucleotide (NAD+) metabolism in various inflammatory diseases. In the study, the role of NAD+ metabolism in Complete Freund's Adjuvant (CFA)-evoked inflammatory pain and the underlying mechanisms are investigated. The study demonstrated that CFA induced upregulation of nicotinamide phosphoribosyltransferase (NAMPT) in dorsal root ganglia (DRG) without significant changes in the spinal cord. Inhibition of NAMPT expression by intrathecal injection of NAMPT siRNA alleviated CFA-induced pain-like behavior, decreased NAD+ contents in DRG, and lowered poly-(ADP-ribose) polymerase 1 (PARP1) activity levels. These effects are all reversed by the supplement of nicotinamide mononucleotide (NMN). Inhibition of PARP1 expression by intrathecal injection of PARP1 siRNA alleviated CFA-induced pain-like behavior, while elevated NAD+ levels of DRG. The analgesic effect of inhibiting NAMPT/NAD+/PARP1 axis can be attributed to the downregulation of the NF-κB/IL-1ß inflammatory pathway. Double immunofluorescence staining showed that the expression of NAMPT/NAD+/PARP1 axis is restricted to DRG neurons. In conclusion, PARP1 activation in response to CFA stimulation, fueled by NAMPT-derived NAD+, mediates CFA-induced inflammatory pain through NF-κB/IL-1ß inflammatory pathway.


Asunto(s)
Ganglios Espinales , NAD , Nicotinamida Fosforribosiltransferasa , Poli(ADP-Ribosa) Polimerasa-1 , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Masculino , Ratones , Adyuvante de Freund , Inflamación/metabolismo , Citocinas/metabolismo , Dolor/metabolismo , FN-kappa B/metabolismo
13.
J Exp Clin Cancer Res ; 43(1): 53, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383387

RESUMEN

BACKGROUND: Esophageal cancer is one of the 10 most common cancers worldwide and its incidence is dramatically increasing. Despite some improvements, the current surveillance protocol with white light endoscopy and random untargeted biopsies collection (Seattle protocol) fails to diagnose dysplastic and cancerous lesions in up to 50% of patients. Therefore, new endoscopic imaging technologies in combination with tumor-specific molecular probes are needed to improve early detection. Herein, we investigated the use of the fluorescent Poly (ADP-ribose) Polymerase 1 (PARP1)-inhibitor PARPi-FL for early detection of dysplastic lesions in patient-derived organoids and transgenic mouse models, which closely mimic the transformation from non-malignant Barrett's Esophagus (BE) to invasive esophageal adenocarcinoma (EAC). METHODS: We determined PARP1 expression via immunohistochemistry (IHC) in human biospecimens and mouse tissues. We also assessed PARPi-FL uptake in patient- and mouse-derived organoids. Following intravenous injection of 75 nmol PARPi-FL/mouse in L2-IL1B (n = 4) and L2-IL1B/IL8Tg mice (n = 12), we conducted fluorescence molecular endoscopy (FME) and/or imaged whole excised stomachs to assess PARPi-FL accumulation in dysplastic lesions. L2-IL1B/IL8Tg mice (n = 3) and wild-type (WT) mice (n = 2) without PARPi-FL injection served as controls. The imaging results were validated by confocal microscopy and IHC of excised tissues. RESULTS: IHC on patient and murine tissue revealed similar patterns of increasing PARP1 expression in presence of dysplasia and cancer. In human and murine organoids, PARPi-FL localized to PARP1-expressing epithelial cell nuclei after 10 min of incubation. Injection of PARPi-FL in transgenic mouse models of BE resulted in the successful detection of lesions via FME, with a mean target-to-background ratio > 2 independently from the disease stage. The localization of PARPi-FL in the lesions was confirmed by imaging of the excised stomachs and confocal microscopy. Without PARPi-FL injection, identification of lesions via FME in transgenic mice was not possible. CONCLUSION: PARPi-FL imaging is a promising approach for clinically needed improved detection of dysplastic and malignant EAC lesions in patients with BE. Since PARPi-FL is currently evaluated in a phase 2 clinical trial for oral cancer detection after topical application, clinical translation for early detection of dysplasia and EAC in BE patients via FME screening appears feasible.


Asunto(s)
Adenocarcinoma , Esófago de Barrett , Neoplasias Esofágicas , Humanos , Ratones , Animales , Detección Precoz del Cáncer , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/genética , Esófago de Barrett/diagnóstico , Esófago de Barrett/genética , Esófago de Barrett/patología , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/genética , Ratones Transgénicos , Endoscopía , Poli(ADP-Ribosa) Polimerasa-1/genética
14.
Cell ; 187(4): 945-961.e18, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38320550

RESUMEN

DNA double-strand breaks (DSBs) are repaired at DSB sites. How DSB sites assemble and how broken DNA is prevented from separating is not understood. Here we uncover that the synapsis of broken DNA is mediated by the DSB sensor protein poly(ADP-ribose) (PAR) polymerase 1 (PARP1). Using bottom-up biochemistry, we reconstitute functional DSB sites and show that DSB sites form through co-condensation of PARP1 multimers with DNA. The co-condensates exert mechanical forces to keep DNA ends together and become enzymatically active for PAR synthesis. PARylation promotes release of PARP1 from DNA ends and the recruitment of effectors, such as Fused in Sarcoma, which stabilizes broken DNA ends against separation, revealing a finely orchestrated order of events that primes broken DNA for repair. We provide a comprehensive model for the hierarchical assembly of DSB condensates to explain DNA end synapsis and the recruitment of effector proteins for DNA damage repair.


Asunto(s)
Reparación del ADN , Poli(ADP-Ribosa) Polimerasa-1 , ADN/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Humanos
15.
Sci Rep ; 14(1): 4402, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388665

RESUMEN

The DNA repair gene PARP1 and NF-κB signalling pathway affect the metastasis of breast cancer by influencing the drug resistance of cancer cells. Therefore, this study focused on the value of the DNA repair gene PARP1 and NF-κB pathway proteins in predicting the postoperative metastasis of breast cancer. A nested case‒control study was performed. Immunohistochemical methods were used to detect the expression of these genes in patients. ROC curves were used to analyse the predictive effect of these factors on distant metastasis. The COX model was used to evaluate the effects of PARP1 and TNF-α on distant metastasis. The results showed that the expression levels of PARP1, IKKß, p50, p65 and TNF-α were significantly increased in the metastasis group (P < 0.001). PARP1 was correlated with IKKß, p50, p65 and TNF-α proteins (P < 0.001). There was a correlation between IKKß, p50, p65 and TNF-α proteins (P < 0.001). ROC curve analysis showed that immunohistochemical scores for PARP1 of > 6, IKKß of > 4, p65 of > 4, p50 of > 2, and TNF-α of > 4 had value in predicting distant metastasis (SePARP1 = 78.35%, SpPARP1 = 79.38%, AUCPARP1 = 0.843; Sep50 = 64.95%, Spp50 = 70.10%, AUCp50 = 0.709; SeTNF-α = 60.82%, SpTNF-α = 69.07%, AUCTNF-α = 0.6884). Cox regression analysis showed that high expression levels of PARP1 and TNF-α were a risk factor for distant metastasis after breast cancer surgery (RRPARP1 = 4.092, 95% CI 2.475-6.766, P < 0.001; RRTNF-α = 1.825, 95% CI 1.189-2.799, P = 0.006). Taken together, PARP1 > 6, p50 > 2, and TNF-α > 4 have a certain value in predicting breast cancer metastasis, and the predictive value is better when they are combined for diagnosis (Secombine = 97.94%, Spcombine = 71.13%).


Asunto(s)
Neoplasias de la Mama , FN-kappa B , Humanos , Femenino , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/cirugía , Quinasa I-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Estudios de Casos y Controles , Factor de Transcripción ReIA/metabolismo , Reparación del ADN/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
16.
Cells ; 13(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391916

RESUMEN

Base excision repair (BER) is the predominant pathway for the removal of most forms of hydrolytic, oxidative, and alkylative DNA lesions. The precise functioning of BER is achieved via the regulation of each step by regulatory/accessory proteins, with the most important of them being poly(ADP-ribose) polymerase 1 (PARP1). PARP1's regulatory functions extend to many cellular processes including the regulation of mRNA stability and decay. PARP1 can therefore affect BER both at the level of BER proteins and at the level of their mRNAs. Systematic data on how the PARP1 content affects the activities of key BER proteins and the levels of their mRNAs in human cells are extremely limited. In this study, a CRISPR/Cas9-based technique was used to knock out the PARP1 gene in the human HEK 293FT line. The obtained cell clones with the putative PARP1 deletion were characterized by several approaches including PCR analysis of deletions in genomic DNA, Sanger sequencing of genomic DNA, quantitative PCR analysis of PARP1 mRNA, Western blot analysis of whole-cell-extract (WCE) proteins with anti-PARP1 antibodies, and PAR synthesis in WCEs. A quantitative PCR analysis of mRNAs coding for BER-related proteins-PARP2, uracil DNA glycosylase 2, apurinic/apyrimidinic endonuclease 1, DNA polymerase ß, DNA ligase III, and XRCC1-did not reveal a notable influence of the PARP1 knockout. The corresponding WCE catalytic activities evaluated in parallel did not differ significantly between the mutant and parental cell lines. No noticeable effect of poly(ADP-ribose) synthesis on the activity of the above WCE enzymes was revealed either.


Asunto(s)
Reparación del ADN , Reparación por Escisión , Poli(ADP-Ribosa) Polimerasa-1 , Humanos , Extractos Celulares , Línea Celular , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Poli(ADP-Ribosa) Polimerasa-1/genética
17.
Cell Rep ; 43(3): 113845, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38393943

RESUMEN

Poly(ADP-ribosyl)ation (PARylation), catalyzed mainly by poly(ADP-ribose) polymerase (PARP)1, is a key posttranslational modification involved in DNA replication and repair. Here, we report that TIMELESS (TIM), an essential scaffold of the replisome, is PARylated, which is linked to its proteolysis. TIM PARylation requires recognition of auto-modified PARP1 via two poly(ADP-ribose)-binding motifs, which primes TIM for proteasome-dependent degradation. Cells expressing the PARylation-refractory TIM mutant or under PARP inhibition accumulate TIM at DNA replication forks, causing replication stress and hyper-resection of stalled forks. Mechanistically, aberrant engagement of TIM with the replicative helicase impedes RAD51 loading and protection of reversed forks. Accordingly, defective TIM degradation hypersensitizes BRCA2-deficient cells to replication damage. Our study defines TIM as a substrate of PARP1 and elucidates how the control of replisome remodeling by PARylation is linked to stalled fork protection. Therefore, we propose a mechanism of PARP inhibition that impinges on the DNA replication fork instability caused by defective TIM turnover.


Asunto(s)
Poli ADP Ribosilación , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Daño del ADN , Replicación del ADN
18.
Oncogene ; 43(9): 682-692, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38216672

RESUMEN

Hepatocellular carcinoma (HCC) stands as the fifth most prevalent malignant tumor on a global scale and presents as the second leading cause of cancer-related mortality. DNA damage-based radiotherapy (RT) plays a pivotal role in the treatment of HCC. Nevertheless, radioresistance remains a primary factor contributing to the failure of radiation therapy in HCC patients. In this study, we investigated the functional role of transketolase (TKT) in the repair of DNA double-strand breaks (DSBs) in HCC. Our research unveiled that TKT is involved in DSB repair, and its depletion significantly reduces both non-homologous end joining (NHEJ) and homologous recombination (HR)-mediated DSB repair. Mechanistically, TKT interacts with PARP1 in a DNA damage-dependent manner. Furthermore, TKT undergoes PARylation by PARP1, resulting in the inhibition of its enzymatic activity, and TKT can enhance the auto-PARylation of PARP1 in response to DSBs in HCC. The depletion of TKT effectively mitigates the radioresistance of HCC, both in vitro and in mouse xenograft models. Moreover, high TKT expression confers resistance of RT in clinical HCC patients, establishing TKT as a marker for assessing the response of HCC patients who received cancer RT. In summary, our findings reveal a novel mechanism by which TKT contributes to the radioresistance of HCC. Overall, we identify the TKT-PARP1 axis as a promising potential therapeutic target for improving RT outcomes in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Roturas del ADN de Doble Cadena , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/patología , Transcetolasa/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/patología , Reparación del ADN , ADN , Reparación del ADN por Unión de Extremidades , Reparación del ADN por Recombinación , Poli(ADP-Ribosa) Polimerasa-1/genética
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167031, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38253214

RESUMEN

Chronic psychological stress contributes to the occurrence of cancer and activates the renin-angiotensin system (RAS). However, the mechanisms by which RAS promotes the progression of breast cancer (BRCA) under chronic psychological stress are remain unknown. In this study, we observed elevated levels of Angiotensin II (Ang II) in both serum and BRCA tissue under chronic stress, leading to accelerated BRCA growth in a mouse model. An antihypertensive drug, candesartan (an AT1 inhibitor), effectively attenuated Ang II-induced cell proliferation and metastasis. Utilizing mass spectrometry and weighted gene co-expression network analysis (WGCNA), we identified fibronectin 1 (FN1) as the hub protein involved in chronic stress-Ang II/AT1 axis. Focal adhesion pathway was identified as a downstream signaling pathway activated during the progression of chronic stress. Depletion of FN1 significantly attenuated Ang II-induced proliferation and metastasis of BRCA cells. Poly (ADP-ribose) polymerase 1 (PARP1) was found to bind to the DNA promoter of FN1, leading to the transcription of FN1. Ang II upregulated PARP1 expression, resulting in increased FN1 levels. Recombinant FN1 partially restored the progress of BRCA malignancy induced by the Ang II/PARP1 pathway. In vivo, candesartan reversed the progressive effect of chronic psychological stress on BRCA. In clinical samples, Ang II levels in both serum and tumor tissues are higher in stressed patients compared to control patients. Serum Ang II levels were positively correlated with chronic stress indicators. In conclusion, our study demonstrated that chronic psychological stress accelerates the malignancy of BRCA, and the AT1 inhibitor candesartan counteracts these effects by suppressing the Ang II-AT1 axis and the downstream PARP1/FN1/focal adhesion pathway.


Asunto(s)
Angiotensina II , Bencimidazoles , Compuestos de Bifenilo , Neoplasias de la Mama , Tetrazoles , Ratones , Animales , Humanos , Femenino , Angiotensina II/metabolismo , Antihipertensivos , Fibronectinas , Neoplasias de la Mama/tratamiento farmacológico , Poli(ADP-Ribosa) Polimerasa-1/genética
20.
Oncogene ; 43(12): 866-883, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38297082

RESUMEN

Metastasis is an important factor that causes ovarian cancer (OC) to become the most lethal malignancy of the female reproductive system, but its molecular mechanism is not fully understood. In this study, through bioinformatics analysis, as well as analysis of tissue samples and clinicopathological characteristics and prognosis of patients in our centre, it was found that Forkhead box Q1 (FOXQ1) was correlated with metastasis and prognosis of OC. Through cell function experiments and animal experiments, the results show that FOXQ1 can promote the progression of ovarian cancer in vivo and in vitro. Through RNA-seq, chromatin immunoprecipitation sequencing (ChIP-seq), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), Western blotting (WB), quantitative real-time polymerase chain reaction (qRT‒PCR), immunohistochemistry (IHC), luciferase assay, and ChIP-PCR, it was demonstrated that FOXQ1 can mediate the WNT/ß-catenin pathway by targeting the LAMB promoter region. Through coimmunoprecipitation (Co-IP), mass spectrometry (MS), ubiquitination experiments, and immunofluorescence (IF), the results showed that PARP1 could stabilise FOXQ1 expression via the E3 ubiquitin ligase Hsc70-interacting protein (CHIP). Finally, the whole mechanism pathway was verified by animal drug combination experiments and clinical specimen prognosis analysis. In summary, our results suggest that PARP1 can promote ovarian cancer progression through the LAMB3/WNT/ß-catenin pathway by stabilising FOXQ1 expression.


Asunto(s)
Neoplasias Ováricas , beta Catenina , Animales , Humanos , Femenino , beta Catenina/genética , beta Catenina/metabolismo , Línea Celular Tumoral , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Vía de Señalización Wnt/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Poli(ADP-Ribosa) Polimerasa-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...