Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.979
Filtrar
1.
J Biomed Mater Res B Appl Biomater ; 112(6): e35411, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38773758

RESUMEN

The ultimate goal of tissue engineering is to repair and regenerate damaged tissue or organ. Achieving this goal requires blood vessel networks to supply oxygen and nutrients to new forming tissues. Macrophages are part of the immune system whose behavior plays a significant role in angiogenesis and blood vessel formation. On the other hand, macrophages are versatile cells that change their behavior in response to environmental stimuli. Given that implantation of a biomaterial is followed by inflammation; therefore, we reasoned that this inflammatory condition in tissue spaces modulates the final phenotype of macrophages. Also, we hypothesized that anti-inflammatory glucocorticoid dexamethasone improves modulating macrophages behavior. To check these concepts, we investigated the macrophages that had matured in an inflammatory media. Furthermore, we examined macrophages' behavior after maturation on a dexamethasone-containing scaffold and analyzed how the behavioral change of maturing macrophages stimulates other macrophages in the same environment. In this study, the expression of pro-inflammatory markers TNFa and NFκB1 along with pro-healing markers IL-10 and CD163 were investigated to study the behavior of macrophages. Our results showed that macrophages that were matured in the inflammatory media in vitro increase expression of IL-10, which in turn decreased the expression of pro-inflammatory markers TNFa and NFκB in maturing macrophages. Also, macrophages that were matured on dexamethasone-containing scaffolds decreased the expression of IL-10, TNFa, and NFκB and increase the expression of CD163 compared to the control group. Moreover, the modulation of anti-inflammatory response in maturing macrophages on dexamethasone-containing scaffold resulted in increased expression of TNFa and CD163 by other macrophages in the same media. The results obtained in this study, proposing strategies to improve healing through controlling the behavior of maturing macrophages and present a promising perspective for inflammation control using tissue engineering scaffolds.


Asunto(s)
Dexametasona , Interleucina-10 , Macrófagos , Poliésteres , Andamios del Tejido , Dexametasona/farmacología , Interleucina-10/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Andamios del Tejido/química , Poliésteres/química , Poliésteres/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química , Humanos , Animales , Inflamación/metabolismo , Ratones
2.
ACS Nano ; 18(20): 12905-12916, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38721835

RESUMEN

For most frequent respiratory viruses, there is an urgent need for a universal influenza vaccine to provide cross-protection against intra- and heterosubtypes. We previously developed an Escherichia coli fusion protein expressed extracellular domain of matrix 2 (M2e) and nucleoprotein, named NM2e, and then combined it with an aluminum adjuvant, forming a universal vaccine. Although NM2e has demonstrated a protective effect against the influenza virus in mice to some extent, further improvement is still needed for the induction of immune responses ensuring adequate cross-protection against influenza. Herein, we fabricated a cationic solid lipid nanoadjuvant using poly(lactic acid) (PLA) and dimethyl-dioctadecyl-ammonium bromide (DDAB) and loaded NM2e to generate an NM2e@DDAB/PLA nanovaccine (Nv). In vitro experiments suggested that bone marrow-derived dendritic cells incubated with Nv exhibited ∼4-fold higher antigen (Ag) uptake than NM2e at 16 h along with efficient activation by NM2e@DDAB/PLA Nv. In vivo experiments revealed that Ag of the Nv group stayed in lymph nodes (LNs) for more than 14 days after initial immunization and DCs in LNs were evidently activated and matured. Furthermore, the Nv primed T and B cells for robust humoral and cellular immune responses after immunization. It also induced a ratio of IgG2a/IgG1 higher than that of NM2e to a considerable extent. Moreover, NM2e@DDAB/PLA Nv quickly restored body weight and improved survival of homo- and heterosubtype influenza challenged mice, and the cross-protection efficiency was over 90%. Collectively, our study demonstrated that NM2e@DDAB/PLA Nv could offer notable protection against homo- and heterosubtype influenza virus challenges, offering the potential for the development of a universal influenza vaccine.


Asunto(s)
Adyuvantes Inmunológicos , Vacunas contra la Influenza , Poliésteres , Compuestos de Amonio Cuaternario , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/administración & dosificación , Animales , Ratones , Poliésteres/química , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Compuestos de Amonio Cuaternario/química , Femenino , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Nanopartículas/química , Protección Cruzada/inmunología , Adyuvantes de Vacunas/química , Proteínas de la Matriz Viral/inmunología
3.
Stem Cell Res Ther ; 15(1): 135, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715130

RESUMEN

BACKGROUND: Biomaterials used in bone tissue engineering must fulfill the requirements of osteoconduction, osteoinduction, and osseointegration. However, biomaterials with good osteoconductive properties face several challenges, including inadequate vascularization, limited osteoinduction and barrier ability, as well as the potential to trigger immune and inflammatory responses. Therefore, there is an urgent need to develop guided bone regeneration membranes as a crucial component of tissue engineering strategies for repairing bone defects. METHODS: The mZIF-8/PLA membrane was prepared using electrospinning technology and simulated body fluid external mineralization method. Its ability to induce biomimetic mineralization was evaluated through TEM, EDS, XRD, FT-IR, zeta potential, and wettability techniques. The biocompatibility, osteoinduction properties, and osteo-immunomodulatory effects of the mZIF-8/PLA membrane were comprehensively evaluated by examining cell behaviors of surface-seeded BMSCs and macrophages, as well as the regulation of cellular genes and protein levels using PCR and WB. In vivo, the mZIF-8/PLA membrane's potential to promote bone regeneration and angiogenesis was assessed through Micro-CT and immunohistochemical staining. RESULTS: The mineralized deposition enhances hydrophilicity and cell compatibility of mZIF-8/PLA membrane. mZIF-8/PLA membrane promotes up-regulation of osteogenesis and angiogenesis related factors in BMSCs. Moreover, it induces the polarization of macrophages towards the M2 phenotype and modulates the local immune microenvironment. After 4-weeks of implantation, the mZIF-8/PLA membrane successfully bridges critical bone defects and almost completely repairs the defect area after 12-weeks, while significantly improving the strength and vascularization of new bone. CONCLUSIONS: The mZIF-8/PLA membrane with dual osteoconductive and immunomodulatory abilities could pave new research paths for bone tissue engineering.


Asunto(s)
Regeneración Ósea , Regeneración Ósea/efectos de los fármacos , Animales , Osteogénesis/efectos de los fármacos , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Ratones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Membranas Artificiales , Regeneración Tisular Dirigida/métodos , Andamios del Tejido/química , Poliésteres/química , Poliésteres/farmacología , Ratas
4.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731542

RESUMEN

Bilayer electrospun fibers aimed to be used for skin tissue engineering applications were fabricated for enhanced cell attachment and proliferation. Different ratios of PHBV-PLLA (70:30, 80:20, and 90:10 w/w) blends were electrospun on previously formed electrospun PHBV membranes to produce their bilayers. The fabricated electrospun membranes were characterized with FTIR, which conformed to the characteristic peaks assigned for both PHBV and PLLA. The surface morphology was evaluated using SEM analysis that showed random fibers with porous morphology. The fiber diameter and pore size were measured in the range of 0.7 ± 0.1 µm and 1.9 ± 0.2 µm, respectively. The tensile properties of the bilayers were determined using an electrodynamic testing system. Bilayers had higher elongation at break (44.45%) compared to the monolayers (28.41%) and improved ultimate tensile strength (7.940 MPa) compared to the PHBV monolayer (2.450 MPa). In vitro cytotoxicity of each of the scaffolds was determined via culturing MC3T3 (pre-osteoblastic cell line) on the membranes. Proliferation was evaluated using the Alamar Blue assay on days 3, 7, and 14, respectively. SEM images of cells cultured on membranes were taken in addition to bright field imaging to visually show cell attachment. Fluorescent nuclear staining performed with DAPI was imaged with an inverted fluorescent microscope. The fabricated bilayer shows high mechanical strength as well as biocompatibility with good cell proliferation and cell attachment, showing potential for skin substitute applications.


Asunto(s)
Materiales Biocompatibles , Proliferación Celular , Poliésteres , Piel , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Poliésteres/química , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Andamios del Tejido/química , Resistencia a la Tracción , Membranas Artificiales , Línea Celular , Ensayo de Materiales , Polímeros/química , Adhesión Celular/efectos de los fármacos
5.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731560

RESUMEN

2, 6-diisopropylaniline (2, 6-DIPA) is a crucial non-intentionally organic additive that allows the assessment of the production processes, formulation qualities, and performance variations in biodegradable mulching film. Moreover, its release into the environment may have certain effects on human health. Hence, this study developed simultaneous heating hydrolysis-extraction and amine switchable hydrophilic solvent vortex-assisted homogeneous liquid-liquid microextraction for the gas chromatography-mass spectrometry analysis of the 2, 6-DIPA additive and its corresponding isocyanates in poly(butylene adipate-co-terephthalate) (PBAT) biodegradable agricultural mulching films. The heating hydrolysis-extraction conditions and factors influencing the efficiency of homogeneous liquid-liquid microextraction, such as the type and volume of amine, homogeneous-phase and phase separation transition pH, and extraction time were investigated and optimized. The optimum heating hydrolysis-extraction conditions were found to be a H2SO4 concentration of 2.5 M, heating temperature of 87.8 °C, and hydrolysis-extraction time of 3.0 h. As a switchable hydrophilic solvent, dipropylamine does not require a dispersant. Vortex assistance is helpful to speed up the extraction. Under the optimum experimental conditions, this method exhibits a better linearity (0.0144~7.200 µg mL-1 with R = 0.9986), low limit of detection and quantification (0.0033 µg g-1 and 0.0103 µg g-1), high extraction recovery (92.5~105.4%), desirable intra- and inter-day precision (relative standard deviation less than 4.1% and 4.7%), and high enrichment factor (90.9). Finally, this method was successfully applied to detect the content of the additive 2, 6-DIPA in PBAT biodegradable agricultural mulching films, thus facilitating production process monitoring or safety assessments.


Asunto(s)
Aminas , Compuestos de Anilina , Cromatografía de Gases y Espectrometría de Masas , Interacciones Hidrofóbicas e Hidrofílicas , Microextracción en Fase Líquida , Solventes , Microextracción en Fase Líquida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Solventes/química , Aminas/química , Aminas/análisis , Compuestos de Anilina/química , Hidrólisis , Poliésteres/química
6.
J Biomed Mater Res B Appl Biomater ; 112(5): e35410, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38728112

RESUMEN

The dissipative particle dynamics (DPD) simulation was used to study the morphologies and structures of the paclitaxel-loaded PLA-b-PEO-b-PLA polymeric micelle. We focused on the influences of PLA block length, PLA-b-PEO-b-PLA copolymer concentration, paclitaxel drug content on morphologies and structures of the micelle. Our simulations show that: (i) with the PLA block length increase, the self-assemble structure of PLA-b-PEO-b-PLA copolymers with paclitaxel vary between onion-like structure (core-middle layer-shell) to spherical core-shell structure. The PEO shell thins and the size of the PLA core increases. The onionlike structures are comprised of the PEO hydrophilic core, the PLA hydrophobic middle layer, and the PEO hydrophilic shell, the distribution of the paclitaxel drug predominantly occurs within the hydrophobic intermediate layer; (ii) The system forms a spherical core-shell structure when a small amount of the drug is added, and within a certain range, the size of the spherical structure increases as the drug amount increases. When the drug contents (volume fraction) cdrug = 10%, it can be observed that the PLA4-b-PEO19-b-PLA4 spherical structures connect to form rod-shaped structures. With the length of PLA block NPLA = 8, as the paclitaxel drug concentrations cdrug = 4%, PEO has been insufficient to completely encapsulate the PLA and paclitaxel drug beads. To enhance drug loading capacity while maintaining stability of the system in aqueous solution, the optimal composition for loading paclitaxel is PLA4-b-PEO19-b-PLA4; the drug content is not higher than 4%; (iii) The paclitaxel-loaded PLA4-b-PEO19-b-PLA4 micelle undergo the transition from onionlike (core-middle layer-shell) to spherical (core-shell) to rod-shaped and lamellar structure as the PLA4-b-PEO19-b-PLA4 copolymer concentration increases from ccp = 10% to 40%.


Asunto(s)
Micelas , Paclitaxel , Poliésteres , Polietilenglicoles , Paclitaxel/química , Paclitaxel/farmacocinética , Polietilenglicoles/química , Poliésteres/química , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Portadores de Fármacos/química
7.
Int J Mol Sci ; 25(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732241

RESUMEN

Biodegradable (BP) poly(D,L-lactic acid) (PDLLA) membranes are widely used in tissue engineering. Here, we investigate the effects of varying concentrations of PDLLA/gelatin membranes electrospun in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP; C3H2F6O) solvent on their mechanical and physical properties as well as their biocompatibility. Regardless of the environmental conditions, increasing the gelatin content resulted in elevated stress and reduced strain at membrane failure. There was a remarkable difference in strain-to-failure between dry and wet PDLLA/gelatin membranes, with wet strains consistently higher than those of the dry membranes because of the hydrophilic nature of gelatin. A similar wet strain (εw = 2.7-3.0) was observed in PDLLA/gelatin membranes with a gelatin content between 10 and 40%. Both dry and wet stresses increased with increasing gelatin content. The dry stress on PDLLA/gelatin membranes (σd = 6.7-9.7 MPa) consistently exceeded the wet stress (σw = 4.5-8.6 MPa). The water uptake capacity (WUC) improved, increasing from 57% to 624% with the addition of 40% gelatin to PDLLA. PDLLA/gelatin hybrid membranes containing 10 to 20 wt% gelatin exhibited favorable wet mechanical properties (σw = 5.4-6.3 MPa; εw = 2.9-3.0); WUC (337-571%), degradability (11.4-20.2%), and excellent biocompatibility.


Asunto(s)
Gelatina , Membranas Artificiales , Poliésteres , Gelatina/química , Poliésteres/química , Materiales Biocompatibles/química , Ensayo de Materiales , Ingeniería de Tejidos/métodos , Agua/química , Estrés Mecánico , Humanos
8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731949

RESUMEN

To enrich the properties of polylactic acid (PLA)-based composite films and improve the base degradability, in this study, a certain amount of poly(propylene carbonate) (PPC) was added to PLA-based composite films, and PLA/PPC-based composite films were prepared by melt blending and hot-press molding. The effects of the introduction of PPC on the composite films were analyzed through in-depth studies on mechanical properties, water vapor and oxygen transmission rates, thermal analysis, compost degradability, and bacterial inhibition properties of the composite films. When the introduction ratio coefficient of PPC was 30%, the tensile strength of the composite film increased by 19.68%, the water vapor transmission coefficient decreased by 14.43%, and the oxygen transmission coefficient decreased by 18.31% compared to that of the composite film without PPC, the cold crystallization temperature of the composite film increased gradually from 96.9 °C to 104.8 °C, and PPC improved the crystallization ability of composite film. The degradation rate of the composite film with PPC increased significantly compared to the previous one, and the degradation rate increased with the increase in the PPC content. The degradation rate was 49.85% and 46.22% faster on average than that of the composite film without PPC when the degradation was carried out over 40 and 80 days; the composite film had certain inhibition, and the maximum diameter of the inhibition circle was 2.42 cm. This study provides a strategy for the development of PLA-based biodegradable laminates, which can promote the application of PLA-based laminates in food packaging.


Asunto(s)
Poliésteres , Propano/análogos & derivados , Resistencia a la Tracción , Poliésteres/química , Polipropilenos/química , Embalaje de Alimentos/métodos , Vapor , Polímeros/química , Antibacterianos/química , Antibacterianos/farmacología , Temperatura
9.
Anal Methods ; 16(19): 3131-3141, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38712986

RESUMEN

Plastics are ubiquitous in today's lifestyle, and their indiscriminate use has led to the accumulation of plastic waste in landfills and oceans. The waste accumulates and breaks into micro-particles that enter the food chain, causing severe threats to human health, wildlife, and the ecosystem. Environment-friendly and bio-based degradable materials offer a sustainable alternative to the vastly used synthetic materials. Here, a polylactic acid and carbon nanofiber-based membrane and a paper-based colorimetric sensor have been developed. The membrane had a surface area of 3.02 m2 g-1 and a pore size of 18.77 nm. The pores were evenly distributed with a pore volume of 0.0137 cm3 g-1. The membrane was evaluated in accordance with OECD guidelines and was found to be safe for tested aquatic and terrestrial models. The activated PLA-CNF membrane was further used as a bio-based electrode for the electrochemical detection of nitrates (NO3-) in water samples with a detection limit of 0.046 ppm and sensitivity of 1.69 × 10-4 A ppm-1 mm-2, whereas the developed paper-based colorimetric sensor had a detection limit of 156 ppm for NO3-. This study presents an environment-friendly, low-carbon footprint disposable material for sensing applications as a sustainable alternative to plastics.


Asunto(s)
Carbono , Colorimetría , Nanofibras , Nitratos , Papel , Poliésteres , Nanofibras/química , Colorimetría/métodos , Colorimetría/instrumentación , Nitratos/análisis , Nitratos/química , Poliésteres/química , Carbono/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Límite de Detección , Contaminantes Químicos del Agua/análisis , Conductividad Eléctrica , Membranas Artificiales
10.
ACS Appl Mater Interfaces ; 16(19): 24261-24273, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709741

RESUMEN

In this work, bioactive glass (BG) particles obtained by three different methods (melt-quenching, sol-gel, and sol-gel-EISA) were used as modifiers of polyphenol-loaded PCL-based composites. The composites were loaded with polyphenolic compounds (PPh) extracted from sage (Salvia officinalis L.). It was hypothesized that BG particles, due to their different textural properties (porosity, surface area) and surface chemistry (content of silanol groups), would act as an agent to control the release of polyphenols from PCL/BG composite films and other significant properties associated with and affected by the presence of PPh. The polyphenols improved the hydrophilicity, apatite-forming ability, and mechanical properties of the composites and provided antioxidant and anticancer activity. As the BG particles had different polyphenol-binding capacities, they modulated the kinetics of polyphenol release from the composites and the aforementioned properties to a great extent. Importantly, the PPh-loaded materials exhibited multifaceted and selective anticancer activity, including ROS-mediated cell cycle arrest and apoptosis of osteosarcoma (OS) cells (Saos-2) via Cdk2-, GADD45G-, and caspase-3/7-dependent pathways. The materials showed a cytotoxic and antiproliferative effect on cancerous osteoblasts but not on normal human osteoblasts. These results suggest that the composites have great potential as biomaterials for treating bone defects, particularly following surgical removal of OS tumors.


Asunto(s)
Antineoplásicos , Vidrio , Polifenoles , Polifenoles/química , Polifenoles/farmacología , Humanos , Vidrio/química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Poliésteres/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Antioxidantes/química , Antioxidantes/farmacología
11.
Biomed Mater ; 19(4)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38729192

RESUMEN

In this study, we coated electrospun polycaprolactone (PCL) fibers with polydopamine (PDA) to modify their hydrophobicity and fabricated a matrix for culturing mesenchymal stem cells (MSCs). Additionally, we incorporated Arg-Gly-Asp (RGD) peptides into PDA to enhance MSCs culture performance on PCL fibers. PDA and RGD were successfully coated in one step by immersing the electrospun fibers in a coating solution, without requiring an additional surface activation process. The characteristics of functionalized PCL fibers were analyzed by scanning electron microscopy with energy-dispersive x-ray analysis, Fourier transform infrared spectroscopy, water contact angle measurement, and fluorescence measurements using a carboxylic-modified fluorescent microsphere. MSCs cultured on the modified PCL fibers demonstrated enhanced cell adhesion, proliferation, and osteogenic- and chondrogenic differentiation. This study provides insight into potential applications for scaffold fabrication in MSCs-based tissue engineering, wound dressing, implantation, and a deeper understanding of MSCs behaviorin vitro.


Asunto(s)
Adhesión Celular , Diferenciación Celular , Proliferación Celular , Indoles , Células Madre Mesenquimatosas , Osteogénesis , Poliésteres , Polímeros , Ingeniería de Tejidos , Andamios del Tejido , Células Madre Mesenquimatosas/citología , Humanos , Polímeros/química , Indoles/química , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Poliésteres/química , Osteogénesis/efectos de los fármacos , Células Cultivadas , Oligopéptidos/química , Oligopéptidos/farmacología , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Condrogénesis/efectos de los fármacos , Técnicas de Cultivo de Célula , Interacciones Hidrofóbicas e Hidrofílicas
12.
Biomed Mater ; 19(4)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38756029

RESUMEN

Hard tissue engineering scaffolds especially 3D printed scaffolds were considered an excellent strategy for craniomaxillofacial hard tissue regeneration, involving crania and facial bones and teeth. Porcine treated dentin matrix (pTDM) as xenogeneic extracellular matrix has the potential to promote the stem cell differentiation and mineralization as it contains plenty of bioactive factors similar with human-derived dentin tissue. However, its application might be impeded by the foreign body response induced by the damage-associated molecular patterns of pTDM, which would cause strong inflammation and hinder the regeneration. Ceria nanoparticles (CNPs) show a great promise at protecting tissue from oxidative stress and influence the macrophages polarization. Using 3D-bioprinting technology, we fabricated a xenogeneic hard tissue scaffold based on pTDM xenogeneic TDM-polycaprolactone (xTDM/PCL) and we modified the scaffolds by CNPs (xTDM/PCL/CNPs). Through series ofin vitroverification, we found xTDM/PCL/CNPs scaffolds held promise at up-regulating the expression of osteogenesis and odontogenesis related genes including collagen type 1, Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein-2, osteoprotegerin, alkaline phosphatase (ALP) and DMP1 and inducing macrophages to polarize to M2 phenotype. Regeneration of bone tissues was further evaluated in rats by conducting the models of mandibular and skull bone defects. Thein vivoevaluation showed that xTDM/PCL/CNPs scaffolds could promote the bone tissue regeneration by up-regulating the expression of osteogenic genes involving ALP, RUNX2 and bone sialoprotein 2 and macrophage polarization into M2. Regeneration of teeth evaluated on beagles demonstrated that xTDM/PCL/CNPs scaffolds expedited the calcification inside the scaffolds and helped form periodontal ligament-like tissues surrounding the scaffolds.


Asunto(s)
Cerio , Matriz Extracelular , Nanopartículas , Osteogénesis , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Animales , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Porcinos , Matriz Extracelular/metabolismo , Cerio/química , Nanopartículas/química , Ratas , Poliésteres/química , Dentina/química , Humanos , Regeneración Ósea/efectos de los fármacos , Odontogénesis , Diferenciación Celular , Regeneración , Macrófagos/metabolismo , Cráneo , Ratas Sprague-Dawley
13.
Sci Rep ; 14(1): 11093, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750188

RESUMEN

A chronic nonhealing wound poses a significant risk for infection and subsequent health complications, potentially endangering the patient's well-being. Therefore, effective wound dressings must meet several crucial criteria, including: (1) eliminating bacterial pathogen growth within the wound, (2) forming a barrier against airborne microbes, (3) promoting cell proliferation, (4) facilitating tissue repair. In this study, we synthesized 8 ± 3 nm Ag NP with maleic acid and incorporated them into an electrospun polycaprolactone (PCL) matrix with 1.6 and 3.4 µm fiber sizes. The Ag NPs were anchored to the matrix via electrospraying water-soluble poly(vinyl) alcohol (PVA), reducing the average sphere size from 750 to 610 nm in the presence of Ag NPs. Increasing the electrospraying time of Ag NP-treated PVA spheres demonstrated a more pronounced antibacterial effect. The resultant silver-based material exhibited 100% inhibition of gram-negative Escherichia coli and gram-positive Staphylococcus aureus growth within 6 h while showing non-cytotoxic effects on the Vero cell line. We mainly discuss the preparation method aspects of the membrane, its antibacterial properties, and cytotoxicity, suggesting that combining these processes holds promise for various medical applications.


Asunto(s)
Antibacterianos , Materiales Biocompatibles , Escherichia coli , Poliésteres , Alcohol Polivinílico , Plata , Staphylococcus aureus , Alcohol Polivinílico/química , Alcohol Polivinílico/farmacología , Plata/química , Plata/farmacología , Poliésteres/química , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Células Vero , Animales , Chlorocebus aethiops , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Nanopartículas del Metal/química , Andamios del Tejido/química , Pruebas de Sensibilidad Microbiana
14.
ACS Appl Bio Mater ; 7(5): 3316-3329, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38691017

RESUMEN

Basic fibroblast growth factor (bFGF) plays an important role in active wound repair. However, the existing dosage forms in clinical applications are mainly sprays and freeze-dried powders, which are prone to inactivation and cannot achieve a controlled release. In this study, a bioactive wound dressing named bFGF-ATP-Zn/polycaprolactone (PCL) nanodressing with a "core-shell" structure was fabricated by emulsion electrospinning, enabling the sustained release of bFGF. Based on the coordination and electrostatic interactions among bFGF, ATP, and Zn2+, as well as their synergistic effect on promoting wound healing, a bFGF-ATP-Zn ternary combination system was prepared with higher cell proliferation activity and used as the water phase for emulsion electrospinning. The bFGF-ATP-Zn/PCL nanodressing demonstrated improved mechanical properties, sustained release of bFGF, cytocompatibility, and hemocompatibility. It increased the proliferation activity of human dermal fibroblasts (HDFs) and enhanced collagen secretion by 1.39 and 3.45 times, respectively, while reducing the hemolysis rate to 3.13%. The application of the bFGF-ATP-Zn/PCL nanodressing in mouse full-thickness skin defect repair showed its ability to accelerate wound healing and reduce wound scarring within 14 days. These results provide a research basis for the development and application of this bioactive wound dressing product.


Asunto(s)
Adenosina Trifosfato , Materiales Biocompatibles , Proliferación Celular , Emulsiones , Factor 2 de Crecimiento de Fibroblastos , Ensayo de Materiales , Cicatrización de Heridas , Zinc , Cicatrización de Heridas/efectos de los fármacos , Emulsiones/química , Animales , Zinc/química , Zinc/farmacología , Humanos , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/farmacología , Ratones , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Proliferación Celular/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Tamaño de la Partícula , Fibroblastos/efectos de los fármacos , Poliésteres/química , Poliésteres/farmacología , Vendajes
15.
J Nanobiotechnology ; 22(1): 250, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750519

RESUMEN

The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.


Asunto(s)
Regeneración Ósea , Fosfatos de Calcio , Osteogénesis , Osteosarcoma , Andamios del Tejido , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Animales , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Conejos , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Osteogénesis/efectos de los fármacos , Poliésteres/química , Humanos , Diferenciación Celular/efectos de los fármacos , Neoplasias Óseas/patología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/terapia , Línea Celular Tumoral , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Células de Schwann/efectos de los fármacos , Nanofibras/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Selenio/química , Selenio/farmacología
16.
Water Environ Res ; 96(5): e11040, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38752384

RESUMEN

In this study, a pyrite-based autotrophic denitrification (PAD) system, a polycaprolactone (PCL)-supported heterotrophic denitrification (PHD) system, and a pyrite+PCL-based split-mixotrophic denitrification (PPMD) system were constructed. The pyrite particle size was controlled in 1-3, 3-5, or 5-8 mm in both the PAD and PPMD systems to investigate the effect of pyrite particle size on the denitrification performance of autotrophic or split-mixotrophic bioreactors. It was found that the PAD system achieved the best denitrification efficiency with an average removal rate of 98.98% in the treatment of 1- to 3-mm particle size, whereas it was only 19.24% in the treatment of 5- to 8-mm particle size. At different phases of the whole experiment, the nitrate removal rates of both the PHD and PPMD systems remained stable at a high level (>94%). Compared with the PAD or PHD system, the PPMD system reduced the concentrations of sulfate and chemical oxygen demand in the final effluent efficiently. The interconnection network diagram explained the intrinsic metabolic pathways of nitrogen, sulfur, and carbon in the three denitrification systems at different phases. In addition, the microbial community analysis showed that the PPMD system was beneficial for the enrichment of Firmicutes. Finally, the impact mechanism of pyrite particle size on the performance of the PPMD system was proposed. PRACTITIONER POINTS: The reduction of pyrite particle size was beneficial for improving the efficiency of the PAD process. The change in particle size had an effect on NO2 --N accumulation in the PAD system. The accumulation of NH4 +-N in the PPMD system increased with the decrease in particle size. The reduction of pyrite particle size increased the production of SO4 2- in the PAD and PPMD systems. The correlations among the effluent indicators of the PAD and PPMD systems could be well explained.


Asunto(s)
Reactores Biológicos , Desnitrificación , Hierro , Tamaño de la Partícula , Poliésteres , Sulfuros , Sulfuros/química , Sulfuros/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Hierro/química , Hierro/metabolismo , Procesos Autotróficos , Nitratos/metabolismo , Nitratos/química
17.
ACS Appl Bio Mater ; 7(4): 2569-2581, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38570335

RESUMEN

Chronic wounds impose a significant burden on individuals and healthcare systems, necessitating the development of advanced wound management strategies. Tissue engineering, with its ability to create scaffolds that mimic native tissue structures and promote cellular responses, offers a promising approach. Electrospinning, a widely used technique, can fabricate nanofibrous scaffolds for tissue regeneration. In this study, we developed patterned nanofibrous scaffolds using a blend of poly(ε-caprolactone) (PCL) and poly(glycerol sebacate) (PGS), known for their biocompatibility and biodegradability. By employing a mesh collector, we achieved a unique fiber orientation pattern that emulated the natural tissue architecture. The average fiber diameter of PGS/PCL collected on aluminum foil and on mesh was found to be 665.2 ± 4 and 404.8 ± 16 nm, respectively. To enhance the scaffolds' bioactivity and surface properties, it was coated with hyaluronic acid (HA), a key component of the extracellular matrix known for its wound-healing properties. The HA coating improved the scaffold hydrophilicity and surface wettability, facilitating cell attachment, spreading, and migration. Furthermore, the HA-coated scaffold exhibited enhanced biocompatibility, promoting cell viability and proliferation. High-throughput RNA sequencing was performed to analyze the influence of the fabricated scaffold on the gene expression levels of endothelial cells. The top-upregulated biological processes and pathways include cell cycle regulation and cell proliferation. The results revealed significant alterations in gene expression profiles, indicating the scaffold's ability to modulate cellular functions and promote wound healing processes. The developed scaffold holds great promise for advanced wound management and tissue regeneration applications. By harnessing the advantages of aligned nanofibers, biocompatible polymers, and HA coating, this scaffold represents a potential solution for improving wound healing outcomes and improving the quality of life for individuals suffering from chronic wounds.


Asunto(s)
Nanofibras , Andamios del Tejido , Humanos , Andamios del Tejido/química , Nanofibras/química , Ácido Hialurónico/farmacología , Poliésteres/farmacología , Poliésteres/química , Células Endoteliales , Transcriptoma , Calidad de Vida
18.
Biotechnol J ; 19(4): e2300723, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622797

RESUMEN

Polyurethane (PU) is a complex polymer synthesized from polyols and isocyanates. It contains urethane bonds that resist hydrolysis, which decreases the efficiency of biodegradation. In this study, we first expressed the amidase GatA250, and then, assessed the enzymatic characterization of GatA250 and its efficiency in degrading the polyester-PU. GatA250 degraded self-synthesized thermoplastic PU film and postconsumption foam with degradation efficiency of 8.17% and 4.29%, respectively. During the degradation, the film released 14.8 µm 4,4'-methylenedianiline (MDA), but 1,4-butanediol (BDO) and adipic acid (AA) were not released. Our findings indicated that GatA250 only cleaved urethane bonds in PU, and the degradation efficiency was extremely low. Hence, we introduced the cutinase LCC, which possesses hydrolytic activity on the ester bonds in PU, and then used both enzymes simultaneously to degrade the polyester-PU. The combined system (LCC-GatA250) had higher degradation efficiency for the degradation of PU film (42.2%) and foam (13.94%). The combined system also showed a 1.80 time increase in the production of the monomer MDA, and a 1.23 and 3.62 times increase in the production of AA and BDO, respectively, compared to their production recorded after treatment with only GatA250 or LCC. This study provides valuable insights into PU pollution control and also proposes applicable solutions to manage PU wastes through bio-recycling.


Asunto(s)
Compuestos de Anilina , Hidrolasas de Éster Carboxílico , Poliésteres , Poliuretanos , Poliésteres/química , Amidohidrolasas
19.
J Neural Eng ; 21(2)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572924

RESUMEN

Objective. Artificial nerve scaffolds composed of polymers have attracted great attention as an alternative for autologous nerve grafts recently. Due to their poor bioactivity, satisfactory nerve repair could not be achieved. To solve this problem, we introduced extracellular matrix (ECM) to optimize the materials.Approach.In this study, the ECM extracted from porcine nerves was mixed with Poly(L-Lactide-co-ϵ-caprolactone) (PLCL), and the innovative PLCL/ECM nerve repair conduits were prepared by electrostatic spinning technology. The novel conduits were characterized by scanning electron microscopy (SEM), tensile properties, and suture retention strength test for micromorphology and mechanical strength. The biosafety and biocompatibility of PLCL/ECM nerve conduits were evaluated by cytotoxicity assay with Mouse fibroblast cells and cell adhesion assay with RSC 96 cells, and the effects of PLCL/ECM nerve conduits on the gene expression in Schwann cells was analyzed by real-time polymerase chain reaction (RT-PCR). Moreover, a 10 mm rat (Male Wistar rat) sciatic defect was bridged with a PLCL/ECM nerve conduit, and nerve regeneration was evaluated by walking track, mid-shank circumference, electrophysiology, and histomorphology analyses.Main results.The results showed that PLCL/ECM conduits have similar microstructure and mechanical strength compared with PLCL conduits. The cytotoxicity assay demonstrates better biosafety and biocompatibility of PLCL/ECM nerve conduits. And the cell adhesion assay further verifies that the addition of ECM is more beneficial to cell adhesion and proliferation. RT-PCR showed that the PLCL/ECM nerve conduit was more favorable to the gene expression of functional proteins of Schwann cells. Thein vivoresults indicated that PLCL/ECM nerve conduits possess excellent biocompatibility and exhibit a superior capacity to promote peripheral nerve repair.Significance.The addition of ECM significantly improved the biocompatibility and bioactivity of PLCL, while the PLCL/ECM nerve conduit gained the appropriate mechanical strength from PLCL, which has great potential for clinical repair of peripheral nerve injuries.


Asunto(s)
Matriz Extracelular , Nervio Ciático , Animales , Masculino , Ratones , Ratas , Regeneración Nerviosa/fisiología , Poliésteres/química , Ratas Wistar , Nervio Ciático/fisiología , Electricidad Estática , Porcinos , Andamios del Tejido/química
20.
Biotechnol J ; 19(4): e2400053, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38593303

RESUMEN

The rapid escalation of plastic waste accumulation presents a significant threat of the modern world, demanding an immediate solution. Over the last years, utilization of the enzymatic machinery of various microorganisms has emerged as an environmentally friendly asset in tackling this pressing global challenge. Thus, various hydrolases have been demonstrated to effectively degrade polyesters. Plastic waste streams often consist of a variety of different polyesters, as impurities, mainly due to wrong disposal practices, rendering recycling process challenging. The elucidation of the selective degradation of polyesters by hydrolases could offer a proper solution to this problem, enhancing the recyclability performance. Towards this, our study focused on the investigation of four bacterial polyesterases, including DaPUase, IsPETase, PfPHOase, and Se1JFR, a novel PETase-like lipase. The enzymes, which were biochemically characterized and structurally analyzed, demonstrated degradation ability of synthetic plastics. While a consistent pattern of polyesters' degradation was observed across all enzymes, Se1JFR stood out in the degradation of PBS, PLA, and polyether PU. Additionally, it exhibited comparable results to IsPETase, a benchmark mesophilic PETase, in the degradation of PCL and semi-crystalline PET. Our results point out the wide substrate spectrum of bacterial hydrolases and underscore the significant potential of PETase-like enzymes in polyesters degradation.


Asunto(s)
Hidrolasas , Poliésteres , Hidrolasas/metabolismo , Poliésteres/química , Bacterias/metabolismo , Lipasa , Tereftalatos Polietilenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...