Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.242
Filtrar
1.
J Orthop Surg (Hong Kong) ; 32(2): 10225536241251926, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38733065

RESUMEN

AIM: To explore the effects of tibial osteotomy varus angle combined with posterior tibial slope (PTS) on the stress of polyethylene liner in total knee arthroplasty (TKA) by building finite element model (FEM). METHODS: Established the FEM of standard TKA with tibial osteotomy varus angle 0° to 9° were established and divided into 10 groups. Next, each group was created 10 FEMs with 0° to 9° PTS separately. Calculated the stress on polyethylene liner in each group in Abaqus. Finally, the relevancy between tibial osteotomy angle and polyethylene liner stress was statistically analyzed using multiple regression analysis. RESULTS: As the varus angle increased, the area of maximum stress gradually shifted medially on the polyethylene liner. As the PTS increases, the percentage of surface contact forces on the medial and lateral compartmental of the polyethylene liner gradually converge to the same. When the varus angle is between 0° and 3°, the maximum stress of the medial compartmental surfaces of polyethylene liner rises smoothly with the increase of the PTS. When the varus angle is between 4° and 9°, as the increase of the PTS, the maximum stress of polyethylene liner rises first and then falls, forming a trough at PTS 5° and then rises again. Compared to the PTS, the varus angle has a large effect on the maximum stress of the polyethylene liner (p < .001). CONCLUSION: When the varus angle is 0° to 3°, PTS 0° is recommended, which will result in a more equalized stress distribution of the polyethylene liner in TKA.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Análisis de Elementos Finitos , Prótesis de la Rodilla , Osteotomía , Polietileno , Estrés Mecánico , Tibia , Humanos , Artroplastia de Reemplazo de Rodilla/métodos , Osteotomía/métodos , Tibia/cirugía , Diseño de Prótesis
2.
J Orthop Traumatol ; 25(1): 24, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704499

RESUMEN

BACKGROUND: This retrospective medium-term follow-up study compares the outcomes of medial fixed-bearing unicompartmental knee arthroplasty (mUKA) using a cemented metal-backed (MB) or an all-polyethylene (AP) tibial component. MATERIALS AND METHODS: The database of our institution was mined for primary mUKA patients implanted with an MB or an AP tibial component (the MB-UKA and AP-UKA groups, respectively) from 2015 to 2018. We compared patient demographics, patient-reported outcome measures (PROMs), and motion analysis data obtained with the Riablo™ system (CoRehab, Trento, Italy). We conducted propensity-score-matching (PSM) analysis (1:1) using multiple variables. RESULTS: PSM analysis yielded 77 pairs of MB-UKA and AP-UKA patients. At 5 years, the physical component summary (PCS) score was 52.4 ± 8.3 in MB-UKA and 48.2 ± 8.3 in AP-UKA patients (p < 0.001). The Forgotten Joint Score (FJS-12) was 82.9 ± 18.8 in MB-UKAs and 73.4 ± 22.5 in AP-UKAs (p = 0.015). Tibial pain was reported by 7.8% of the MB-UKA and 35.1% of the AP-UKA patients (p < 0.001). Static postural sway was, respectively, 3.9 ± 2.1 cm and 5.4 ± 2.3 (p = 0.0002), and gait symmetry was, respectively, 92.7% ± 3.7 cm and 90.4% ± 5.4 cm (p = 0.006). Patient satisfaction was 9.2 ± 0.8 in the MB-UKA and 8.3 ± 2.0 in the AP-UKA group (p < 0.003). CONCLUSIONS: MB-UKA patients experienced significantly better 5-year static sway and gait symmetry outcomes than AP-UKA patients. Although the PROMs of the two groups overlapped, MB-UKA patients had a lower incidence of tibial pain, better FJS-12 and PCS scores, and were more satisfied.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Prótesis de la Rodilla , Metales , Medición de Resultados Informados por el Paciente , Puntaje de Propensión , Diseño de Prótesis , Humanos , Estudios Retrospectivos , Masculino , Femenino , Artroplastia de Reemplazo de Rodilla/métodos , Anciano , Estudios de Seguimiento , Persona de Mediana Edad , Tibia/cirugía , Polietileno , Resultado del Tratamiento , Osteoartritis de la Rodilla/cirugía
3.
Environ Geochem Health ; 46(6): 189, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695970

RESUMEN

The potential effect of microplastics is an increasingly growing environmental issue. However, very little is known regarding the impact of microplastics on the vermicomposting process. The present study explored the effect of non-biodegradable (low density polyethylene; LDPE) and biodegradable (polybutylene succinate-co-adipate; PBSA) microplastics on earthworm Eisenia fetida during vermicomposting of cow dung. For this, earthworms were exposed to different concentrations (0, 0.5, 1 and 2%) of LDPE and PBSA of 2 mm size. The cow dung supported the growth and hatchlings of earthworms, and the toxicity effect of both LDPE and PBSA microplastics on Eisenia fetida was analyzed. Microplastics decreased the body weight of earthworms and there was no impact on hatchlings. The body weight of earthworm decreased from 0 to 60th day by 18.18% in 0.5% of LDPE treatment, 5.42% in 1% of LDPE, 20.58% in 2% of LDPE, 19.99% in 0.5% of PBSA, 15.09% in 1% of PBSA and 16.36% in 2% of PBSA. The physico-chemical parameters [pH (8.55-8.66), electrical conductivity (0.93-1.02 (S/m), organic matter (77.6-75.8%), total nitrogen (3.95-4.25 mg/kg) and total phosphorus (1.16-1.22 mg/kg)] do not show much significant changes with varying microplastics concentrations. Results of SEM and FTIR-ATR analysis observed the surface damage of earthworms, morphological and biochemical changes at higher concentrations of both LDPE and PBSA. The findings of the present study contribute to a better understanding of microplastics in vermicomposting system.


Asunto(s)
Microplásticos , Oligoquetos , Contaminantes del Suelo , Animales , Oligoquetos/efectos de los fármacos , Microplásticos/toxicidad , Contaminantes del Suelo/toxicidad , Compostaje , Polietileno/toxicidad , Plásticos Biodegradables
4.
Sensors (Basel) ; 24(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38733034

RESUMEN

INTRODUCTION: The choice of materials for covering plantar orthoses or wearable insoles is often based on their hardness, breathability, and moisture absorption capacity, although more due to professional preference than clear scientific criteria. An analysis of the thermal response to the use of these materials would provide information about their behavior; hence, the objective of this study was to assess the temperature of three lining materials with different characteristics. MATERIALS AND METHODS: The temperature of three materials for covering plantar orthoses was analyzed in a sample of 36 subjects (15 men and 21 women, aged 24.6 ± 8.2 years, mass 67.1 ± 13.6 kg, and height 1.7 ± 0.09 m). Temperature was measured before and after 3 h of use in clinical activities, using a polyethylene foam copolymer (PE), ethylene vinyl acetate (EVA), and PE-EVA copolymer foam insole with the use of a FLIR E60BX thermal camera. RESULTS: In the PE copolymer (material 1), temperature increases between 1.07 and 1.85 °C were found after activity, with these differences being statistically significant in all regions of interest (p < 0.001), except for the first toe (0.36 °C, p = 0.170). In the EVA foam (material 2) and the expansive foam of the PE-EVA copolymer (material 3), the temperatures were also significantly higher in all analyzed areas (p < 0.001), ranging between 1.49 and 2.73 °C for EVA and 0.58 and 2.16 °C for PE-EVA. The PE copolymer experienced lower overall overheating, and the area of the fifth metatarsal head underwent the greatest temperature increase, regardless of the material analyzed. CONCLUSIONS: PE foam lining materials, with lower density or an open-cell structure, would be preferred for controlling temperature rise in the lining/footbed interface and providing better thermal comfort for users. The area of the first toe was found to be the least overheated, while the fifth metatarsal head increased the most in temperature. This should be considered in the design of new wearables to avoid excessive temperatures due to the lining materials.


Asunto(s)
Ortesis del Pié , Temperatura , Humanos , Femenino , Masculino , Adulto , Adulto Joven , Polivinilos/química , Polietileno/química , Polímeros/química , Ensayo de Materiales
5.
J Hazard Mater ; 471: 134343, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640671

RESUMEN

Microplastics are a growing concern in mangrove ecosystems; however, their effects on archaeal communities and related ecological processes remain unclear. We conducted in situ biofilm-enrichment experiments to investigate the ecological influence of polyethylene (PE) and polypropylene microplastics on archaeal communities in the sediments of mangrove ecosystems. The archaeal community present on microplastics was distinct from that of the surrounding sediments at an early stage but became increasingly similar over time. Bathyarchaeota, Thaumarchaeota, Euryarchaeota, and Asgardaeota were the most abundant phyla. Methanolobus, an archaeal biomarker, was enriched in PE biofilms, and significantly controlled by homogeneous selection in the plastisphere, indicating an increased potential risk of methane emission. The dominant archaeal assembly process in the sediments was deterministic (58.85%-70.47%), while that of the PE biofilm changed from stochastic to deterministic during the experiment. The network of PE plastispheres showed less complexity and competitive links, and higher modularity and stability than that of sediments. Functional prediction showed an increase in aerobic ammonia oxidation during the experiment, whereas methanogenesis and chemoheterotrophy were significantly higher in the plastisphere. This study provides novel insights into the impact of microplastic pollution on archaeal communities and their mediating ecological functions in mangrove ecosystems.


Asunto(s)
Archaea , Biopelículas , Sedimentos Geológicos , Microplásticos , Polietileno , Polipropilenos , Humedales , Archaea/efectos de los fármacos , Archaea/metabolismo , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Microplásticos/toxicidad , Biopelículas/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Ecosistema
6.
J Hazard Mater ; 471: 134328, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38643575

RESUMEN

The microbial degradation of polyethylene (PE) and polypropylene (PP) resins in rivers and lakes has emerged as a crucial issue in the management of microplastics. This study revealed that as the flow rate decreased longitudinally, ammonia nitrogen (NH4+-N), heavy fraction of organic carbon (HFOC), and small-size microplastics (< 1 mm) gradually accumulated in the deep and downstream estuarine sediments. Based on their surface morphology and carbonyl index, these sediments were identified as the potential hot zone for PE/PP degradation. Within the identified hot zone, concentrations of PE/PP-degrading genes, enzymes, and bacteria were significantly elevated compared to other zones, exhibiting strong intercorrelations. Analysis of niche differences revealed that the accumulation of NH4+-N and HFOC in the hot zone facilitated the synergistic coexistence of key bacteria responsible for PE/PP degradation within biofilms. The findings of this study offer a novel insight and comprehensive understanding of the distribution characteristics and synergistic degradation potential of PE/PP in natural freshwater environments.


Asunto(s)
Bacterias , Biodegradación Ambiental , Sedimentos Geológicos , Polietileno , Polipropilenos , Contaminantes Químicos del Agua , Polipropilenos/química , Polietileno/química , Polietileno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Bacterias/metabolismo , Bacterias/genética , Microplásticos/toxicidad , Microplásticos/metabolismo , Agua Dulce/microbiología , Estuarios
7.
J Hazard Mater ; 471: 134333, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38643581

RESUMEN

Microplastics (MPs) are emerging contaminants found globally. However, their effects on soil-plant systems in salt-affected habitats remain unknown. Here, we examined the effects of polyethylene (PE) and polylactic acid (PLA) on soil properties, maize performance, and bacterial communities in soils with different salinity levels. Overall, MPs decreased soil electrical conductivity and increased NH4+-N and NO3--N contents. Adding NaCl alone had promoting and inhibitive effects on plant growth in a concentration-dependent manner. Overall, the addition of 0.2% PLA increased shoot biomass, while 2% PLA decreased it. Salinity increased Na content and decreased K/Na ratio in plant tissues (particularly roots), which were further modified by MPs. NaCl and MPs singly and jointly regulated the expression of functional genes related to salt tolerance in leaves, including ZMSOS1, ZMHKT1, and ZMHAK1. Exposure to NaCl alone had a slight effect on soil bacterial α-diversity, but in most cases, MPs increased ACE, Chao1, and Shannon indexes. Both MPs and NaCl altered bacterial community composition, although the specific effects varied depending on the type and concentration of MPs and the salinity level. Overall, PLA had more pronounced effects on soil-plant systems compared to PE. These findings bridge knowledge gaps in the risks of MPs in salt-affected habitats.


Asunto(s)
Bacterias , Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Zea mays , Contaminantes del Suelo/toxicidad , Suelo/química , Microplásticos/toxicidad , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Bacterias/clasificación , Cloruro de Sodio/toxicidad , Poliésteres , Salinidad , Polietileno , Microbiota/efectos de los fármacos
8.
Chemosphere ; 355: 141813, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575082

RESUMEN

The environmental presence of nano- and micro-plastic particles (NMPs) is suspected to have a negative impact on human health. Environmental NMPs are difficult to sample and use in life science research, while commercially available plastic particles are too morphologically uniform. Additionally, this NMPs exposure exhibited biological effects, including cell internalization, oxidative stress, inflammation, cellular adaptation, and genotoxicity. Therefore, developing new methods for producing heterogenous NMPs as observed in the environment is important as reference materials for research. Thus, we aimed to generate and characterize NMPs suspensions using a modified ultrasonic protocol and to investigate their biological effects after exposure to different human cell lines. To this end, we produced polyethylene terephthalate (PET) NMPs suspensions and characterized the particles by dynamic light scattering and scanning electron microscopy. Ultrasound treatment induced polymer degradation into smaller and heterogeneous PET NMPs shape fragments with similar surface chemistry before and after treatment. A polydisperse suspension of PET NMPs with 781 nm in average size and negative surface charge was generated. Then, the PET NMPs were cultured with two human cell lines, A549 (lung) and HaCaT (skin), addressing inhalation and topical exposure routes. Both cell lines interacted with and have taken up PET NMPs as quantified via cellular granularity assay. A549 but not HaCaT cell metabolism, viability, and cell death were affected by PET NMPs. In HaCaT keratinocytes, large PET NMPs provoked genotoxic effects. In both cell lines, PET NMPs exposure affected oxidative stress, cytokine release, and cell morphology, independently of concentration, which we could relate mechanistically to Nrf2 and autophagy activation. Collectively, we present a new PET NMP generation model suitable for studying the environmental and biological consequences of exposure to this polymer.


Asunto(s)
Microplásticos , Tereftalatos Polietilenos , Humanos , Tereftalatos Polietilenos/toxicidad , Polímeros , Inflamación/inducido químicamente , Estrés Oxidativo , Autofagia , Plásticos , Polietileno
9.
Chemosphere ; 357: 141961, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615954

RESUMEN

Microplastics (MPs) poses a significant threat to ecosystems and human health, demanding immediate attention. The reported research work offers an effective and low cost method towards the detection of toxic MPs. In this study, hydrophobic cerium oxide nanoparticles (CeO2 NPs) are synthesized and applied as promising electrode material for the detection of two different types of MPs, i.e. polyethylene (PE) and polypropylene (PP). Through electrochemical analyses, such as cyclic voltammetry (CV) and linear sweep voltammetry (LSV), hydrophobic CeO2 NPs modified glassy carbon electrode (GCE) based sensor demonstrated remarkable sensitivity of ∼0.0343 AmLmg-1cm-2 and detection limit of ∼0.226 mgmL-1, with promising correlation coefficient (R2) towards the detection of PE (∼27-32 µm). Furthermore, hydrophobic CeO2 NPs modified GCE exhibited promising stability and reproducibility towards PE (∼27-32 µm), suggesting the promising potential of hydrophobic CeO2 NPs as electrode materials for an electrochemical microplastics detection.


Asunto(s)
Cerio , Monitoreo del Ambiente , Interacciones Hidrofóbicas e Hidrofílicas , Microplásticos , Contaminantes Químicos del Agua , Cerio/química , Contaminantes Químicos del Agua/análisis , Microplásticos/análisis , Monitoreo del Ambiente/métodos , Nanopartículas/química , Técnicas Electroquímicas/métodos , Electrodos , Polietileno/química , Reproducibilidad de los Resultados , Nanopartículas del Metal/química , Polipropilenos/química , Límite de Detección
11.
Acta Orthop ; 95: 174-179, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629902

RESUMEN

BACKGROUND AND PURPOSE: Concerns have emerged regarding elevated levels of cobalt and chromium in patients with metal-on-metal megaprostheses. This prospective study aims to identify systemic cobalt and chromium levels in metal-on-polyethylene knee and hip megaprostheses and their associations with other factors. METHODS: 56 patients underwent knee or hip megaprosthesis surgery at 2 sarcoma centers. Serum cobalt and chromium levels were measured preoperatively and thrice within the first year using inductively coupled plasma mass spectrometry. RESULTS: A statistically significant difference in serum cobalt levels (1.4 ppb; 95% confidence interval [CI] 0.0-3.3) was observed 1 year after knee megaprosthesis surgery compared with preoperative levels. In contrast no difference in chromium levels was observed after 1 year compared with preoperative levels (0.05 ppb; CI 0.0-0.8). An association between younger age, higher eGFR, and increased cobalt levels was observed. No significant correlations were found between ion levels and resection length or the number of modular connections. CONCLUSION: We found elevated serum ion levels in metal-on-polyethylene knee megaprostheses in contrast to metal-on-polyethylene hip megaprostheses. Furthermore, a positive correlation between cobalt and chromium levels, and between cobalt and eGFR was identified, along with a negative correlation between cobalt and age. This study highlights the importance of monitoring systemic cobalt and chromium levels in patients with megaprostheses.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Humanos , Cobalto , Estudios Prospectivos , Polietileno , Estudios de Cohortes , Prótesis de Cadera/efectos adversos , Metales , Cromo , Artroplastia de Reemplazo de Cadera/métodos , Diseño de Prótesis
12.
Environ Int ; 186: 108635, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38631261

RESUMEN

To overcome ethical and technical challenges impeding the study of human dermal uptake of chemical additives present in microplastics (MPs), we employed 3D human skin equivalent (3D-HSE) models to provide first insights into the dermal bioavailability of polybrominated diphenyl ether (PBDEs) present in MPs; and evaluated different factors influencing human percutaneous absorption of PBDEs under real-life exposure scenario. PBDEs were bioavailable to varying degrees (up to 8 % of the exposure dose) and percutaneous permeation was evident, albeit at low levels (≤0.1 % of the exposure dose). While the polymer type influenced the release of PBDEs from the studied MPs to the skin, the polymer type was less important in driving the percutaneous absorption of PBDEs. The absorbed fraction of PBDEs was strongly correlated (r2 = 0.88) with their water solubility, while the dermal permeation coefficient Papp of PBDEs showed strong association with their molecular weight and logKOW. More sweaty skin resulted in higher bioavailability of PBDEs from dermal contact with MPs than dry skin. Overall, percutaneous absorption of PBDEs upon skin contact with MPs was evident, highlighting, for the first time, the potential significance of the dermal pathway as an important route of human exposure to toxic additive chemicals in MPs.


Asunto(s)
Retardadores de Llama , Éteres Difenilos Halogenados , Microplásticos , Polietileno , Polipropilenos , Absorción Cutánea , Humanos , Éteres Difenilos Halogenados/farmacocinética , Piel/metabolismo , Modelos Biológicos
13.
Ecotoxicol Environ Saf ; 276: 116296, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593498

RESUMEN

Microplastics (MPs), which are prevalent and increasingly accumulating in aquatic environments. Other pollutants coexist with MPs in the water, such as pesticides, and may be carried or transferred to aquatic organisms, posing unpredictable ecological risks. This study sought to assess the adsorption of lambda-cyhalothrin (LCT) by virgin and aged polyethylene MPs (VPE and APE, respectively), and to examine their influence on LCT's toxicity in zebrafish, specifically regarding acute toxicity, oxidative stress, gut microbiota and immunity. The adsorption results showed that VPE and APE could adsorb LCT, with adsorption capacities of 34.4 mg∙g-1 and 39.0 mg∙g-1, respectively. Compared with LCT exposure alone, VPE and APE increased the acute toxicity of LCT to zebrafish. Additionally, exposure to LCT and PE-MPs alone can induce oxidative stress in the zebrafish gut, while combined exposure can exacerbate the oxidative stress response and intensify intestinal lipid peroxidation. Moreover, exposure to LCT or PE-MPs alone promotes inflammation, and combined exposure leads to downregulation of the myd88-nf-κb related gene expression, thus impacting intestinal immunity. Furthermore, exposure to APE increased LCT toxicity to zebrafish more than VPE. Meanwhile, exposure to PE-MPs and LCT alone or in combination has the potential to affect gut microbiota function and alter the abundance and diversity of the zebrafish gut flora. Collectively, the presence of PE-MPs may affect the toxicity of pesticides in zebrafish. The findings emphasize the importance of studying the interaction between MPs and pesticides in the aquatic environment.


Asunto(s)
Microbioma Gastrointestinal , Microplásticos , Nitrilos , Estrés Oxidativo , Polietileno , Piretrinas , Contaminantes Químicos del Agua , Pez Cebra , Animales , Piretrinas/toxicidad , Nitrilos/toxicidad , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Polietileno/toxicidad , Adsorción
14.
Sci Total Environ ; 927: 172243, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582118

RESUMEN

Globally, over 287 million tons of plastic are disposed in landfills, rivers, and oceans or are burned every year. The results are devastating to our ecosystems, wildlife and human health. One promising remedy is the yellow mealworm (Tenebrio molitor larvae), which has proved capable of degrading microplastics (MPs). This paper presents a new investigation into the biodegradation of aged polyethylene (PE) film and polystyrene (PS) foam by the Tenebrio molitor larvae. After a 35 - day feeding period, both pristine and aged MPs can be consumed by larvae. Even with some inhibitions in larvae growth due to the limited nutrient supply of aged MPs, when compared with pristine MPs, the aged MPs were depolymerized more efficiently in gut microbiota based on gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) analysis. With the change in surface chemical properties, the metabolic intermediates of aged MPs contained more oxygen-containing functional groups and shortened long-chain alkane, which was confirmed by gas chromatography and mass spectrometry (GC-MS). High-throughput sequencing revealed that the richness and diversity of gut microbes were restricted in the MPs-fed group. Although MPs had a negative effect on the relative abundance of the two dominant bacteria Enterococcaceae and Lactobacillaceae, the aged MPs may promote the relative abundance of Enterobacteriaceae and Streptococcaceae. Redundancy analysis (RDA) further verified that the aged MPs are effectively biodegraded by yellow mealworm. This work provides new insights into insect-mediated mechanisms of aged MP degradation and promising strategies for MP sustainable and efficient solutions.


Asunto(s)
Biodegradación Ambiental , Larva , Microplásticos , Polietileno , Poliestirenos , Tenebrio , Animales , Microplásticos/metabolismo , Tenebrio/metabolismo , Polietileno/metabolismo , Microbioma Gastrointestinal , Contaminantes Químicos del Agua/metabolismo
15.
J Hazard Mater ; 470: 134164, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583200

RESUMEN

Strawberry, a globally popular crop whose fruit are known for their taste and health benefits, were used to evaluate the effects of polyethylene microplastics (PE-MPs) on plant physiology and fruit quality. Plants were grown in 2-L pots with natural soil mixed with PE-MPs at two concentrations (0.2% and 0.02%; w/w) and sizes (⌀ 35 and 125 µm). Plant physiological responses, root histochemical and anatomical analyses as well as fruit biometric and quality features were conducted. Plants subjected to ⌀ 35 µm/0.2% PE-MPs exhibited the most severe effects in terms of CO2 assimilation due to stomatal limitations, along with the highest level of oxidative stress in roots. Though no differences were observed in plant biomass, the impact on fruit quality traits was severe in ⌀ 35 µm/0.2% MPs treatment resulting in a drop in fruit weight (-42%), soluble solid (-10%) and anthocyanin contents (-25%). The smallest sized PE-MPs, adsorbed on the root surface, impaired plant water status by damaging the radical apparatus, which finally resulted in alteration of plant physiology and fruit quality. Further research is required to determine if these alterations also occur with other MPs and to understand more deeply the MPs influence on fruit physio-chemistry.


Asunto(s)
Fragaria , Frutas , Microplásticos , Raíces de Plantas , Polietileno , Fragaria/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Frutas/efectos de los fármacos , Polietileno/toxicidad , Microplásticos/toxicidad , Contaminantes del Suelo/toxicidad , Antocianinas/análisis , Estrés Oxidativo/efectos de los fármacos
16.
Water Sci Technol ; 89(8): 1981-1995, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38678403

RESUMEN

Biochar (BC) was used to remove trichloroethylene (TCE) from soil and water phases, and BC modification changed the sorption behavior of pollutants. Microplastics are emerging pollutants in the soil and water phases. Whether microplastics can affect the sorption of TCE by modified BC is not clear. Thus, batch sorption kinetics and isotherm experiments were conducted to elucidate the sorption of TCE on BC, and BC combined with polyethylene (PE) or polystyrene (PS). The results showed that HCl and NaOH modification increased TCE sorption on BC, while HNO3 modification inhibited TCE sorption on BC. When PE/PS and BC coexisted, the TCE sorption capacity decreased significantly on BC-CK + PE, BC-HCl + PE, BC-HNO3 + PE, BC-NaOH + PE, and BC-NaOH + PS, which was likely due to the preferential sorption of PE/PS on BC samples. We concluded that microplastics can change TCE sorption behavior and inhibit TCE sorption on BC samples. Thus, the interaction of BC and microplastics should be considered when BC is used for TCE removal in soil and water remediation.


Asunto(s)
Carbón Orgánico , Microplásticos , Tricloroetileno , Tricloroetileno/química , Carbón Orgánico/química , Adsorción , Microplásticos/química , Contaminantes Químicos del Agua/química , Cinética , Polietileno/química
17.
Chemosphere ; 356: 141875, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583532

RESUMEN

While passive sampling of ultra-low aqueous concentrations of hydrophobic organic compounds in environmental aqueous media has emerged as a promising analytical technique, there is a lack of good understanding of the fundamental diffusive processes. In this research, we used a fluorophore, pyrene, as a model compound to track diffusion in polymers through absorption and environmental media exchange processes. We directly tracked the penetration of pyrene into polyethylene (PE) and polyoxymethylene (POM) rods during absorption from water by sectioning the rod after different stages of absorption and observing the fluorescence signal through a microscope. Diffusion profiles of pyrene in polymers were simulated by numerical integration of Fickian diffusion. The results indicated that the uptake process in PE is governed by Fick's law and the absorption and desorption kinetics are similar in this polymer. However, the observed uptake profiles of pyrene in POM were non-Fickian and the release kinetics out of POM was slower compared to uptake into the polymer. We show that slower desorption from POM makes corrections for nonequilibrium using performance reference compounds (PRCs) problematic for deployments in water or sediment where there is significant advection. However, for static sediment deployments, the overall kinetics of exchange is controlled by slow transport through sediment and the hysteretic behavior of POM may not preclude the use of PRCs to interpret equilibrium status.


Asunto(s)
Monitoreo del Ambiente , Polietileno , Pirenos , Resinas Sintéticas , Contaminantes Químicos del Agua , Pirenos/química , Polietileno/química , Difusión , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Monitoreo del Ambiente/métodos , Cinética , Polímeros/química
18.
J Hazard Mater ; 470: 134283, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613956

RESUMEN

The coexistence of microplastics (MPs) and heavy metals in sediments has caused a potential threat to sediment biota. However, differences in the effects of MPs and heavy metals on microbes and plants in sediments under different sediment conditions remain unclear. Hence, we investigated the influence of polyethylene (PE) and polylactic acid (PLA) MPs on microbial community structure, Pb bioavailability, and wheatgrass traits under sequential incubation of sediments (i.e., flood, drainage, and planting stages). Results showed that the sediment enzyme activities presented a dose-dependent effect of MPs. Besides, 10 % PLA MPs significantly increased the F1 fractions in three stages by 11.13 %, 30.10 %, and 17.26 %, respectively, thus resulting in higher Pb mobility and biotoxicity. MPs altered sediment bacterial composition and structures, and bacterial community differences were evident in different incubation stages. Moreover, the co-exposure of PLA MPs and Pb significantly decreased the shoot length and total biomass of wheatgrass and correspondingly activated the antioxidant enzyme activity. Further correlation analysis demonstrated that community structure induced by MPs was mainly driven by sediment enzyme activity. This study contributes to elucidating the combined effects of MPs and heavy metals on sediment ecosystems under different sediment conditions.


Asunto(s)
Sedimentos Geológicos , Plomo , Microplásticos , Contaminantes Químicos del Agua , Sedimentos Geológicos/microbiología , Plomo/toxicidad , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microbiota/efectos de los fármacos , Poliésteres , Polietileno/toxicidad , Inundaciones , Bacterias/efectos de los fármacos
19.
Med Eng Phys ; 126: 104159, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38621833

RESUMEN

Generation of polyethylene wear debris and peri­prosthetic bone resorption have been identified as potential causes of acetabular component loosening in Total Hip Arthroplasty. This study was aimed at optimization of a functionally graded porous acetabular component to minimize peri­prosthetic bone resorption and polyethylene liner wear. Porosity levels (porosity values at acetabular rim, and dome) and functional gradation exponents (radial and polar) were considered as the design parameters. The relationship between porosity and elastic properties were obtained from numerical homogenization. The multi-objective optimization was carried out using a non-dominated sorting genetic algorithm integrated with finite element analysis of the hemipelvises subject to various loading conditions of common daily activities. The optimal functionally graded porous designs (OFGPs -1, -2, -3, -4, -5) exhibited less strain-shielding in cancellous bone compared to solid metal-backing. Maximum bone-implant interfacial micromotions (63-68 µm) for OFGPs were found to be close to that of solid metal-backing (66 µm), which might facilitate bone ingrowth. However, OFGPs exhibited an increase in volumetric wear (3-10 %) compared to solid metal-backing. The objective functions were found to be more sensitive to changes in polar gradation exponent than radial gradation exponent, based on the Sobol' method. Considering the common failure mechanisms, OFGP-1, having highly porous acetabular rim and less porous dome, appears to be a better alternative to the solid metal-backing.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Resorción Ósea , Prótesis de Cadera , Humanos , Porosidad , Acetábulo/cirugía , Metales , Polietileno , Resorción Ósea/cirugía , Algoritmos , Diseño de Prótesis , Falla de Prótesis
20.
Sci Rep ; 14(1): 8351, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594512

RESUMEN

Plastic accumulation is a severe threat to the environment due to its resistivity to thermal, mechanical and biological processes. In recent years, microbial degradation of plastic waste disposal is of interest because of its eco-friendly nature. In this study, a total of 33 fungi were isolated from the plastisphere and out of which 28 fungal species showed halo zone of clearance in agarized LDPE media. The fungus showing highest zone of clearance was further used to evaluate its degradation potential. Based on morphological and molecular technique, the fungus was identified as Cladosporium sphaerospermum. The biodegradation of LDPE by C. sphaerospermum was evaluated by various methods. The exposure of LDPE with C. sphaerospermum resulted in weight loss (15.23%) in seven days, higher reduction rate (0.0224/day) and lower half-life (30.93 days). FTIR analysis showed changes in functional group and increased carbonyl index in LDPE treated with C. sphaerospermum. SEMimages evidenced the formation of pits, surface aberrations and grooves on the LDPE film treated with the fungus whereas the untreated control LDPE film showed no change. AFM analysis confirmed the surface changes and roughness in fungus treated LDPE film. This might be due to the extracellular lignolytic enzymes secreted by C. sphaerospermum grown on LDPE. The degradation of polyethylene by Short chain alkanes such as dodecane, hexasiloxane and silane were identified in the extract of fungus incubated with LDPE film through GC-MS analysis which might be due to the degradation of LDPE film by C. sphaerospermum. This was the first report on the LDPE degradation by C. sphaerospermum in very short duration which enables green scavenging of plastic wastes.


Asunto(s)
Cladosporium , Polietileno , Polietileno/metabolismo , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...