Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 82019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31237564

RESUMEN

Yeast tRNA ligase (Trl1) is an essential trifunctional enzyme that catalyzes exon-exon ligation during tRNA biogenesis and the non-conventional splicing of HAC1 mRNA during the unfolded protein response (UPR). The UPR regulates the protein folding capacity of the endoplasmic reticulum (ER). ER stress activates Ire1, an ER-resident kinase/RNase, which excises an intron from HAC1 mRNA followed by exon-exon ligation by Trl1. The spliced product encodes for a potent transcription factor that drives the UPR. Here we report the crystal structure of Trl1 RNA ligase domain from Chaetomium thermophilum at 1.9 Å resolution. Structure-based mutational analyses uncovered kinetic competition between RNA ligation and degradation during HAC1 mRNA splicing. Incompletely processed HAC1 mRNA is degraded by Xrn1 and the Ski/exosome complex. We establish cleaved HAC1 mRNA as endogenous substrate for ribosome-associated quality control. We conclude that mRNA decay and surveillance mechanisms collaborate in achieving fidelity of non-conventional mRNA splicing during the UPR.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Hidrolasas Diéster Fosfóricas/química , Polinucleótido 5'-Hidroxil-Quinasa/química , Polinucleótido Ligasas/química , Empalme del ARN/genética , Estabilidad del ARN/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Chaetomium/química , Chaetomium/enzimología , Cristalografía por Rayos X , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/genética , Regulación Fúngica de la Expresión Génica , Cinética , Hidrolasas Diéster Fosfóricas/genética , Polinucleótido 5'-Hidroxil-Quinasa/genética , Polinucleótido Ligasas/genética , Conformación Proteica , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Respuesta de Proteína Desplegada/genética
2.
Biosystems ; 177: 9-15, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30639771

RESUMEN

The formation of a kissing-loop through the introduction of complementary 7-membered loops is known to dramatically increase the activity of truncated R3C ligase ribozymes that otherwise display reduced activity. Restoration of activity is thought to result from kissing complex formation-induced rearrangement of two molecules with complementary loops. By combining two types of R3C ligase ribozyme mutants, and , the influence of loop composition on ligation activity was investigated. Substrate ligation occurred in , but not in , despite the absence of a substrate-binding site in . Loop-loop interactions of - and -variants with complementary 6-membered loops also resulted in proper kissing-complex formation-induced substrate ligation. However, heterogeneous combinations of 7- and 6-membered loops, and/or of 6- and 5-membered loops had distinct results that depended upon the sequence and bulged nucleotides of the loop regions. These differences suggest that both thermodynamic and kinetic controls act upon the kissing-loop interaction-mediated rearrangement of the shortened trans-R3C ribozymes.


Asunto(s)
Mutación , Polinucleótido Ligasas/química , Polinucleótido Ligasas/metabolismo , ARN Catalítico/química , ARN Catalítico/metabolismo , ARN/química , ARN/metabolismo , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Cinética , Conformación de Ácido Nucleico , Polinucleótido Ligasas/genética , ARN/genética , ARN Catalítico/genética , Termodinámica
3.
Nucleic Acids Res ; 47(3): 1428-1439, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30590734

RESUMEN

Fungal tRNA ligase (Trl1) is an essential enzyme that repairs RNA breaks with 2',3'-cyclic-PO4 and 5'-OH ends inflicted during tRNA splicing and non-canonical mRNA splicing in the fungal unfolded protein response. Trl1 is composed of C-terminal cyclic phosphodiesterase (CPD) and central GTP-dependent polynucleotide kinase (KIN) domains that heal the broken ends to generate the 3'-OH,2'-PO4 and 5'-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain (LIG). Here we report crystal structures of the Trl1-LIG domain from Chaetomium thermophilum at two discrete steps along the reaction pathway: the covalent LIG-(lysyl-Nζ)-AMP•Mn2+ intermediate and a LIG•ATP•(Mn2+)2 Michaelis complex. The structures highlight a two-metal mechanism whereby a penta-hydrated metal complex stabilizes the transition state of the ATP α phosphate and a second metal bridges the ß and γ phosphates to help orient the pyrophosphate leaving group. A LIG-bound sulfate anion is a plausible mimetic of the essential RNA terminal 2'-PO4. Trl1-LIG has a distinctive C-terminal domain that instates fungal Trl1 as the founder of an Rnl6 clade of ATP-dependent RNA ligase. We discuss how the Trl1-LIG structure rationalizes the large body of in vivo structure-function data for Saccharomyces cerevisiae Trl1.


Asunto(s)
Chaetomium/química , ADN Ligasa (ATP)/química , Hidrolasas Diéster Fosfóricas/química , Polinucleótido 5'-Hidroxil-Quinasa/química , Polinucleótido Ligasas/química , Relación Estructura-Actividad , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Secuencia de Aminoácidos , Dominio Catalítico , Chaetomium/enzimología , Cristalografía por Rayos X , ADN Ligasa (ATP)/genética , Metales/química , Hidrolasas Diéster Fosfóricas/genética , Polinucleótido 5'-Hidroxil-Quinasa/genética , Polinucleótido Ligasas/genética , Conformación Proteica , Dominios Proteicos , Empalme del ARN/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología
4.
PLoS Comput Biol ; 12(11): e1005161, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27820829

RESUMEN

It is believed that life passed through an RNA World stage in which replication was sustained by catalytic RNAs (ribozymes). The two most obvious types of ribozymes are a polymerase, which uses a neighbouring strand as a template to make a complementary sequence to the template, and a nucleotide synthetase, which synthesizes monomers for use by the polymerase. When a chemical source of monomers is available, the polymerase can survive on its own. When the chemical supply of monomers is too low, nucleotide production by the synthetase is essential and the two ribozymes can only survive when they are together. Here we consider a computational model to investigate conditions under which coexistence and cooperation of these two types of ribozymes is possible. The model considers six types of strands: the two functional sequences, the complementary strands to these sequences (which are required as templates), and non-functional mutants of the two sequences (which act as parasites). Strands are distributed on a two-dimensional lattice. Polymerases replicate strands on neighbouring sites and synthetases produce monomers that diffuse in the local neighbourhood. We show that coexistence of unlinked polymerases and synthetases is possible in this spatial model under conditions in which neither sequence could survive alone; hence, there is a selective force for increasing complexity. Coexistence is dependent on the relative lengths of the two functional strands, the strand diffusion rate, the monomer diffusion rate, and the rate of deleterious mutations. The sensitivity of this two-ribozyme system suggests that evolution of a system of many types of ribozymes would be difficult in a purely spatial model with unlinked genes. We therefore speculate that linkage of genes onto mini-chromosomes and encapsulation of strands in protocells would have been important fairly early in the history of life as a means of enabling more complex systems to evolve.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Evolución Molecular , Modelos Químicos , Modelos Genéticos , Polinucleótido Ligasas/genética , ARN Catalítico/genética , ARN Polimerasas Dirigidas por ADN/química , Activación Enzimática , Modelos Estadísticos , Polinucleótido Ligasas/química , ARN Catalítico/química
5.
Molecules ; 21(10)2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27706059

RESUMEN

A system was developed to detect the self-replication of an RNA enzyme in real time. The enzyme is an RNA ligase that undergoes exponential amplification at a constant temperature and can be made to operate in a ligand-dependent manner. The real-time system is based on a fluorimetric readout that directly couples the ligation event to an increase in florescence signal that can be monitored using standard instrumentation. The real-time system can also operate entirely with l-RNA, which is not susceptible to degradation by ribonucleases that are present in biological samples. The system is analogous to real-time PCR, but with the potential to detect small molecules, proteins, and other targets that can be recognized by a suitable aptamer. The ligand-dependent self-replication of RNA has potential applications in molecular diagnostics and biosensing that benefit from the rapid, precise, and real-time detection of various target molecules.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico/métodos , Polinucleótido Ligasas/química , ARN Catalítico/química , ARN/química , ARN/síntesis química
6.
Nature ; 529(7585): 231-4, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26735012

RESUMEN

Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 Å resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms.


Asunto(s)
ADN Catalítico/química , Conformación de Ácido Nucleico , Secuencia de Bases , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , ADN Catalítico/síntesis química , ADN Catalítico/metabolismo , Desoxirribosa/química , Desoxirribosa/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Nucleótidos/química , Nucleótidos/metabolismo , Polinucleótido Ligasas/química , Polinucleótido Ligasas/metabolismo , ARN/química , ARN/metabolismo , Pliegue del ARN , Especificidad por Sustrato
7.
Biochemistry ; 52(7): 1227-35, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23384307

RESUMEN

A special class of biochemical reactions involves a set of enzymes that generate additional copies of themselves and transfer heritable information from parent to progeny molecules, thus providing the basis for genetics and Darwinian evolution. Such a process has been realized with a pair of self-replicating RNA enzymes that undergo exponential amplification at a constant temperature. Exponential growth requires that the rate of production of new enzymes be directly proportional to the existing concentration of enzymes, which is the case for this system and provides a doubling time of ~20 min. However, the catalytic rate of the underlying enzymes is ~100-fold faster than the observed rate of replication. As in biological replication, other aspects of the system limit the generation time, chiefly the propensity of the substrate molecules to form nonproductive complexes that limit their availability for replication. An analysis of this and other kinetic properties of the self-replicating RNA enzymes reveals how exponential amplification is achieved and how the rate of amplification might be increased.


Asunto(s)
Modelos Químicos , Polinucleótido Ligasas/química , Polinucleótido Ligasas/metabolismo , Emparejamiento Base , Secuencia de Bases , Cinética , Datos de Secuencia Molecular , ARN Catalítico/química , ARN Catalítico/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(38): 15235-40, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22949672

RESUMEN

The RtcB protein has recently been identified as a 3'-phosphate RNA ligase that directly joins an RNA strand ending with a 2',3'-cyclic phosphate to the 5'-hydroxyl group of another RNA strand in a GTP/Mn(2+)-dependent reaction. Here, we report two crystal structures of Pyrococcus horikoshii RNA-splicing ligase RtcB in complex with Mn(2+) alone (RtcB/ Mn(2+)) and together with a covalently bound GMP (RtcB-GMP/Mn(2+)). The RtcB/ Mn(2+) structure (at 1.6 Å resolution) shows two Mn(2+) ions at the active site, and an array of sulfate ions nearby that indicate the binding sites of the RNA phosphate backbone. The structure of the RtcB-GMP/Mn(2+) complex (at 2.3 Å resolution) reveals the detailed geometry of guanylylation of histidine 404. The critical roles of the key residues involved in the binding of the two Mn(2+) ions, the four sulfates, and GMP are validated in extensive mutagenesis and biochemical experiments, which also provide a thorough characterization for the three steps of the RtcB ligation pathway: (i) guanylylation of the enzyme, (ii) guanylyl-transfer to the RNA substrate, and (iii) overall ligation. These results demonstrate that the enzyme's substrate-induced GTP binding site and the putative reactive RNA ends are in the vicinity of the binuclear Mn(2+) active center, which provides detailed insight into how the enzyme-bound GMP is tansferred to the 3'-phosphate of the RNA substrate for activation and subsequent nucleophilic attack by the 5'-hydroxyl of the second RNA substrate, resulting in the ligated product and release of GMP.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Proteínas de Escherichia coli/química , Polinucleótido Ligasas/química , Polinucleótido Ligasas/genética , Pyrococcus horikoshii/metabolismo , Sitios de Unión , Catálisis , Dominio Catalítico , GMP Cíclico/química , Guanosina Trifosfato/química , Iones , Manganeso/química , Modelos Moleculares , Conformación Molecular , Unión Proteica , Empalme del ARN , ARN de Transferencia/química , Especificidad por Sustrato , Sulfatos/química
9.
Philos Trans R Soc Lond B Biol Sci ; 366(1580): 2918-28, 2011 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-21930583

RESUMEN

All models of the RNA world era invoke the presence of ribozymes that can catalyse RNA polymerization. The class I ligase ribozyme selected in vitro 15 years ago from a pool of random RNA sequences catalyses formation of a 3',5'-phosphodiester linkage analogous to a single step of RNA polymerization. Recently, the three-dimensional structure of the ligase was solved in complex with U1A RNA-binding protein and independently in complex with an antibody fragment. The RNA adopts a tripod arrangement and appears to use a two-metal ion mechanism similar to protein polymerases. Here, we discuss structural implications for engineering a true polymerase ribozyme and describe the use of the antibody framework both as a portable chaperone for crystallization of other RNAs and as a platform for exploring steps in evolution from the RNA world to the RNA-protein world.


Asunto(s)
Anticuerpos Catalíticos/química , ARN Polimerasas Dirigidas por ADN/química , Fragmentos Fab de Inmunoglobulinas/química , ARN Catalítico/química , Ribonucleótidos/química , Catálisis , Dominio Catalítico , Conformación de Ácido Nucleico , Biblioteca de Péptidos , Polinucleótido Ligasas/química , Proteínas Recombinantes/química , Ribonucleoproteínas/química
10.
Methods ; 54(2): 251-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21354310

RESUMEN

Advances in RNA nanotechnology will depend on the ability to manipulate, probe the structure and engineer the function of RNA with high precision. This article reviews current abilities to incorporate site-specific labels or to conjugate other useful molecules to RNA either directly or indirectly through post-synthetic labeling methodologies that have enabled a broader understanding of RNA structure and function. Readily applicable modifications to RNA can range from isotopic labels and fluorescent or other molecular probes to protein, lipid, glycoside or nucleic acid conjugates that can be introduced using combinations of synthetic chemistry, enzymatic incorporation and various conjugation chemistries. These labels, conjugations and ligations to RNA are quintessential for further investigation and applications of RNA as they enable the visualization, structural elucidation, localization, and biodistribution of modified RNA.


Asunto(s)
Sondas ARN/biosíntesis , Sondas ARN/síntesis química , ARN/química , ARN Polimerasas Dirigidas por ADN/química , Indicadores y Reactivos/química , Polinucleótido 5'-Hidroxil-Quinasa/química , Polinucleotido Adenililtransferasa/química , Polinucleótido Ligasas/química
11.
Science ; 326(5957): 1271-5, 2009 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19965478

RESUMEN

Primordial organisms of the putative RNA world would have required polymerase ribozymes able to replicate RNA. Known ribozymes with polymerase activity best approximating that needed for RNA replication contain at their catalytic core the class I RNA ligase, an artificial ribozyme with a catalytic rate among the fastest of known ribozymes. Here we present the 3.0 angstrom crystal structure of this ligase. The architecture resembles a tripod, its three legs converging near the ligation junction. Interacting with this tripod scaffold through a series of 10 minor-groove interactions (including two A-minor triads) is the unpaired segment that contributes to and organizes the active site. A cytosine nucleobase and two backbone phosphates abut the ligation junction; their location suggests a model for catalysis resembling that of proteinaceous polymerases.


Asunto(s)
ARN Catalítico/química , Emparejamiento Base , Secuencia de Bases , Catálisis , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Magnesio/química , Magnesio/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Polinucleótido Ligasas/química , Polinucleótido Ligasas/metabolismo , ARN Catalítico/metabolismo , Ribonucleótidos/química , Ribonucleótidos/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-19667013

RESUMEN

A long-standing research goal has been to develop a self-sustained chemical system that is capable of undergoing Darwinian evolution. The notion of primitive RNA-based life suggests that this goal might be achieved by constructing an RNA enzyme that catalyzes the replication of RNA molecules, including the RNA enzyme itself. This reaction was demonstrated recently in a cross-catalytic system involving two RNA enzymes that catalyze each other's synthesis from a total of four component substrates. The cross-replicating RNA enzymes undergo self-sustained exponential amplification at a constant temperature in the absence of proteins or other biological materials. Amplification occurs with a doubling time of approximately 1 hour and can be continued indefinitely. Small populations of cross-replicating RNA enzymes can be made to compete for limited resources within a common environment. The molecules reproduce with high fidelity but occasionally give rise to recombinants that also can replicate. Over the course of many "generations" of selective amplification, novel variants arise and grow to dominate the population based on their relative fitness under the chosen reaction conditions. This is the first example, outside of biology, of evolutionary adaptation in a molecular genetic system.


Asunto(s)
Evolución Molecular , ARN/genética , ARN/metabolismo , Secuencia de Bases , Evolución Molecular Dirigida , Modelos Genéticos , Conformación de Ácido Nucleico , Polinucleótido Ligasas/química , Polinucleótido Ligasas/genética , Polinucleótido Ligasas/metabolismo , ARN/química , ARN Catalítico/química , ARN Catalítico/genética , ARN Catalítico/metabolismo
13.
Science ; 323(5918): 1229-32, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19131595

RESUMEN

An RNA enzyme that catalyzes the RNA-templated joining of RNA was converted to a format whereby two enzymes catalyze each other's synthesis from a total of four oligonucleotide substrates. These cross-replicating RNA enzymes undergo self-sustained exponential amplification in the absence of proteins or other biological materials. Amplification occurs with a doubling time of about 1 hour and can be continued indefinitely. Populations of various cross-replicating enzymes were constructed and allowed to compete for a common pool of substrates, during which recombinant replicators arose and grew to dominate the population. These replicating RNA enzymes can serve as an experimental model of a genetic system. Many such model systems could be constructed, allowing different selective outcomes to be related to the underlying properties of the genetic system.


Asunto(s)
Oligonucleótidos/metabolismo , Polinucleótido Ligasas/química , ARN Catalítico/metabolismo , Emparejamiento Base , Biocatálisis , Evolución Molecular Dirigida , Cinética , Conformación de Ácido Nucleico , Polinucleótido Ligasas/metabolismo , ARN Catalítico/química
14.
RNA ; 15(3): 420-31, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19155324

RESUMEN

Using an expression protein library of a hyperthermophilic archaeon, Pyrococcus furiosus, we identified a gene (PF0027) that encodes a protein with heat-stable cyclic nucleotide phosphodiesterase (CPDase) activity. The PF0027 gene encoded a 21-kDa protein and an amino acid sequence that showed approximately 27% identity to that of the 2'-5' tRNA ligase protein, ligT (20 kDa), from Escherichia coli. We found that the purified PF0027 protein possessed GTP-dependent RNA ligase activity and that synthetic tRNA halves bearing 2',3'-cyclic phosphate and 5'-OH termini were substrates for the ligation reaction in vitro. GTP hydrolysis was not required for the reaction, and GTPgammaS enhanced the tRNA ligation activity of PF0027 protein, suggesting that the ligation step is regulated by a novel mechanism. In comparison to the strong CPDase activity of the PF0027 protein, the RNA ligase activity itself was quite weak, and the ligation product was unstable during in vitro reaction. Finally, we used NMR to determine the solution structure of the PF0027 protein and discuss the implications of our results in understanding the role of the PF0027 protein.


Asunto(s)
Polinucleótido Ligasas/química , Pyrococcus furiosus/enzimología , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Pyrococcus furiosus/metabolismo , Proteínas Recombinantes/química
15.
J Chem Phys ; 126(12): 125104, 2007 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-17411166

RESUMEN

The authors consider a minimal cross-catalytic self-replicating system of only two cross-catalytic templates that mimics the R3C ligase ribozyme system of Dong-Eu and Joyce [Chem. Biol. 11, 1505 (2004)]. This system displays considerably more complex dynamics than its self-replicating counterpart. In particular, the authors discuss the Poincare-Andronov-Hopf bifurcation, canard transitions, excitability, and hysteresis that yield birhythmicity between simple and complex oscillations.


Asunto(s)
Modelos Biológicos , Polinucleótido Ligasas/química , Polinucleótido Ligasas/fisiología , ARN Catalítico/química , ARN Catalítico/fisiología , Catálisis
16.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 62(Pt 12): 1196-200, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17142895

RESUMEN

Bacterial and archaeal 2'-5' RNA ligases, members of the 2H phosphoesterase superfamily, catalyze the linkage of the 5' and 3' exons via a 2'-5'-phosphodiester bond during tRNA-precursor splicing. The crystal structure of the 2'-5' RNA ligase PH0099 from Pyrococcus horikoshii OT3 was solved at 1.94 A resolution (PDB code 1vgj). The molecule has a bilobal alpha+beta arrangement with two antiparallel beta-sheets constituting a V-shaped active-site cleft, as found in other members of the 2H phosphoesterase superfamily. The present structure was significantly different from that determined previously at 2.4 A resolution (PDB code 1vdx) in the active-site cleft; the entrance to the cleft is wider and the active site is easily accessible to the substrate (RNA precursor) in our structure. Structural comparison with the 2'-5' RNA ligase from Thermus thermophilus HB8 also revealed differences in the RNA precursor-binding region. The structural differences in the active-site residues (tetrapeptide motifs H-X-T/S-X) between the members of the 2H phosphoesterase superfamily are discussed.


Asunto(s)
Polinucleótido Ligasas/química , Pyrococcus horikoshii/enzimología , Cristalización , Cristalografía por Rayos X , Modelos Moleculares
17.
Artículo en Inglés | MEDLINE | ID: mdl-17012785

RESUMEN

Bacillus subtilis YtlP is a protein that is predicted to belong to the bacterial and archael 2'-5' RNA-ligase family. It contains 183 residues and two copies of the HXTX sequence motif conserved among proteins belonging to this family. In order to determine the structure of YtlP and to compare it with the paralogue YjcG and identified 2'-5' RNA ligases, the gene ytlP was amplified from B. subtilis genomic DNA and cloned into expression vector pET-21a. The soluble protein was produced in Escherichia coli, purified to homogeneity and crystals suitable for X-ray analysis were obtained. The crystal diffracted to 2.0 A and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 34.16, b = 48.54, c = 105.75 A.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Polinucleótido Ligasas/química , Secuencia de Aminoácidos , Bacillus subtilis/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Datos de Secuencia Molecular , Polinucleótido Ligasas/genética , Polinucleótido Ligasas/aislamiento & purificación , Alineación de Secuencia
18.
Chembiochem ; 7(4): 673-7, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16491499

RESUMEN

An artificial restriction DNA cutter (ARCUT), recently developed by the authors, was used to construct a fusion protein. The gene of WW-domain-containing oxidoreductase (WWOX) was cut by ARCUT just before its stop codon, and ligated to fuse the gene of enhanced green fluorescent protein (EGFP). The reading frames of two genes were adjusted to coincide each other. Throughout the manipulation, no PCR was employed. The fluorescent fusion protein was successfully expressed in mammalian cells, and showed entirely different subcellular localization from EGFP itself. Apparently, the DNA was kept completely intact during the manipulation. The man-made tool ARCUT has promising features for future biotechnology and molecular biology.


Asunto(s)
Enzimas de Restricción del ADN/química , ADN/química , Polinucleótido Ligasas/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Células COS , Chlorocebus aethiops , ADN Recombinante/química , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Biología Molecular/métodos , Oxidorreductasas/química , Oxidorreductasas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
20.
RNA ; 11(6): 966-75, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15923379

RESUMEN

Trl 1 is an essential 827-amino-acid enzyme that executes the end-healing and end-sealing steps of tRNA splicing in Saccharomyces cerevisiae. Trl1 consists of two catalytic domains--an N-terminal adenylyltransferase/ligase component (amino acids 1-388) and a C-terminal 5'-kinase/cyclic phosphodiesterase component (amino acids 389-827)--that can function in tRNA splicing in vivo when expressed as separate polypeptides. Sedimentation analysis indicates that the ligase and kinase/CPD domains are monomeric proteins that do not form a stable complex in trans. To understand the structural requirements for the RNA ligase component, we performed a mutational analysis of amino acids that are conserved in Trl1 homologs from other fungi. Alanine scanning identified 23 new residues as essential for Trl1-(1-388) activity in vivo. Structure-activity relationships at these positions, and four essential residues defined previously, were clarified by introducing 50 different conservative substitutions. Lethal mutations of Lys114, Glu184, Glu266, and Lys284 abolished Trl1 adenylyltransferase activity in vitro. The essential elements embrace (1) putative equivalents of nucleotidyltransferase motifs I, Ia, III, IV, and V found in DNA ligases, T4 RNA ligase 2, and mRNA capping enzymes; (2) an N-terminal segment shared with the T4 RNA ligase 1 subfamily only; and (3) a constellation of conserved residues specific to fungal tRNA splicing enzymes. We identify yeastlike tRNA ligases in the proteomes of Leishmania and Trypanosoma. These findings recommend tRNA ligase as a target for antifungal and antiprotozoal drug discovery.


Asunto(s)
Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Polinucleótido 5'-Hidroxil-Quinasa/química , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Polinucleótido Ligasas/química , Polinucleótido Ligasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Dominio Catalítico/genética , Análisis Mutacional de ADN , Genes Letales , Leishmania/enzimología , Datos de Secuencia Molecular , Mutación , Hidrolasas Diéster Fosfóricas/genética , Filogenia , Polinucleótido 5'-Hidroxil-Quinasa/genética , Polinucleótido Ligasas/genética , Empalme del ARN , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Trypanosoma/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...