Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochimie ; 216: 56-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37806617

RESUMEN

Ribonucleases are in charge of the processing, degradation and quality control of all cellular transcripts, which makes them crucial factors in RNA regulation. This post-transcriptional regulation allows bacteria to promptly react to different stress conditions and growth phase transitions, and also to produce the required virulence factors in pathogenic bacteria. Campylobacter jejuni is the main responsible for human gastroenteritis in the world. In this foodborne pathogen, exoribonuclease PNPase (CjPNP) is essential for low-temperature cell survival, affects the synthesis of proteins involved in virulence and has an important role in swimming, cell adhesion/invasion ability, and chick colonization. Here we report the crystallographic structure of CjPNP, complemented with SAXS, which confirms the characteristic doughnut-shaped trimeric arrangement and evaluates domain arrangement and flexibility. Mutations in highly conserved residues were constructed to access their role in RNA degradation and polymerization. Surprisingly, we found two mutations that altered CjPNP into a protein that is only capable of degrading RNA even in conditions that favour polymerization. These findings will be important to develop new strategies to combat C. jejuni infections.


Asunto(s)
Campylobacter jejuni , Polirribonucleótido Nucleotidiltransferasa , Humanos , Virulencia , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/química , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Endorribonucleasas , ARN , Exorribonucleasas/metabolismo , Ribonucleasa Pancreática
2.
Nucleic Acids Res ; 48(2): 847-861, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31802130

RESUMEN

RNase E is a 472-kDa homo-tetrameric essential endoribonuclease involved in RNA processing and turnover in Escherichia coli. In its N-terminal half (NTH) is the catalytic active site, as also a substrate 5'-sensor pocket that renders enzyme activity maximal on 5'-monophosphorylated RNAs. The protein's non-catalytic C-terminal half (CTH) harbours RNA-binding motifs and serves as scaffold for a multiprotein degradosome complex, but is dispensable for viability. Here, we provide evidence that a full-length hetero-tetramer, composed of a mixture of wild-type and (recessive lethal) active-site mutant subunits, exhibits identical activity in vivo as the wild-type homo-tetramer itself ('recessive resurrection'). When all of the cognate polypeptides lacked the CTH, the active-site mutant subunits were dominant negative. A pair of C-terminally truncated polypeptides, which were individually inactive because of additional mutations in their active site and 5'-sensor pocket respectively, exhibited catalytic function in combination, both in vivo and in vitro (i.e. intragenic or allelic complementation). Our results indicate that adjacent subunits within an oligomer are separately responsible for 5'-sensing and cleavage, and that RNA binding facilitates oligomerization. We propose also that the CTH mediates a rate-determining initial step for enzyme function, which is likely the binding and channelling of substrate for NTH's endonucleolytic action.


Asunto(s)
Dominio Catalítico/genética , Endorribonucleasas/genética , ARN/genética , Sitios de Unión/genética , Catálisis , Endorribonucleasas/química , Escherichia coli/química , Escherichia coli/genética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Mutación/genética , Péptidos/genética , Polirribonucleótido Nucleotidiltransferasa/química , Polirribonucleótido Nucleotidiltransferasa/genética , Conformación Proteica , Multimerización de Proteína/genética , ARN/química , ARN Helicasas/química , ARN Helicasas/genética , Motivos de Unión al ARN/genética
3.
PLoS One ; 14(8): e0221370, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31437214

RESUMEN

The family of ribosomal proteins S1 contains about 20% of all bacterial proteins including the S1 domain. An important feature of this family is multiple copies of structural domains in bacteria, the number of which changes in a strictly limited range from one to six. In this study, the automated exhaustive analysis of 1453 sequences of S1 allowed us to demonstrate that the number of domains in S1 is a distinctive characteristic for phylogenetic bacterial grouping in main phyla. 1453 sequences of S1 were identified in 25 out of 30 different phyla according to the List of Prokaryotic Names with Standing in Nomenclature. About 62% of all records are identified as six-domain S1 proteins, which belong to phylum Proteobacteria. Four-domain S1 are identified mainly in proteins from phylum Firmicutes and Actinobacteria. Records belonging to these phyla are 33% of all records. The least represented two-domain S1 are about 0.6% of all records. The third and fourth domains for the most representative four- and six-domain S1 have the highest percentage of identity with the S1 domain from polynucleotide phosphorylase and S1 domains from one-domain S1. In addition, for these groups, the central part of S1 (the third domain) is more conserved than the terminal domains.


Asunto(s)
Actinobacteria/clasificación , Proteínas Bacterianas/química , Firmicutes/clasificación , Filogenia , Proteobacteria/clasificación , Proteínas Ribosómicas/química , Actinobacteria/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia Conservada , Firmicutes/genética , Expresión Génica , Polirribonucleótido Nucleotidiltransferasa/química , Polirribonucleótido Nucleotidiltransferasa/genética , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos , Proteobacteria/genética , Proteínas Ribosómicas/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
5.
Nucleic Acids Res ; 46(16): 8630-8640, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30020492

RESUMEN

Human polynucleotide phosphorylase (PNPase) is an evolutionarily conserved 3'-to-5' exoribonuclease principally located in mitochondria where it is responsible for RNA turnover and import. Mutations in PNPase impair structured RNA transport into mitochondria, resulting in mitochondrial dysfunction and disease. PNPase is a trimeric protein with a doughnut-shaped structure hosting a central channel for single-stranded RNA binding and degradation. Here, we show that the disease-linked human PNPase mutants, Q387R and E475G, form dimers, not trimers, and have significantly lower RNA binding and degradation activities compared to wild-type trimeric PNPase. Moreover, S1 domain-truncated PNPase binds single-stranded RNA but not the stem-loop signature motif of imported structured RNA, suggesting that the S1 domain is responsible for binding structured RNAs. We further determined the crystal structure of dimeric PNPase at a resolution of 2.8 Å and, combined with small-angle X-ray scattering, show that the RNA-binding K homology and S1 domains are relatively inaccessible in the dimeric assembly. Taken together, these results show that mutations at the interface of the trimeric PNPase tend to produce a dimeric protein with destructive RNA-binding surfaces, thus impairing both of its RNA import and degradation activities and leading to mitochondria disorders.


Asunto(s)
Mutación con Pérdida de Función , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Mutación Missense , Mutación Puntual , Polirribonucleótido Nucleotidiltransferasa/química , Estabilidad del ARN , ARN/metabolismo , Transporte Biológico , Cristalografía por Rayos X , Dimerización , Humanos , Secuencias Invertidas Repetidas , Enfermedades Mitocondriales/enzimología , Modelos Moleculares , Polirribonucleótido Nucleotidiltransferasa/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , ARN/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño
7.
Nat Commun ; 9(1): 97, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29311576

RESUMEN

Nuclease and helicase activities play pivotal roles in various aspects of RNA processing and degradation. These two activities are often present in multi-subunit complexes from nucleic acid metabolism. In the mitochondrial exoribonuclease complex (mtEXO) both enzymatic activities are tightly coupled making it an excellent minimal system to study helicase-exoribonuclease coordination. mtEXO is composed of Dss1 3'-to-5' exoribonuclease and Suv3 helicase. It is the master regulator of mitochondrial gene expression in yeast. Here, we present the structure of mtEXO and a description of its mechanism of action. The crystal structure of Dss1 reveals domains that are responsible for interactions with Suv3. Importantly, these interactions are compatible with the conformational changes of Suv3 domains during the helicase cycle. We demonstrate that mtEXO is an intimate complex which forms an RNA-binding channel spanning its entire structure, with Suv3 helicase feeding the 3' end of the RNA toward the active site of Dss1.


Asunto(s)
Endorribonucleasas/metabolismo , Exorribonucleasas/metabolismo , Proteínas Mitocondriales/metabolismo , Complejos Multienzimáticos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Candida glabrata/enzimología , Candida glabrata/genética , Candida glabrata/metabolismo , Cristalografía por Rayos X , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/química , Endorribonucleasas/genética , Exorribonucleasas/química , Exorribonucleasas/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Conformación de Ácido Nucleico , Polirribonucleótido Nucleotidiltransferasa/química , Polirribonucleótido Nucleotidiltransferasa/genética , Unión Proteica , Conformación Proteica , ARN/química , ARN/genética , ARN/metabolismo , ARN Helicasas/química , ARN Helicasas/genética , ARN Mitocondrial , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
8.
Nucleic Acids Res ; 45(8): 4655-4666, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28334892

RESUMEN

Ribonucleases play essential roles in all aspects of RNA metabolism, including the coordination of post-transcriptional gene regulation that allows organisms to respond to internal changes and environmental stimuli. However, as inherently destructive enzymes, their activity must be carefully controlled. Recent research exemplifies the repertoire of regulatory strategies employed by ribonucleases. The activity of the phosphorolytic exoribonuclease, polynucleotide phosphorylase (PNPase), has previously been shown to be modulated by the Krebs cycle metabolite citrate in Escherichia coli. Here, we provide evidence for the existence of citrate-mediated inhibition of ribonucleases in all three domains of life. In silico molecular docking studies predict that citrate will bind not only to bacterial PNPases from E. coli and Streptomyces antibioticus, but also PNPase from human mitochondria and the structurally and functionally related archaeal exosome complex from Sulfolobus solfataricus. Critically, we show experimentally that citrate also inhibits the exoribonuclease activity of bacterial, eukaryotic and archaeal PNPase homologues in vitro. Furthermore, bioinformatics data, showing key citrate-binding motifs conserved across a broad range of PNPase homologues, suggests that this regulatory mechanism may be widespread. Overall, our data highlight a communicative link between ribonuclease activity and central metabolism that may have been conserved through the course of evolution.


Asunto(s)
Ácido Cítrico/química , Escherichia coli/enzimología , Polirribonucleótido Nucleotidiltransferasa/química , ARN/química , Streptomyces antibioticus/enzimología , Sulfolobus solfataricus/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Evolución Biológica , Ácido Cítrico/metabolismo , Clonación Molecular , Biología Computacional , Secuencia Conservada , Escherichia coli/genética , Exosomas/química , Exosomas/enzimología , Expresión Génica , Humanos , Cinética , Mitocondrias/química , Mitocondrias/enzimología , Simulación del Acoplamiento Molecular , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , ARN/metabolismo , Estabilidad del ARN/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Streptomyces antibioticus/genética , Homología Estructural de Proteína , Especificidad por Sustrato , Sulfolobus solfataricus/genética , Termodinámica
9.
Wiley Interdiscip Rev RNA ; 7(2): 241-58, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26750178

RESUMEN

Polynucleotide phosphorylase (PNPase) is an exoribonuclease that catalyzes the processive phosphorolytic degradation of RNA from the 3'-end. The enzyme catalyzes also the reverse reaction of polymerization of nucleoside diphosphates that has been implicated in the generation of heteropolymeric tails at the RNA 3'-end. The enzyme is widely conserved and plays a major role in RNA decay in both Gram-negative and Gram-positive bacteria. Moreover, it participates in maturation and quality control of stable RNA. PNPase autoregulates its own expression at post-transcriptional level through a complex mechanism that involves the endoribonuclease RNase III and translation control. The activity of PNPase is modulated in an intricate and still unclear manner by interactions with small molecules and recruitment in different multiprotein complexes. Not surprisingly, given the wide spectrum of PNPase substrates, PNPase-defective mutations in different bacterial species have pleiotropic effects and perturb the execution of genetic programs involving drastic changes in global gene expression such as biofilm formation, growth at suboptimal temperatures, and virulence.


Asunto(s)
Bacterias/enzimología , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Adaptación Biológica , Bacterias/genética , Catálisis , Activación Enzimática , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Complejos Multiproteicos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/química , Polirribonucleótido Nucleotidiltransferasa/genética , Unión Proteica , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , Relación Estructura-Actividad
10.
J Biol Chem ; 291(13): 6655-63, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26797123

RESUMEN

Polynucleotide phosphorylase (PNPase), a 3'-to-5' phosphorolytic exoribonuclease, is thought to be the primary enzyme responsible for turnover ofBacillus subtilismRNA. The role of PNPase inB. subtilismRNA decay has been analyzed previously by comparison of mRNA profiles in a wild-type strainversusa strain that is deleted forpnpA, the gene encoding PNPase. Recent studies have provided evidence for a degradosome-like complex inB. subtilisthat is built around the major decay-initiating endonuclease, RNase Y, and there is ample evidence for a strong interaction between PNPase and RNase Y. The role of the PNPase-RNase Y interaction in the exonucleolytic function of PNPase needs to be clarified. We sought to construct aB. subtilisstrain containing a catalytically active PNPase that could not interact with RNase Y. Mapping studies of the PNPase-RNase Y interaction were guided by a homology model ofB. subtilisPNPase based on the known structure of theEscherichia coliPNPase in complex with an RNase E peptide. Mutations inB. subtilisresidues predicted to be involved in RNase Y binding showed a loss of PNPase-RNase Y interaction. Two mRNAs whose decay is dependent on RNase Y and PNPase were examined in strains containing full-length PNPase that was either catalytically active but unable to interact with RNase Y, or catalytically inactive but able to interact with RNase Y. At least for these two mRNAs, disruption of the PNPase-RNase Y interaction did not appear to affect mRNA turnover.


Asunto(s)
Bacillus subtilis/química , Proteínas Bacterianas/química , Polirribonucleótido Nucleotidiltransferasa/química , ARN Mensajero/química , Ribonucleasas/química , Secuencia de Aminoácidos , Bacillus subtilis/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA