Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.609
Filtrar
1.
Plant Physiol Biochem ; 210: 108594, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581808

RESUMEN

Populus cathayana (C) grafted onto P. deltoides (D) (C/D) can promote growth better than self-grafting (C/C and D/D). However, the mechanisms underlying growth and resistance to drought stress are not clear. In this study, we performed physiological and RNA-seq analysis on the different grafted combinations. It was found that C/D plants exhibited higher growth, net photosynthetic rate, IAA content and intrinsic water use efficiency (WUEi) than C/C and D/D plants under both well-watered and drought-stressed conditions. However, most growth, photosynthetic indices, and IAA content were decreased less in C/D, whereas ABA content, WUEi and root characteristics (e.g., root length, volume, surface area and vitality) were increased more in C/D than in other grafting combinations under drought-stressed conditions. Transcriptomic analysis revealed that the number of differentially expressed genes (DEGs) in leaves of C/D vs C/C (control, 181; drought, 121) was much lower than that in the roots of C/D vs D/D (control, 1639; drought, 1706), indicating that the rootstocks were more responsive to drought resistance. KEGG and GO functional enrichment analysis showed that the enhanced growth and drought resistance of C/D were mainly related to DEGs involved in the pathways of ABA and IAA signaling, and secondary metabolite biosynthesis, especially the pathways for lignin and dopamine synthesis and metabolism. Therefore, our results further demonstrated the dominant role of rootstock in drought resistance, and enriched our knowledge on the mechanism of how interspecific grafting enhanced the growth and drought resistance in poplar.


Asunto(s)
Sequías , Reguladores del Crecimiento de las Plantas , Populus , Transducción de Señal , Populus/genética , Populus/metabolismo , Populus/crecimiento & desarrollo , Populus/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Fotosíntesis , Resistencia a la Sequía
2.
J Hazard Mater ; 470: 134148, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565012

RESUMEN

There is increasing global concern regarding the pervasive issue of plastic pollution. We investigated the response of Populus × euramericana cv. '74/76' to nanoplastic toxicity via phenotypic, microanatomical, physiological, transcriptomic, and metabolomic approaches. Polystyrene nanoplastics (PS-NPs) were distributed throughout the test plants after the application of PS-NPs. Nanoplastics principally accumulated in the roots; minimal fractions were translocated to the leaves. In leaves, however, PS-NPs easily penetrated membranes and became concentrated in chloroplasts, causing thylakoid disintegration and chlorophyll degradation. Finally, oxidant damage from the influx of PS-NPs led to diminished photosynthesis, stunted growth, and etiolation and/or wilting. By integrating dual-omics data, we found that plants could counteract mild PS-NP-induced oxidative stress through the antioxidant enzyme system without initiating secondary metabolic defense mechanisms. In contrast, severe PS-NP treatments promoted a shift in metabolic pattern from primary metabolism to secondary metabolic defense mechanisms, an effect that was particularly pronounced during the upregulation of flavonoid biosynthesis. Our findings provide a useful framework from which to further clarify the roles of key biochemical pathways in plant responses to nanoplastic toxicity. Our work also supports the development of effective strategies to mitigate the environmental risks of nanoplastics by biologically immobilizing them in contaminated lands.


Asunto(s)
Populus , Populus/efectos de los fármacos , Populus/metabolismo , Populus/crecimiento & desarrollo , Populus/genética , Poliestirenos/toxicidad , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Clorofila/metabolismo , Metabolómica , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Nanopartículas/toxicidad , Multiómica
3.
Genome Biol ; 25(1): 85, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570851

RESUMEN

Cell type annotation and lineage construction are two of the most critical tasks conducted in the analyses of single-cell RNA sequencing (scRNA-seq). Four recent scRNA-seq studies of differentiating xylem propose four models on differentiating xylem development in Populus. The differences are mostly caused by the use of different strategies for cell type annotation and subsequent lineage interpretation. Here, we emphasize the necessity of using in situ transcriptomes and anatomical information to construct the most plausible xylem development model.


Asunto(s)
Populus , Populus/genética , Populus/metabolismo , Perfilación de la Expresión Génica , Xilema/genética , Xilema/crecimiento & desarrollo , Transcriptoma , Análisis de la Célula Individual
4.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673766

RESUMEN

The plastidic 2-C-methylerythritol 4-phosphate (MEP) pathway supplies the precursors of a large variety of essential plant isoprenoids, but its regulation is still not well understood. Using metabolic control analysis (MCA), we examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), in multiple grey poplar (Populus × canescens) lines modified in their DXS activity. Single leaves were dynamically labeled with 13CO2 in an illuminated, climate-controlled gas exchange cuvette coupled to a proton transfer reaction mass spectrometer, and the carbon flux through the MEP pathway was calculated. Carbon was rapidly assimilated into MEP pathway intermediates and labeled both the isoprene released and the IDP+DMADP pool by up to 90%. DXS activity was increased by 25% in lines overexpressing the DXS gene and reduced by 50% in RNA interference lines, while the carbon flux in the MEP pathway was 25-35% greater in overexpressing lines and unchanged in RNA interference lines. Isoprene emission was also not altered in these different genetic backgrounds. By correlating absolute flux to DXS activity under different conditions of light and temperature, the flux control coefficient was found to be low. Among isoprenoid end products, isoprene itself was unchanged in DXS transgenic lines, but the levels of the chlorophylls and most carotenoids measured were 20-30% less in RNA interference lines than in overexpression lines. Our data thus demonstrate that DXS in the isoprene-emitting grey poplar plays only a minor part in controlling flux through the MEP pathway.


Asunto(s)
Eritritol , Eritritol/análogos & derivados , Populus , Fosfatos de Azúcar , Transferasas , Populus/genética , Populus/metabolismo , Populus/enzimología , Eritritol/metabolismo , Fosfatos de Azúcar/metabolismo , Transferasas/metabolismo , Transferasas/genética , Hemiterpenos/metabolismo , Butadienos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Pentanos/metabolismo , Plantas Modificadas Genéticamente
5.
Plant Physiol Biochem ; 210: 108648, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653094

RESUMEN

This study aims to investigate effects of arbuscular mycorrhizal fungi (AMF) inoculation on nitrogen (N) uptake and assimilation in Populus cathayana under drought stress (DS). Herein, we measured photosynthetic performance, antioxidant enzyme system, N level and N assimilation enzymes, proteins content and distribution, transcripts of genes associated with N uptake or transport in P. cathayana with AMF (AM) or without AMF (NM) under soil water limitation and adequate irrigation. Compared with NM-DS P. cathayana, the growth, gas exchange properties, antioxidant enzyme activities, total N content and the proportion of water-soluble and membrane-bound proteins in AM-DS P. cathayana were increased. Meanwhile, nitrate reductase (NR) activity, NO3- and NO2- concentrations in AM-DS P. cathayana were reduced, while NH4+ concentration, glutamine synthetase (GS) and glutamate synthetase (GOGAT) activities were elevated, indicating that AM symbiosis reduces NO3- assimilation while promoting NH4+ assimilation. Furthermore, the transcriptional levels of NH4+ transporter genes (PcAMT1-4 and PcAMT2-1) and NO3- transporter genes (PcNRT2-1 and PcNRT3-1) in AM-DS P. cathayana roots were significantly down-regulated, as well as NH4+ transporter genes (PcAMT1-6 and PcAMT4-3) in leaves. In AM P. cathayana roots, DS significantly up-regulated the transcriptional levels of RiCPSI and RiURE, the key N transport regulatory genes in AMF compared with adequate irrigation. These results indicated that AM N transport pathway play an essential role on N uptake and utilization in AM P. cathayana to cope with DS. Therefore, this research offers a novel perspective on how AM symbiosis enhances plant resilience to drought at aspect of N acquisition and assimilation.


Asunto(s)
Sequías , Micorrizas , Nitrógeno , Populus , Simbiosis , Populus/microbiología , Populus/metabolismo , Populus/genética , Populus/fisiología , Micorrizas/fisiología , Micorrizas/metabolismo , Nitrógeno/metabolismo , Simbiosis/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Fotosíntesis/fisiología , Resistencia a la Sequía
6.
Plant Physiol Biochem ; 210: 108600, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593488

RESUMEN

Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.


Asunto(s)
Homeostasis , Fosfolipasa D , Proteínas de Plantas , Populus , Estrés Salino , Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Populus/metabolismo , Populus/genética , Populus/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Salino/genética , Tolerancia a la Sal/genética , Cloruro de Sodio/farmacología , Técnicas del Sistema de Dos Híbridos
7.
Plant Physiol Biochem ; 208: 108528, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38493662

RESUMEN

Zinc (Zn) is an essential micronutrient for plants, but it is toxic beyond a certain threshold. Populus alba (L.) 'Villafranca' clone is known for its good tolerance to high Zn concentration compared to other poplar species. A line of this species overexpressing the tonoplast intrinsic aquaporin AQUA1 gene has showed an improved tolerance to Zn excess in comparison to the wild-type (wt) line. The aims of this work were to: 1) verify if AQUA1 plants can uptake Zn more efficiently after a longer period of exposure; 2) evaluate if a higher Zn uptake in transgenic lines can have negative effects; 3) assess Zn competing elements (iron and manganese), soluble sugars, osmolytes, and potassium to investigate differences in water and osmotic homeostasis between lines. Under Zn excess, AQUA1 plants showed a twofold Zn translocation factor and a higher xylem sap Zn concentration than the wt plants. Transgenic plants preferentially allocated Zn in aerial biomass and this different behaviour matched with modified manganese and iron balances suggesting that the increased Zn uptake might be related to a decrease in iron transport in the transgenic line. Moreover, a higher instantaneous water use efficiency in control conditions and an increase in bark soluble sugars under Zn excess could allow a higher resistance of AQUA1 plants to the water and osmotic perturbations caused by Zn. Indeed, the Zn excess increased the xylem osmolyte content only in wt plants. Further investigations are required to understand the role of AQUA1 in osmotic regulation.


Asunto(s)
Acuaporinas , Populus , Zinc/metabolismo , Populus/genética , Populus/metabolismo , Manganeso , Minerales , Hierro/metabolismo , Agua , Azúcares
8.
Plant Sci ; 343: 112058, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38447913

RESUMEN

The NF-Y gene family in plants plays a crucial role in numerous biological processes, encompassing hormone response, stress response, as well as growth and development. In this study, we first used bioinformatics techniques to identify members of the NF-YA family that may function in wood formation. We then used molecular biology techniques to investigate the role and molecular mechanism of PtrNF-YA6 in secondary cell wall (SCW) formation in Populus trichocarpa. We found that PtrNF-YA6 protein was localized in the nucleus and had no transcriptional activating activity. Overexpression of PtrNF-YA6 had an inhibitory effect on plant growth and development and significantly suppressed hemicellulose synthesis and SCW thickening in transgenic plants. Yeast one-hybrid and ChIP-PCR assays revealed that PtrNF-YA6 directly regulated the expression of hemicellulose synthesis genes (PtrGT47A-1, PtrGT8C, PtrGT8F, PtrGT43B, PtrGT47C, PtrGT8A and PtrGT8B). In conclusion, PtrNF-YA6 can inhibit plant hemicellulose synthesis and SCW thickening by regulating the expression of downstream SCW formation-related target genes.


Asunto(s)
Populus , Populus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Madera/genética , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
9.
Plant Sci ; 343: 112061, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38461863

RESUMEN

The plasmalemma Na+/H+ antiporter Salt Overly Sensitive 1 (SOS1) is responsible for the efflux of Na+ from the cytoplasm, an important determinant of salt resistance in plants. In this study, an ortholog of SOS1, referred to as NsSOS1, was cloned from Nitraria sibirica, a typical halophyte that grows in deserts and saline-alkaline land, and its expression and function in regulating the salt tolerance of forest trees were evaluated. The expression level of NsSOS1 was higher in leaves than in roots and stems of N. sibirica, and its expression was upregulated under salt stress. Histochemical staining showed that ß-glucuronidase (GUS) driven by the NsSOS1 promoter was strongly induced by abiotic stresses and phytohormones including salt, drought, low temperature, gibberellin, and methyl jasmonate, suggesting that NsSOS1 is involved in the regulation of multiple signaling pathways. Transgenic 84 K poplar (Populus alba × P. glandulosa) overexpressing NsSOS1 showed improvements in survival rate, root biomass, plant height, relative water levels, chlorophyll and proline levels, and antioxidant enzyme activities versus non-transgenic poplar (NT) under salt stress. Transgenic poplars accumulated less Na+ and more K+ in roots, stems, and leaves, which had a lower Na+/K+ ratio compared to NT under salt stress. These results indicate that NsSOS1-mediated Na+ efflux confers salt tolerance to transgenic poplars, which show more efficient photosynthesis, better scavenging of reactive oxygen species, and improved osmotic adjustment under salt stress. Transcriptome analysis of transgenic poplars confirmed that NsSOS1 not only mediates Na+ efflux but is also involved in the regulation of multiple metabolic pathways. The results provide insight into the regulatory mechanisms of NsSOS1 and suggest that it could be used to improve the salt tolerance of forest trees.


Asunto(s)
Populus , Plantas Tolerantes a la Sal , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Tolerancia a la Sal/genética , Plantas Modificadas Genéticamente/metabolismo , Antiportadores/metabolismo , Populus/metabolismo , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Plant Sci ; 343: 112074, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38548138

RESUMEN

As a member of the small GTPases family, Rab GTPases play a key role in specifying transport pathways in the intracellular membrane trafficking system and are involved in plant growth and development. By quantitative trait locus (QTL) mapping, PdRabG3f was identified as a candidate gene associated with shoot height in a hybrid offspring of Populus deltoides 'Danhong' × Populus simonii 'Tongliao1'. PdRabG3f localized to the nucleus, endoplasmic reticulum and tonoplast and was primarily expressed in the xylem and cambium. Overexpression of PdRabG3f in Populus alba × Populus glandulosa (84 K poplar) had inhibitory effects on vertical and radical growth. In the transgenic lines, there were evident changes in the levels of 15 gibberellin (GA) derivatives, and the application of exogenous GA3 partially restored the phenotypes mediated by GAs deficiency. The interaction between PdRabG3f and RIC4, which was the GA-responsive factor, provided additional explanation for PdRabG3f's inhibitory effect on poplar growth. RNA-seq analysis revealed differentially expressed genes (DEGs) associated with cell wall, xylem, and gibberellin response. PdRabG3f interfering endogenous GAs levels in poplar might involve the participation of MYBs and ultimately affected internode elongation and xylem development. This study provides a potential mechanism for gibberellin-mediated regulation of plant growth through Rab GTPases.


Asunto(s)
Giberelinas , Populus , Giberelinas/metabolismo , Populus/metabolismo , Regulación de la Expresión Génica de las Plantas , Xilema , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Plantas Modificadas Genéticamente/genética
11.
Plant Mol Biol ; 114(2): 29, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502380

RESUMEN

Advances in carbohydrate metabolism prompted its essential role in defense priming and sweet immunity during plant-pathogen interactions. Nevertheless, upstream responding enzymes in the sucrose metabolic pathway and associated carbohydrate derivatives underlying fungal pathogen challenges remain to be deciphered in Populus, a model tree species. In silico deduction of genomic features, including phylogenies, exon/intron distributions, cis-regulatory elements, and chromosomal localization, identified 59 enzyme genes (11 families) in the Populus genome. Spatiotemporal expression of the transcriptome and the quantitative real-time PCR revealed a minuscule number of isogenes that were predominantly expressed in roots. Upon the pathogenic Fusarium solani (Fs) exposure, dynamic changes in the transcriptomics atlas and experimental evaluation verified Susy (PtSusy2 and 3), CWI (PtCWI3), VI (PtVI2), HK (PtHK6), FK (PtFK6), and UGPase (PtUGP2) families, displaying promotions in their expressions at 48 and 72 h of post-inoculation (hpi). Using the gas chromatography-mass spectrometry (GC-MS)-based non-targeted metabolomics combined with a high-performance ion chromatography system (HPICS), approximately 307 metabolites (13 categories) were annotated that led to the quantification of 46 carbohydrates, showing marked changes between three compared groups. By contrast, some sugars (e.g., sorbitol, L-arabitol, trehalose, and galacturonic acid) exhibited a higher accumulation at 72 hpi than 0 hpi, while levels of α-lactose and glucose decreased, facilitating them as potential signaling molecules. The systematic overview of multi-omics approaches to dissect the effects of Fs infection provides theoretical cues for understanding defense immunity depending on fine-tuned Suc metabolic gene clusters and synergistically linked carbohydrate pools in trees.


Asunto(s)
Fusarium , Populus , Humanos , Sacarosa/metabolismo , Multiómica , Populus/genética , Populus/metabolismo , Carbohidratos , Hexosas/metabolismo
12.
Plant Cell Environ ; 47(6): 2044-2057, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38392920

RESUMEN

Blue light photoreceptor cryptochrome 1 (CRY1) in herbaceous plants plays crucial roles in various developmental processes, including cotyledon expansion, hypocotyl elongation and anthocyanin biosynthesis. However, the function of CRY1 in perennial trees is unclear. In this study, we identified two ortholog genes of CRY1 (PagCRY1a and PagCRY1b) from Populus, which displayed high sequence similarity to Arabidopsis CRY1. Overexpression of PagCRY1 substantially inhibited plant growth and promoted secondary xylem development in Populus, while CRISPR/Cas9-mediated knockout of PagCRY1 enhanced plant growth and delayed secondary xylem development. Moreover, overexpression of PagCRY1 dramatically increased anthocyanin accumulation. The further analysis supported that PagCRY1 functions specifically in response to blue light. Taken together, our results demonstrated that modulating the expression of blue light photoreceptor CRY1 ortholog gene in Populus could significantly influence plant biomass production and the process of wood formation, laying a foundation for further investigating the light-regulated tree growth.


Asunto(s)
Antocianinas , Proteínas de Arabidopsis , Criptocromos , Regulación de la Expresión Génica de las Plantas , Luz , Populus , Madera , Populus/genética , Populus/metabolismo , Populus/crecimiento & desarrollo , Criptocromos/metabolismo , Criptocromos/genética , Antocianinas/biosíntesis , Antocianinas/metabolismo , Madera/metabolismo , Madera/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Xilema/metabolismo , Xilema/genética , Xilema/crecimiento & desarrollo , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/genética , Luz Azul
13.
New Phytol ; 242(2): 658-674, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38375883

RESUMEN

The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.


Asunto(s)
Ciclopentanos , Laccaria , Micorrizas , Oxilipinas , Populus , Micorrizas/genética , Populus/metabolismo , Raíces de Plantas/metabolismo , Simbiosis/genética , Laccaria/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Monoterpenos/metabolismo
14.
Int J Biol Macromol ; 263(Pt 2): 130471, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417753

RESUMEN

Plant AT-rich sequence and zinc-binding (PLATZ) proteins are a class of plant-specific transcription factor that play a crucial role in plant growth, development, and stress response. However, the evolutionary relationship of the PLATZ gene family across the Populus genus and the biological functions of the PLATZ protein require further investigation. In this study, we identified 133 PLATZ genes from six Populus species belonging to four Populus sections. Synteny analysis of the PLATZ gene family indicated that whole genome duplication events contributed to the expansion of the PLATZ family. Among the nine paralogous pairs, the protein structure of PtrPLATZ14/18 pair exhibited significant differences with others. Through gene expression patterns and co-expression networks, we discovered divergent expression patterns and sub-networks, and found that the members of pair PtrPLATZ14/18 might play different roles in the regulation of macromolecule biosynthesis and modification. Furthermore, we found that PtrPLATZ14 regulates poplar leaf development by affecting cell size control genes PtrGRF/GIF and PtrTCP. In conclusion, our study provides a theoretical foundation for exploring the evolution relationships and functions of the PLATZ gene family within Populus species and provides insights into the function and potential mechanism of PtrPLATZ14 in leaf morphology that were diverse across the Populus genus.


Asunto(s)
Populus , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Familia de Multigenes , Filogenia , Populus/genética , Populus/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/química
15.
Plant Cell Environ ; 47(6): 2058-2073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38404129

RESUMEN

Plants adjust their growth and development in response to changing light caused by canopy shade. The molecular mechanisms underlying shade avoidance responses have been widely studied in Arabidopsis and annual crop species, yet the shade avoidance signalling in woody perennial trees remains poorly understood. Here, we first showed that PtophyB1/2 photoreceptors serve conserved roles in attenuating the shade avoidance syndrome (SAS) in poplars. Next, we conducted a systematic identification and characterization of eight PtoPIF genes in Populus tomentosa. Knocking out different PtoPIFs led to attenuated shade responses to varying extents, whereas overexpression of PtoPIFs, particularly PtoPIF3.1 and PtoPIF3.2, led to constitutive SAS phenotypes under normal light and enhanced SAS responses under simulated shade. Notably, our results revealed that distinct from Arabidopsis PIF4 and PIF5, which are major regulators of SAS, the Populus homologues PtoPIF4.1 and PtoPIF4.2 seem to play a minor role in controlling shade responses. Moreover, we showed that PtoPIF3.1/3.2 could directly activate the expression of the auxin biosynthetic gene PtoYUC8 in response to shade, suggesting a conserved PIF-YUC-auxin pathway in modulating SAS in tree. Overall, our study provides insights into shared and divergent functions of PtoPIF members in regulating various aspects of the SAS in Populus.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Fitocromo , Proteínas de Plantas , Populus , Populus/genética , Populus/efectos de la radiación , Populus/metabolismo , Populus/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitocromo/metabolismo , Fitocromo/genética , Luz , Ácidos Indolacéticos/metabolismo , Plantas Modificadas Genéticamente , Árboles/fisiología , Árboles/genética , Árboles/metabolismo
16.
Plant Physiol Biochem ; 208: 108450, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38402800

RESUMEN

Plants possess different degrees of tolerance to abiotic stress, which can mitigate the detrimental effect of environmental inputs affecting carbon balance. Less is known about the functions of osmoprotectants in scavenging of reactive oxygen species (ROS), generated at different sites depending on leaf age. This study aimed to clarify the osmotic adjustments adopted by old and young leaves of Oxford and I-214 poplar clones [differing in ozone (O3) sensitivity] to cope with three levels of O3 [ambient (AA), and two elevated O3 levels]. In both clones, the impact of intermediate O3 concentrations (1.5 × AA) on ROS production appeared to be leaf age-specific, given the accumulation of hydrogen peroxide (H2O2) observed only in old leaves of the Oxford plants and in young leaves of the I-214 ones (2- fold higher than AA and +79%, respectively). The induction of an oxidative burst was associated with membrane injury, indicating an inadequate response of the antioxidative systems [decrease of lutein and ß-carotene (-37 and -85% in the old leaves of the Oxford plants), accumulation of proline and tocopherols (+60 and +12% in the young leaves of the I-214 ones)]. Intermediate O3 concentrations reacted with unsaturated lipids of the plasma membrane in old and young leaves of the Oxford plants, leading to an increase of malondialdehyde by-products (more than 2- fold higher than AA), while no effect was recorded for I-214. The impact of the highest O3 concentrations (2.0 × AA) on ROS production did not appear clone-specific, which may react with cell wall components by leading to oxidative pressure. Outcomes demonstrated the ability of young leaves of I-214 plants in contain O3 phytotoxic effects.


Asunto(s)
Ozono , Populus , Antioxidantes/metabolismo , Ozono/toxicidad , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hojas de la Planta/metabolismo , Populus/metabolismo , Células Clonales/metabolismo , Fotosíntesis
17.
Nat Commun ; 15(1): 1784, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413620

RESUMEN

Poplar trees use photoperiod as a precise seasonal indicator, synchronizing plant phenology with the environment. Daylength cue determines FLOWERING LOCUS T 2 (FT2) daily expression, crucial for shoot apex development and establishment of the annual growing period. However, limited evidence exists for the molecular factors controlling FT2 transcription and the conservation with the photoperiodic control of Arabidopsis flowering. We demonstrate that FT2 expression mediates growth cessation response quantitatively, and we provide a minimal data-driven model linking core clock genes to FT2 daily levels. GIGANTEA (GI) emerges as a critical inducer of the FT2 activation window, time-bound by TIMING OF CAB EXPRESSION (TOC1) and LATE ELONGATED HYPOCOTYL (LHY2) repressions. CRISPR/Cas9 loss-of-function lines validate these roles, identifying TOC1 as a long-sought FT2 repressor. Additionally, model simulations predict that FT2 downregulation upon daylength shortening results from a progressive narrowing of this activation window, driven by the phase shift observed in the preceding clock genes. This circadian-mediated mechanism enables poplar to exploit FT2 levels as an accurate daylength-meter.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Populus , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/genética , Fotoperiodo , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Populus/metabolismo , Regulación de la Expresión Génica de las Plantas , Flores/metabolismo
18.
Tree Physiol ; 44(3)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38366380

RESUMEN

Nitrogen (N) plays an important role in mitigating salt stress in tree species. We investigate the genotypic differences in the uptake of ammonium (NH4+) and nitrate (NO3-) and the importance for salt tolerance in two contrasting poplars, salt-tolerant Populus euphratica Oliv. and salt-sensitive P. simonii × (P. pyramidalis ×Salix matsudana) (P. popularis cv. 35-44, P. popularis). Total N content, growth and photosynthesis were significantly reduced in P. popularis after 7 days of exposure to NaCl (100 mM) supplied with 1 mM NH4+ and 1 mM NO3-, while the salt effects were not pronounced in P. euphratica. The 15NH4+ trace and root flux profiles showed that salt-stressed poplars retained ammonium uptake, which was related to the upregulation of ammonium transporters (AMTs) in roots, as two of the four AMTs tested significantly increased in salt-stressed P. euphratica (i.e., AMT1.2, 2.1) and P. popularis (i.e., AMT1.1, 1.6). It should be noted that P. euphratica differs from salt-sensitive poplar in the maintenance of NO3- under salinity. 15NO3- tracing and root flux profiles showed that P. euphratica maintained nitrate uptake and transport, while the capacity to uptake NO3- was limited in salt-sensitive P. popularis. Salt increased the transcription of nitrate transporters (NRTs), NRT1.1, 1.2, 2.4, 3.1, in P. euphratica, while P. popularis showed a decrease in the transcripts of NRT1.1, 2.4, 3.1 after 7 days of salt stress. Furthermore, salt-stimulated transcription of plasmalemma H+-ATPases (HAs), HA2, HA4 and HA11 contributed to H+-pump activation and NO3- uptake in P. euphratica. However, salt stimulation of HAs was less pronounced in P. popularis, where a decrease in HA2 transcripts was observed in the stressed roots. We conclude that the salinity-decreased transcripts of NRTs and HAs reduced the ability to uptake NO3- in P. popularis, resulting in limited nitrogen supply. In comparison, P. euphratica maintains NH4+ and NO3- supply, mitigating the negative effects of salt stress.


Asunto(s)
Compuestos de Amonio , Populus , Nitratos/metabolismo , Cloruro de Sodio/farmacología , Populus/metabolismo , Raíces de Plantas/fisiología , Compuestos de Amonio/metabolismo , Proteínas de Transporte de Membrana , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/farmacología , Nitrógeno/metabolismo
19.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38396881

RESUMEN

Primary and secondary growth of trees are needed for increments in plant height and stem diameter, respectively, affecting the production of woody biomass for applications in timber, pulp/paper, and related biomaterials. These two types of growth are believed to be both regulated by distinct transcription factor (TF)-mediated regulatory pathways. Notably, we identified PtrLBD39, a highly stem phloem-specific TF in Populus trichocarpa and found that the ectopic expression of PtrLBD39 in P. trichocarpa markedly retarded both primary and secondary growth. In these overexpressing plants, the RNA-seq, ChIP-seq, and weighted gene co-expression network analysis (WGCNA) revealed that PtrLBD39 directly or indirectly regulates TFs governing vascular tissue development, wood formation, hormonal signaling pathways, and enzymes responsible for wood components. This regulation led to growth inhibition, decreased fibrocyte secondary cell wall thickness, and reduced wood production. Therefore, our study indicates that, following ectopic expression in P. trichocarpa, PtrLBD39 functions as a repressor influencing both primary and secondary growth.


Asunto(s)
Populus , Populus/metabolismo , Expresión Génica Ectópica , Madera/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo
20.
Plant Cell ; 36(5): 1806-1828, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339982

RESUMEN

Wood formation involves consecutive developmental steps, including cell division of vascular cambium, xylem cell expansion, secondary cell wall (SCW) deposition, and programmed cell death. In this study, we identified PagMYB31 as a coordinator regulating these processes in Populus alba × Populus glandulosa and built a PagMYB31-mediated transcriptional regulatory network. PagMYB31 mutation caused fewer layers of cambial cells, larger fusiform initials, ray initials, vessels, fiber and ray cells, and enhanced xylem cell SCW thickening, showing that PagMYB31 positively regulates cambial cell proliferation and negatively regulates xylem cell expansion and SCW biosynthesis. PagMYB31 repressed xylem cell expansion and SCW thickening through directly inhibiting wall-modifying enzyme genes and the transcription factor genes that activate the whole SCW biosynthetic program, respectively. In cambium, PagMYB31 could promote cambial activity through TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)/PHLOEM INTERCALATED WITH XYLEM (PXY) signaling by directly regulating CLAVATA3/ESR-RELATED (CLE) genes, and it could also directly activate WUSCHEL HOMEOBOX RELATED4 (PagWOX4), forming a feedforward regulation. We also observed that PagMYB31 could either promote cell proliferation through the MYB31-MYB72-WOX4 module or inhibit cambial activity through the MYB31-MYB72-VASCULAR CAMBIUM-RELATED MADS2 (VCM2)/PIN-FORMED5 (PIN5) modules, suggesting its role in maintaining the homeostasis of vascular cambium. PagMYB31 could be a potential target to manipulate different developmental stages of wood formation.


Asunto(s)
Cámbium , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Populus , Factores de Transcripción , Xilema , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Xilema/metabolismo , Xilema/genética , Xilema/crecimiento & desarrollo , Cámbium/genética , Cámbium/crecimiento & desarrollo , Cámbium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Pared Celular/metabolismo , Proliferación Celular , Madera/crecimiento & desarrollo , Madera/metabolismo , Madera/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...