Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
PLoS One ; 19(5): e0303096, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38713656

RESUMEN

Fast-growing poplar plantations are considered a great benefit to timber production, but water availability is a key factor limiting their growth and development, especially in arid and semi-arid ecosystems. Super-absorbent polymers facilitate more water retention in soil after rain or irrigation, and they are able to release water gradually during plant growth. This study aimed to examine the effects of reduced irrigation (60% and 30% of conventional border irrigation) co-applied with super-absorbent polymers (0, 40 kg/ha) on root exudates, enzyme activities, microbial functional diversity in rhizosphere soil, and volume increments in poplar (Populus euramericana cv. 'Neva'). The results showed that 60% border irrigation co-applied with super-absorbent polymers significantly increased the content of organic acids, amino acids and total sugars in the root exudates, and the activities of invertase, urease, dehydrogenase, and catalase in the rhizosphere soil in comparison to conventional border irrigation without super-absorbent polymers. Meanwhile, this treatment also enhanced the average well-color development, Shannon index, and McIntosh index, but decreased the Simpson index. Additionally, the average volume growth rate and relative water content of leaves reached their maximum using 60% irrigation with super-absorbent polymers, which was significantly higher than other treatments. However, using 30% irrigation with super-absorbent polymers, had a smaller effect on rhizosphere soil and volume growth than 60% irrigation with super-absorbent polymers. Therefore, using an appropriate water-saving irrigation measure (60% conventional border irrigation with super-absorbent polymers) can help to improve enzyme activities and microbial diversity in the rhizosphere soil while promoting the growth of poplar trees.


Asunto(s)
Riego Agrícola , Polímeros , Populus , Rizosfera , Microbiología del Suelo , Populus/crecimiento & desarrollo , Populus/microbiología , Riego Agrícola/métodos , Polímeros/química , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Suelo/química , Agua/química
2.
Plant Physiol Biochem ; 210: 108610, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615447

RESUMEN

In the face of the formidable environmental challenges precipitated by the ongoing climate change, Plant Growth-Promoting Bacteria (PGPB) are gaining widespread acknowledgement for their potential as biofertilizers, biocontrol agents, and microbial inoculants. However, a knowledge gap pertains to the ability of PGPB to improve stress tolerance in forestry species via cross-inoculation. To address this gap, the current investigation centres on PGPBs, namely, Acinetobacter johnsonii, Cronobacter muytjensii, and Priestia endophytica, selected from the phyllosphere of robust and healthy plants thriving in the face of stress-inducing conditions. These strains were selected based on their demonstrated adaptability to saline, arid, and nitrogen-deficient environments. The utilization of PGPB treatment resulted in an improvement of stomatal conductance (gs) and transpiration rate (E) in poplar plants exposed to both salt and drought stress. It also induced an increase in essential biochemical components such as proline (PRO), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). These reactions were accompanied by a decrease in leaf malonaldehyde (MDA) content and electrolyte leakage (EL). Furthermore, the PGPB treatment demonstrated a notable enhancement in nutrient absorption, particularly nitrogen and carbon, achieved through the solubilization of nutrients. The estimation of canopy temperature via thermal imaging proved to be an efficient method for distinguishing stress reactions in poplar than conventional temperature recording techniques. In summation, the utilization of PGPB especially Cronobacter muytjensii in this study, yielded profound improvements in the stress tolerance of poplar plants, manifesting in reduced membrane lipid peroxidation, enhanced photosynthesis, and bolstered antioxidant capacity within the leaves.


Asunto(s)
Populus , Estrés Fisiológico , Populus/microbiología , Populus/fisiología , Endófitos/fisiología , Hojas de la Planta/metabolismo , Sequías , Prolina/metabolismo , Adaptación Fisiológica , Acinetobacter/fisiología
3.
Plant Physiol Biochem ; 210: 108648, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653094

RESUMEN

This study aims to investigate effects of arbuscular mycorrhizal fungi (AMF) inoculation on nitrogen (N) uptake and assimilation in Populus cathayana under drought stress (DS). Herein, we measured photosynthetic performance, antioxidant enzyme system, N level and N assimilation enzymes, proteins content and distribution, transcripts of genes associated with N uptake or transport in P. cathayana with AMF (AM) or without AMF (NM) under soil water limitation and adequate irrigation. Compared with NM-DS P. cathayana, the growth, gas exchange properties, antioxidant enzyme activities, total N content and the proportion of water-soluble and membrane-bound proteins in AM-DS P. cathayana were increased. Meanwhile, nitrate reductase (NR) activity, NO3- and NO2- concentrations in AM-DS P. cathayana were reduced, while NH4+ concentration, glutamine synthetase (GS) and glutamate synthetase (GOGAT) activities were elevated, indicating that AM symbiosis reduces NO3- assimilation while promoting NH4+ assimilation. Furthermore, the transcriptional levels of NH4+ transporter genes (PcAMT1-4 and PcAMT2-1) and NO3- transporter genes (PcNRT2-1 and PcNRT3-1) in AM-DS P. cathayana roots were significantly down-regulated, as well as NH4+ transporter genes (PcAMT1-6 and PcAMT4-3) in leaves. In AM P. cathayana roots, DS significantly up-regulated the transcriptional levels of RiCPSI and RiURE, the key N transport regulatory genes in AMF compared with adequate irrigation. These results indicated that AM N transport pathway play an essential role on N uptake and utilization in AM P. cathayana to cope with DS. Therefore, this research offers a novel perspective on how AM symbiosis enhances plant resilience to drought at aspect of N acquisition and assimilation.


Asunto(s)
Sequías , Micorrizas , Nitrógeno , Populus , Simbiosis , Populus/microbiología , Populus/metabolismo , Populus/genética , Populus/fisiología , Micorrizas/fisiología , Micorrizas/metabolismo , Nitrógeno/metabolismo , Simbiosis/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Fotosíntesis/fisiología , Resistencia a la Sequía
4.
Plant Cell Environ ; 47(6): 2074-2092, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38409861

RESUMEN

Plants trigger a robust immune response by activating massive transcriptome reprogramming through crosstalk between PTI and ETI. However, how PTI and ETI contribute to the quantitative or/and qualitative output of immunity and how they work together when both are being activated were unclear. In this study, we performed a comprehensive overview of pathogen-triggered transcriptomic reprogramming by analyzing temporal changes in the transcriptome up to 144 h after Colletotrichum gloeosporioides inoculated in Populus. Moreover, we constructed a hierarchical gene regulatory network of PagWRKY18 and its potential target genes to explore the underlying regulatory mechanisms of PagWRKY18 that are not yet clear. Interestingly, we confirmed that PagWRKY18 protein can directly bind the W-box elements in the promoter of a transmembrane leucine-rich repeat receptor-like kinase, PagSOBIR1 gene, to trigger PTI. At the same time, PagWRKY18 functions in disease tolerance by modulation of ROS homeostasis and induction of cell death via directly targeting PagGSTU7 and PagPR4 respectively. Furthermore, PagPR4 can interact with PagWRKY18 to inhibit the expression of PagPR4 genes, forming a negative feedback loop. Taken together, these results suggest that PagWRKY18 may be involved in regulating crosstalk between PTI and ETI to activate a robust immune response and maintain intracellular homeostasis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Populus , Populus/genética , Populus/inmunología , Populus/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Colletotrichum/fisiología , Transcriptoma , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Redes Reguladoras de Genes , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
5.
mSystems ; 9(3): e0088623, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38421171

RESUMEN

Temporal variation in community composition is central to our understanding of the assembly and functioning of microbial communities, yet the controls over temporal dynamics for microbiomes of long-lived plants, such as trees, remain unclear. Temporal variation in tree microbiomes could arise primarily from seasonal (i.e., intra-annual) fluctuations in community composition or from longer-term changes across years as host plants age. To test these alternatives, we experimentally isolated temporal variation in plant microbiome composition using a common garden and clonally propagated plants, and we used amplicon sequencing to characterize bacterial/archaeal and fungal communities in the leaf endosphere, root endosphere, and rhizosphere of two Populus spp. over four seasons across two consecutive years. Microbial community composition differed among seasons and years (which accounted for up to 21% of the variation in microbial community composition) and was correlated with seasonal dissimilarity in climatic conditions. However, microbial community dissimilarity was also positively correlated with time, reflecting longer-term compositional shifts as host trees aged. Together, our findings demonstrate that temporal patterns in tree microbiomes arise from both seasonal fluctuations and longer-term changes, which interact to generate unique seasonal patterns each year. In addition to shedding light on two important controls over the assembly of plant microbiomes, our results also suggest future studies of tree microbiomes should account for background temporal dynamics when testing the drivers of spatial patterns in microbial community composition and temporal responses of plant microbiomes to environmental change.IMPORTANCEMicrobiomes are integral to the health of host plants, but we have a limited understanding of the factors that control how the composition of plant microbiomes changes over time. Especially little is known about the microbiome of long-lived trees, relative to annual and non-woody plants. We tested how tree microbiomes changed between seasons and years in poplar (genus Populus), which are widespread and ecologically important tree species that also serve as important biofuel feedstocks. We found the composition of bacterial, archaeal, and fungal communities differed among seasons, but these seasonal differences depended on year. This dependence was driven by longer-term changes in microbial composition as host trees developed across consecutive years. Our findings suggest that temporal variation in tree microbiomes is driven by both seasonal fluctuations and longer-term (i.e., multiyear) development.


Asunto(s)
Microbiota , Populus , Populus/microbiología , Microbiología del Suelo , Raíces de Plantas/microbiología , Bacterias/genética , Archaea , Microbiota/genética , Árboles
6.
Mol Plant Microbe Interact ; 37(3): 277-289, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38148279

RESUMEN

The poplar rust fungus Melampsora larici-populina is part of one of the most devastating group of fungi (Pucciniales) and causes important economic losses to the poplar industry. Because M. larici-populina is a heteroecious obligate biotroph, its spread depends on its ability to carry out its reproductive cycle through larch and then poplar parasitism. Genomic approaches have identified more than 1,000 candidate secreted effector proteins (CSEPs) from the predicted secretome of M. larici-populina that are potentially implicated in the infection process. In this study, we selected CSEP pairs (and one triplet) among CSEP gene families that share high sequence homology but display specific gene expression profiles among the two distinct hosts. We determined their subcellular localization by confocal microscopy through expression in the heterologous plant system Nicotiana benthamiana. Five out of nine showed partial or complete chloroplastic localization. We also screened for potential protein interactors from larch and poplar by yeast two-hybrid assays. One pair of CSEPs and the triplet shared common interactors, whereas the members of the two other pairs did not have common targets from either host. Finally, stromule induction quantification revealed that two pairs and the triplet of CSEPs induced stromules when transiently expressed in N. benthamiana. The use of N. benthamiana eds1 and nrg1 knockout lines showed that CSEPs can induce stromules through an eds1-independent mechanism. However, CSEP homologs shared the same impact on stromule induction and contributed to discovering a new stromule induction cascade that can be partially and/or fully independent of eds1. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Basidiomycota , Populus , Nicotiana/genética , Basidiomycota/genética , Transcriptoma , Plastidios , Populus/genética , Populus/microbiología , Enfermedades de las Plantas/microbiología
7.
Antonie Van Leeuwenhoek ; 117(1): 2, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38147266

RESUMEN

Strain CN29T, isolated from the stem of 5- to 6-year-old Populus tomentosa in Shandong, China, was characterized using a polyphasic taxonomic approach. Cells of CN29T were Gram-stain negative, aerobic, nonspore-forming, and nonmotile coccoid. Growth occurred at 20-37 °C, pH 4.0-9.0 (optimum, pH 6.0), and with 0-1% NaCl (optimum, 1%). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain CN29T was closely related to members of the genus Roseomonas and closest to Roseomonas pecuniae N75T (96.6%). This classification was further supported by phylogenetic analysis using additional core genes. The average nucleotide identity and digital DNA‒DNA hybridization values between strain CN29T and Roseomonas populi CN29T were 82.7% and 27.8%, respectively. The genome size of strain CN29T was 5.87 Mb, with a G + C content of 70.9%. The major cellular fatty acids included summed feature 8 (C18:1 ω7c/C18:1 ω6c), C19:0 cyclo ω8c and C16:0. The major respiratory quinone was Q-10. The polar lipids were phosphatidylcholine, aminolipid, phosphatidylglycerol, and diphosphatidylglycerol. Strain CN29T can utilize acetate as a carbon source for growth and metabolism. Additionally, it contains acid phosphatase (2-naphthyl phosphate), which catalyzes the hydrolysis of phosphoric monoesters. The CN29T strain contains several genes, including maeB, gdhB, and cysJ, involved in carbon, nitrogen, and sulfur cycling. These findings suggest that the strain may actively participate in ecosystem cycling, leading to soil improvement and promoting the growth of poplar trees. Based on the phylogenetic, phenotypic, and genotypic characteristics, strain CN29T is concluded to represent a novel species of the genus Roseomonas, for which the name Roseomonas populi sp. nov. is proposed. The type strain is CN29T (= JCM 35579T = GDMCC 1.3267T).


Asunto(s)
Methylobacteriaceae , Filogenia , Populus , Acetatos/metabolismo , Populus/microbiología , ARN Ribosómico 16S/genética , Methylobacteriaceae/clasificación , Methylobacteriaceae/aislamiento & purificación , Tallos de la Planta/microbiología , China , Hibridación de Ácido Nucleico , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
8.
Nat Microbiol ; 8(12): 2406-2419, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973868

RESUMEN

Understanding drivers of terrestrial fungal communities over large scales is an important challenge for predicting the fate of ecosystems under climate change and providing critical ecological context for bioengineering plant-microbe interactions in model systems. We conducted an extensive molecular and microscopy field study across the contiguous United States measuring natural variation in the Populus fungal microbiome among tree species, plant niche compartments and key symbionts. Our results show clear biodiversity hotspots and regional endemism of Populus-associated fungal communities explained by a combination of climate, soil and geographic factors. Modelling climate change impacts showed a deterioration of Populus mycorrhizal associations and an increase in potentially pathogenic foliar endophyte diversity and prevalence. Geographic differences among these symbiont groups in their sensitivity to environmental change are likely to influence broader forest health and ecosystem function. This dataset provides an above- and belowground atlas of Populus fungal biodiversity at a continental scale.


Asunto(s)
Micorrizas , Populus , Árboles/microbiología , Ecosistema , Populus/microbiología , Biodiversidad
9.
Mol Plant Microbe Interact ; 36(12): 779-795, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37551980

RESUMEN

Fungal effectors play critical roles in manipulating plant immune responses and promoting colonization. Sphaerulina musiva is a heterothallic ascomycete fungus that causes Septoria leaf spot and stem canker disease in poplar (Populus spp.) plantations. This disease can result in premature defoliation, branch and stem breakage, increased mortality, and plantation failure. However, little is known about the interaction between S. musiva and poplar. Previous work predicted 142 candidate secreted effector proteins in S. musiva (SmCSEPs), 19 of which were selected for further functional characterization in this study. SmCSEP3 induced plant cell death in Nicotiana benthamiana, while 8 out of 19 tested SmCSEPs suppressed cell death. The signal peptides of these eight SmCSEPs exhibited secretory activity in a yeast signal sequence trap assay. Confocal microscopy revealed that four of these eight SmCSEPs target both the cytoplasm and the nucleus, whereas four predominantly localize to discrete punctate structures. Pathogen challenge assays in N. benthamiana demonstrated that the transient expression of six SmCSEPs promoted Fusarium proliferatum infection. The expression of these six SmCSEP genes were induced during infection. SmCSEP2, SmCSEP13, and SmCSEP25 suppressed chitin-triggered reactive oxygen species burst and callose deposition in N. benthamiana. The candidate secreted effector proteins of S. musiva target multiple compartments in the plant cell and modulate different pattern-triggered immunity pathways. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.


Asunto(s)
Ascomicetos , Populus , Populus/genética , Populus/microbiología , Virulencia , Ascomicetos/genética , Inmunidad de la Planta , Enfermedades de las Plantas/microbiología
10.
BMC Microbiol ; 23(1): 221, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37580699

RESUMEN

BACKGROUND: Phosphate-solubilizing bacteria (PSB) can solubilize insoluble phosphate compounds and improve phosphate availability in soil. Road verges are important in urban landscaping, but the population structure of PSB and their ecological functions in the road verge soil is still unclear. RESULTS: Twenty-one mineral PSB strains and 14 organic PSB strains were isolated from the rhizosphere of poplar on urban road verge. All the mineral PSB strains showed better solubilization to Ca3(PO4)2 than FePO4 or AlPO4. Among them, 7 strains showed high phosphate-solubilizing (PS) activities to Ca3(PO4)2 (150-453 mg/L). All the organic PSB strains displayed weak solubilization to lecithin. 16S rRNA gene-based phylogenetic analysis showed good species diversity of the PSB strains, which belongs to 12 genera: Bacillus, Cedecea, Cellulosimicrobium, Delftia, Ensifer, Paenibacillus, Pantoea, Phyllobacterium, Pseudomonas, Rhizobium, Sinorhizobium and Staphylococcus. Moreover, 8 PSB strains showed various degrees of growth inhibition against 4 plant pathogenic fungi, Fusarium oxysporum S1, F. oxysporum S2, Pythium deliense Meurs Z4, Phomopsis sp. AC1 and a plant pathogenic bacterium, Pectobacterium carotovorum TP1. CONCLUSIONS: The results indicated that these PSB strains could perform multiple ecological functions on road verge. The development and application of bio-agents based on the strains would provide a new strategy for maintaining and improving the ecosystem stability of road verges.


Asunto(s)
Bacterias , Populus , Rizosfera , Microbiología del Suelo , Fosfatos/metabolismo , Populus/microbiología , Filogenia , Suelo/química , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Ecosistema
11.
Appl Environ Microbiol ; 89(6): e0066123, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37289076

RESUMEN

Maintenance of cell wall integrity is important for fungal cell morphology against external stresses and even virulence. Although the transcription factor Rlm1 is known to play major regulatory roles in the maintenance of cell integrity, the underlying mechanism of how Rlm1 contributes to cell wall integrity and virulence in phytopathogenic fungi remains unclear. Here, we demonstrated that CcRlm1 plays important roles in cell wall maintenance and virulence in the poplar canker fungus Cytospora chrysosperma. Among putative downstream targets, CcChs6 (chitin synthase) and CcGna1 (glucosamine 6-phosphate N-acetyltransferase) were found to be direct targets of CcRlm1 and shown to function in chitin synthesis and virulence. Furthermore, we found stronger induction of poplar defense responses when challenged with these gene deletion mutants. Collectively, these results suggest that CcRlm1 plays a critical role in the regulation of cell wall maintenance, stress response, and virulence by directly regulating CcChs6 and CcGna1 in C. chrysosperma. IMPORTANCE Cytospora chrysosperma causes canker diseases on woody plants, and the molecular basis of its infection is not well understood. This study shows that CcRlm1 is the major regulator of chitin synthesis and virulence of the poplar canker fungus. Our research contributes to further understanding the molecular basis of the interaction between C. chrysosperma and poplar.


Asunto(s)
Populus , Factores de Transcripción , Factores de Transcripción/genética , Regulación de la Expresión Génica , Populus/microbiología , Pared Celular/metabolismo , Quitina , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica
12.
Tree Physiol ; 43(9): 1571-1583, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37166359

RESUMEN

Large-scale biofuel production from lignocellulosic feedstock is limited by the financial and environmental costs associated with growing and processing lignocellulosic material and the resilience of these plants to environmental stress. Symbiotic associations with arbuscular (AM) and ectomycorrhizal (EM) fungi represent a potential strategy for expanding feedstock production while reducing nutrient inputs. Comparing AM and EM effects on wood production and chemical composition is a necessary step in developing biofuel feedstocks. Here, we assessed the productivity, biomass allocation and secondary cell wall (SCW) composition of greenhouse-grown Populus tremuloidesMichx. inoculated with either AM or EM fungi. Given the long-term goal of reducing nutrient inputs for biofuel production, we further tested the effects of nutrient availability and nitrogen:phosphorus stoichiometry on mycorrhizal responses. Associations with both AM and EM fungi increased plant biomass by 14-74% depending on the nutrient conditions but had minimal effects on SCW composition. Mycorrhizal plants, especially those inoculated with EM fungi, also allocated a greater portion of their biomass to roots, which could be beneficial in the field where plants are likely to experience both water and nutrient stress. Leaf nutrient content was weakly but positively correlated with wood production in mycorrhizal plants. Surprisingly, phosphorus played a larger role in EM plants compared with AM plants. Relative nitrogen and phosphorus availability were correlated with shifts in SCW composition. For AM associations, the benefit of increased wood biomass may be partially offset by increased lignin content, a trait that affects downstream processing of lignocellulosic tissue for biofuels. By comparing AM and EM effects on the productivity and chemical composition of lignocellulosic tissue, this work links broad functional diversity in mycorrhizal associations to key biofuel traits and highlights the importance of considering both biotic and abiotic factors when developing strategies for sustainable biofuel production.


Asunto(s)
Micorrizas , Populus , Micorrizas/fisiología , Biomasa , Populus/microbiología , Biocombustibles , Raíces de Plantas/microbiología , Plantas , Nutrientes , Fósforo , Nitrógeno , Suelo
13.
Environ Microbiol ; 25(5): 990-1006, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36582119

RESUMEN

Elevated ozone (O3 ) can affect the susceptivity of plants to rust pathogens. However, the collective role of microbiomes involved in such interaction remains largely elusive. We exposed two cultivated poplar clones exhibiting differential O3 sensitivities, to non-filtered ambient air (NF), NF + 40 ppb or NF + 60 ppb O3 -enriched air in field open-top chambers and then inoculated Melampsora larici-populina urediniospores to study their response to rust infection and to investigate how microbiomes inhabiting four compartments (phyllosphere, rhizosphere, root endosphere, bulk soil) are involved in this response. We found that hosts with higher O3 sensitivity had significantly lower rust severity than hosts with lower sensitivity. Furthermore, the effect of increased O3 on the diversity and composition of microbial communities was highly dependent on poplar compartments, with the microbial network complexity patterns being completely opposite between the two clones. Notably, microbial source analysis estimated that phyllosphere fungal communities predominately derived from root endosphere and vice versa, suggesting a potential transmission mechanism between plant above- and below-ground systems. These promising results suggest that further investigations are needed to better understand the interactions of abiotic and biotic stresses on plant performance and the role of the microbiome in driving these changes.


Asunto(s)
Microbiota , Micobioma , Populus , Consorcios Microbianos , Rizosfera , Populus/microbiología
14.
Plant Dis ; 107(1): 83-96, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35759286

RESUMEN

Poplar is widely cultivated in China because of its strong ecological adaptability, fast growth, easy reproduction, and short rotation period. However, it suffers from severe threat from canker disease caused by Cytospora species. The present study revealed the presence of Cytospora species from Populus in China. A total of six species of Cytospora were isolated from Populus in six provinces in China, including five known species (C. ailanthicola, C. chrysosperma, C. donglingensis, C. paratranslucens, and C. sophoriopsis) and one novel species (C. populi) based on morphological and phylogenetic analyses of ITS, act, rpb2, tef1-α, and tub2 gene sequences. Cytospora ailanthicola, C. chrysosperma, C. paratranslucens, and C. sophoriopsis are confirmed as pathogens by pathogenicity tests of which C. paratranslucens showed the strongest virulence, followed by C. ailanthicola, C. chrysosperma, and C. sophoriopsis. The mycelial growth rates of isolates from the six species had 22.5 to 27°C as the optimum temperatures, and the optimum pH values were 5.9 to 7.1. The effectiveness of six carbon sources on the mycelial growth showed that colonies grew the fastest in the presence of fructose and grew the slowest using xylose. This study represents a significant evaluation of Cytospora causing poplar canker disease in China.


Asunto(s)
Ascomicetos , Populus , Populus/microbiología , Virulencia , Filogenia , Enfermedades de las Plantas/microbiología , China
15.
BMC Microbiol ; 22(1): 322, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581840

RESUMEN

BACKGROUND: Populus euphratica Olivier is a kind of tree capable of growing in extremely arid desert and semi-desert environments. In this study, a culture-dependent method was used to analyze the bacterial diversity of stem liquid of P. euphratica and resina of P. euphratica, and to further evaluate plant growth promoting (PGP) activity. RESULTS: A total of 434 bacteria were isolated from stem fluid and resina of P. euphratica in Ebinur Lake Wetland Nature Reserve and Mulei Primitive forest. The results of taxonomic composition analysis shows that Gammaproteobacteria, Firmicutes, and Actinobacteria_c are the three dominant groups in all the communities, and the representative genera are Bacillus, Nesterenkonia and Halomonas. The diversity analysis shows that the culturable bacterial community diversity of P. euphratica in Ebinur Lake Wetland Nature Reserve is higher than that in Mulei Primitive forest, and the bacterial community diversity of P. euphratica stem fluid is higher than that of resina. According to PGP activity evaluation, 158 functional bacteria with plant growth promoting potential were screened. Among them, 61 strains havephosphorus solubilizing abilities, 80 strains have potassium solubilizing abilities, 32 strains have nitrogen fixation abilities, and 151 strains have iron ammonia salt utilization abilities. The germination rate, plant height, and dry weight of the maize seedlings treated with strains BB33-1, TC10 and RC6 are significantly higher than those of the control group. CONCLUSION: In this study, a large number of culturable bacteria were isolated from P. euphratica, which provides new functional bacteria sources for promoting plant growth.


Asunto(s)
Bacillus , Populus , Populus/microbiología , Bacterias , Desarrollo de la Planta , Plantas
16.
Front Cell Infect Microbiol ; 12: 1045615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439212

RESUMEN

Proteins containing Common in Fungal Extracellular Membrane (CFEM) domains uniquely exist in fungi and play significant roles in their whole life history. In this study, a total of 11 MbCFEM proteins were identified from Marssonina brunnea f. sp. multigermtubi (MULT), a hemibiotrophic pathogenic fungus on poplars that causes severe leaf diseases. Phylogenic analysis showed that the 11 proteins (MbCFEM1-11) were divided into three clades based on the trans-membrane domain and the CFEM domain. Sequence alignment and WebLogo analysis of CFEM domains verified the amino acids conservatism therein. All of them possess eight cysteines except MbCFEM4 and MbCFEM11, which lack two cysteines each. Six MbCFEM proteins with a signal peptide and without trans-membrane domain were considered as candidate effectors for further functional analysis. Three-dimensional (3D) models of their CFEM domains presented a helical-basket structure homologous to the crucial virulence factor Csa2 of Candida albicans. Afterward, four (MbCFEM1, 6, 8, and 9) out of six candidate effectors were successfully cloned and a yeast signal sequence trap (YSST) assay confirmed their secretion activity. Pathogen challenge assays demonstrated that the transient expression of four candidate MbCFEM effectors in Nicotiana benthamiana promoted Fusarium proliferatum infection, respectively. In an N. benthamiana heterogeneous expression system, MbCFEM1, MbCFEM6, and MbCFEM9 appeared to suppress both BAX/INF1-triggered PCD, whereas MbCFEM8 could only defeat BAX-triggered PCD. Additionally, subcellular localization analysis indicated that the four candidate MbCFEM effectors accumulate in the cell membrane, nucleus, chloroplast, and cytosolic bodies. These results demonstrate that MbCFEM1, MbCFEM6, MbCFEM8, and MbCFEM9 are effectors of M. brunnea and provide valuable targets for further dissection of the molecular mechanisms underlying the poplar-M. brunnea interaction.


Asunto(s)
Ascomicetos , Populus , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Ascomicetos/metabolismo , Populus/metabolismo , Populus/microbiología
17.
Microbiome ; 10(1): 191, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36333709

RESUMEN

BACKGROUND: Dioecious plants have coevolved with diverse plant microbiomes, which are crucial for the fitness and productivity of their host. Sexual dimorphism in morphology, physiology, or gene expression may relate to different microbial compositions that affect male and female fitness in different environments. However, sex-specific impacts on ecological processes that control the microbiome assembly are not well known. In this study, Populus cathayana males and females were planted in different nitrogen conditions. It was hypothesized that males and females differently affect bacterial and fungal communities in the rhizosphere soil, roots, old leaves, and young leaves. Physiological traits and transcriptome profiles of male and female plants were investigated to reveal potential mechanisms that control the microbiome assembly. RESULTS: Our results showed strong niche differentiation that shapes microbial communities leading to a rapid loss of diversity along a decreasing pH gradient from the rhizosphere soil to leaves. Sex had different impacts on the microbial assembly in each niche. Especially fungal endophytes showed great differences in the community structure, keystone species, and community complexity between P. cathayana males and females. For example, the fungal co-occurrence network was more complex and the alpha diversity was significantly higher in young female leaves compared to young male leaves. Transcriptome profiles revealed substantial differences in plant-pathogen interactions and physiological traits that clearly demonstrated divergent internal environments for endophytes inhabiting males and females. Starch and pH of young leaves significantly affected the abundance of Proteobacteria, while tannin and pH of roots showed significant effects on the abundance of Chloroflexi, Actinobacteria, and Proteobacteria, and on the bacterial Shannon diversity. CONCLUSION: Our results provided important knowledge for understanding sexual dimorphism that affects microbial assemblies, thus advancing our understanding of plant-microbiome interactions. Video Abstract.


Asunto(s)
Microbiota , Populus , Populus/microbiología , Suelo/química , Árboles , Microbiología del Suelo , Rizosfera , Microbiota/genética , Raíces de Plantas/microbiología , Bacterias/genética , Bacterias/metabolismo , Plantas/metabolismo , Nitrógeno/metabolismo
18.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361849

RESUMEN

Melampsora larici-populina (Mlp), M. medusae (Mmed), M. magnusiana (Mmag), and M. pruinosae (Mpr) are epidemic rust fungi in China. The first two are macrocyclic rust fungi distributed in temperate humid environments. The latter two are hemicyclic rusts, mainly distributed in arid and semi-arid areas. Ontogenetic variation that comes with this arid-resistance is of great interest-and may help us predict the influence of a warmer, drier, climate on fungal phylogeny. To compare the differences in the life history and ontogeny between the two types of rust, we cloned mating type genes, STE3.4 and STE3.3 using RACE-smart technology. Protein structures, functions, and mutant loci were compared across each species. We also used microscopy to compare visible cytological differences at each life stage for the fungal species, looking for variation in structure and developmental timing. Quantitative PCR technology was used to check the expression of nuclear fusion and division genes downstream of STE3.3 and STE3.4. Encoding amino acids of STE3.3 and STE3.4 in hemicyclic rusts are shorter than these in the macrocyclic rusts. Both STE3.3 and STE3.4 interact with a protein kinase superfamily member EGG12818 and an E3 ubiquitin protein ligase EGG09709 directly, and activating G-beta conformational changes. The mutation at site 74th amino acid in the conserved transmembrane domain of STE3.3 ascribes to a positive selection, in which alanine (Ala) is changed to phenylalanine (Phe) in hemicyclic rusts, and a mutation with Tyr lost at site 387th in STE3.4, where it is the binding site for ß-D-Glucan. These mutants are speculated corresponding to the insensitivity of hemicyclic rust pheromone receptors to interact with MFa pheromones, and lead to Mnd1 unexpressed in teliospora, and they result in the diploid nuclei division failure and the sexual stage missing in the life cycle. A Phylogenic tree based on STE3.4 gene suggests these two rust types diverged about 14.36 million years ago. Although these rusts share a similar uredia and telia stage, they show markedly different wintering strategies. Hemicyclic rusts overwinter in the poplar buds endophytically, their urediniospores developing thicker cell walls. They form haustoria with a collar-like extrahaustorial membrane neck and induce host thickened callose cell walls, all ontogenetic adaptations to arid environments.


Asunto(s)
Basidiomycota , Populus , Basidiomycota/genética , Populus/genética , Populus/microbiología , Filogenia , Feromonas , China , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
19.
Microbiol Spectr ; 10(3): e0245621, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35612316

RESUMEN

Plants can improve their resistance to a variety of stresses by forming mutualistic relationships with arbuscular mycorrhizal fungi (AMF). The 14-3-3 protein is a major regulator of the plant stress response. However, the regulation mechanism of 14-3-3 family protein genes (14-3-3s) of mycorrhizal plants coping with stress during AMF symbiosis remains unclear. Here, we analyzed the physiological changes and 14-3-3 expression profiles of Populus cathayana inoculated with AMF under different water conditions. The results showed that good colonization and symbiotic relationships with plants were formed under all water conditions (63.00% to 83.67%). Photosynthesis, peroxidase (POD) activity, and Mg and Ca content were significantly affected by drought and AMF. In addition, thirteen 14-3-3 protein genes (PcGRF1-PcGRF13) were identified by quantitative real-time PCR (qRT-PCR), of which the expression levels of PcGRF10 and PcGRF11 induced by AMF were significantly positively correlated with superoxide dismutase (SOD), POD, and sugar content, indicating that the 14-3-3s of mycorrhizal symbiotic plants may respond to drought through antioxidant and osmotic regulation. This is the first study on 14-3-3s in the symbiosis system of forest arbor plants and AMF, and it may help to further study the effects of 14-3-3s during AMF symbiosis on stresses and provide new ideas for improving mycorrhizal seedling cultivation under stress. IMPORTANCE The 14-3-3 protein may regulate many biochemical and physiological processes under abiotic stress. Studies have shown that the 14-3-3 protein gene of AMF is not only upregulated under drought stress, but also enhances the regulation of AMF on plant drought tolerance by regulating plant signal pathways and drought response genes; however, knowledge about the biological relevance of these interactions remains limited and controversial. The precise functions of Populus cathayana 14-3-3s under drought stress remain poorly resolved and the mechanisms of action of these genes in mycorrhizae-induced drought stress are still unknown. Thus, studying the drought-resistance mechanism of the AMF symbiotic plant 14-3-3 gene is of special significance to improving the drought tolerance of the plant. Further systematic study is needed to probe the mechanism by which AMF regulates different 14-3-3 genes and their subsequent physiological effects on drought.


Asunto(s)
Micorrizas , Populus , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Antioxidantes/metabolismo , Sequías , Micorrizas/genética , Plantas/metabolismo , Populus/genética , Populus/metabolismo , Populus/microbiología , Simbiosis , Agua
20.
Fungal Genet Biol ; 161: 103698, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35483517

RESUMEN

Fungi of the order Pucciniales are obligate plant biotrophs causing rust diseases. They exhibit a complex life cycle with the production of up to five spore types, infection of two unrelated hosts and an overwintering stage. Transcription factors (TFs) are key regulators of gene expression in eukaryote cells. In order to better understand genetic programs expressed during major transitions of the rust life cycle, we surveyed the complement of TFs in fungal genomes with an emphasis on Pucciniales. We found that despite their large gene numbers, rust genomes have a reduced repertoire of TFs compared to other fungi. The proportions of C2H2 and Zinc cluster - two of the most represented TF families in fungi - indicate differences in their evolutionary relationships in Pucciniales and other fungal taxa. The regulatory gene family encoding cold shock protein (CSP) showed a striking expansion in Pucciniomycotina with specific duplications in the order Pucciniales. The survey of expression profiles collected by transcriptomics along the life cycle of the poplar rust fungus revealed TF genes related to major biological transitions, e.g. response to environmental cues and host infection. Particularly, poplar rust CSPs were strongly expressed in basidia produced after the overwintering stage suggesting a possible role in dormancy exit. Expression during transition from dormant telia to basidia confirmed the specific expression of the three poplar rust CSP genes. Their heterologous expression in yeast improved cell growth after cold stress exposure, suggesting a probable regulatory function when the poplar rust fungus exits dormancy. This study addresses for the first time TF and regulatory genes involved in developmental transition in the rust life cycle opening perspectives to further explore molecular regulation in the biology of the Pucciniales.


Asunto(s)
Basidiomycota , Populus , Animales , Basidiomycota/genética , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo , Estadios del Ciclo de Vida , Enfermedades de las Plantas/microbiología , Populus/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...