Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Clin Transl Neurol ; 11(3): 577-592, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38158701

RESUMEN

OBJECTIVE: Multisystem proteinopathy type 3 (MSP3) is an inherited, pleiotropic degenerative disorder caused by a mutation in heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), which can affect the muscle, bone, and/or nervous system. This study aimed to determine detailed histopathological features and transcriptomic profile of HNRNPA1-mutated skeletal muscles to reveal the core pathomechanism of hereditary inclusion body myopathy (hIBM), a predominant phenotype of MSP3. METHODS: Histopathological analyses and RNA sequencing of HNRNPA1-mutated skeletal muscles harboring a c.940G > A (p.D314N) mutation (NM_031157) were performed, and the results were compared with those of HNRNPA1-unlinked hIBM and control muscle tissues. RESULTS: RNA sequencing revealed aberrant alternative splicing events that predominantly occurred in myofibril components and mitochondrial respiratory complex. Enrichment analyses identified the nuclear pore complex (NPC) and nucleocytoplasmic transport as suppressed pathways. These two pathways were linked by the hub genes NUP50, NUP98, NUP153, NUP205, and RanBP2. In immunohistochemistry, these nucleoporin proteins (NUPs) were mislocalized to the cytoplasm and aggregated mostly with TAR DNA-binding protein 43 kDa and, to a lesser extent, with hnRNPA1. Based on ultrastructural observation, irregularly shaped myonuclei with deep invaginations were frequently observed in atrophic fibers, consistent with the disorganization of NPCs. Additionally, regarding the expression profiles of overall NUPs, reduced expression of NUP98, NUP153, and RanBP2 was shared with HNRNPA1-unlinked hIBMs. INTERPRETATION: The shared subset of altered NUPs in amyotrophic lateral sclerosis (ALS), as demonstrated in prior research, HNRNPA1-mutated, and HNRNPA1-unlinked hIBM muscle tissues may provide evidence regarding the underlying common nuclear pore pathology of hIBM, ALS, and MSP.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B , Enfermedades Musculares , Humanos , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Esclerosis Amiotrófica Lateral/genética , Poro Nuclear/metabolismo , Poro Nuclear/patología , Músculo Esquelético/metabolismo , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Enfermedades Musculares/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo
2.
Nat Rev Neurol ; 18(6): 348-362, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35488039

RESUMEN

The genetic underpinnings and end-stage pathological hallmarks of neurodegenerative diseases are increasingly well defined, but the cellular pathophysiology of disease initiation and propagation remains poorly understood, especially in sporadic forms of these diseases. Altered nucleocytoplasmic transport is emerging as a prominent pathomechanism of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer disease, frontotemporal dementia and Huntington disease. The nuclear pore complex (NPC) and interactions between its individual nucleoporin components and nuclear transport receptors regulate nucleocytoplasmic transport, as well as genome organization and gene expression. Specific nucleoporin abnormalities have been identified in sporadic and familial forms of neurodegenerative disease, and these alterations are thought to contribute to disrupted nucleocytoplasmic transport. The specific nucleoporins and nucleocytoplasmic transport proteins that have been linked to different neurodegenerative diseases are partially distinct, suggesting that NPC injury contributes to the cellular specificity of neurodegenerative disease and could be an early initiator of the pathophysiological cascades that underlie neurodegenerative disease. This concept is consistent with the fact that rare genetic mutations in some nucleoporins cause cell-type-specific neurological disease. In this Review, we discuss nucleoporin and NPC disruptions and consider their impact on cellular function and the pathophysiology of neurodegenerative disease.


Asunto(s)
Demencia Frontotemporal , Enfermedades Neurodegenerativas , Transporte Activo de Núcleo Celular , Demencia Frontotemporal/metabolismo , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Poro Nuclear/metabolismo , Poro Nuclear/patología , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo
3.
Anal Bioanal Chem ; 414(1): 525-532, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34170347

RESUMEN

Dipeptide repeats (DPRs) associated with C9orf72 repeat expansions perturb nucleocytoplasmic transport and are implicated in the pathogenesis of amyotrophic lateral sclerosis. We present a synthetic hydrogel platform that can be used to analyze aspects of the molecular interaction of dipeptide repeats and the phenylalanine-glycine (FG) phase of the nuclear pore complex (NPC). Hydrogel scaffolds composed of acrylamide and copolymerized with FG monomers are first formed to recapitulate key FG interactions found in the NPC. With labeled probes, we find evidence that toxic arginine-rich DPRs (poly-GR and poly-PR), but not the non-toxic poly-GP, target NPC hydrogel mimics and block selective entry of a key nuclear transport receptor, importin beta (Impß). The ease with which these synthetic hydrogel mimics can be adjusted/altered makes them an invaluable tool to dissect complex molecular interactions that underlie cellular transport processes and their perturbation in disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Transporte Activo de Núcleo Celular , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/química , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipéptidos , Humanos , Hidrogeles , Poro Nuclear/metabolismo , Poro Nuclear/patología
4.
Elife ; 102021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34060470

RESUMEN

Traumatic brain injury (TBI) is a predisposing factor for many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although defects in nucleocytoplasmic transport (NCT) is reported ALS and other neurodegenerative diseases, whether defects in NCT occur in TBI remains unknown. We performed proteomic analysis on Drosophila exposed to repeated TBI and identified resultant alterations in several novel molecular pathways. TBI upregulated nuclear pore complex (NPC) and nucleocytoplasmic transport (NCT) proteins as well as alter nucleoporin stability. Traumatic injury disrupted RanGAP1 and NPC protein distribution in flies and a rat model and led to coaggregation of NPC components and TDP-43. In addition, trauma-mediated NCT defects and lethality are rescued by nuclear export inhibitors. Importantly, genetic upregulation of nucleoporins in vivo and in vitro triggered TDP-43 cytoplasmic mislocalization, aggregation, and altered solubility and reduced motor function and lifespan of animals. We also found NUP62 pathology and elevated NUP62 concentrations in postmortem brain tissues of patients with mild or severe CTE as well as co-localization of NUP62 and TDP-43 in CTE. These findings indicate that TBI leads to NCT defects, which potentially mediate the TDP-43 pathology in CTE.


Asunto(s)
Transporte Activo de Núcleo Celular , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Poro Nuclear/metabolismo , Proteinopatías TDP-43/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/patología , Estudios de Casos y Controles , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Células HEK293 , Humanos , Longevidad , Masculino , Glicoproteínas de Membrana/metabolismo , Actividad Motora , Poro Nuclear/genética , Poro Nuclear/patología , Proteínas de Complejo Poro Nuclear/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas , Ratas Sprague-Dawley , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/patología
5.
Cells ; 10(1)2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466669

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disease caused by a mutation in LMNA. A G608G mutation in exon 11 of LMNA is responsible for most HGPS cases, generating a truncated protein called "progerin". Progerin is permanently farnesylated and accumulates in HGPS cells, causing multiple cellular defects such as nuclear dysmorphism, a thickened lamina, loss of heterochromatin, premature senescence, and clustering of Nuclear Pore Complexes (NPC). To identify the mechanism of NPC clustering in HGPS cells, we evaluated post-mitotic NPC assembly in control and HGPS cells and found no defects. Next, we examined the occurrence of NPC clustering in control and HGPS cells during replicative senescence. We reported that NPC clustering occurs solely in the dysmorphic nuclei of control and HGPS cells. Hence, NPC clustering occurred at a higher frequency in HGPS cells compared to control cells at early passages; however, in late cultures with similar senescence index, NPCs clustering occurred at a similar rate in both control and HGPS. Our results show that progerin does not disrupt post-mitotic reassembly of NPCs. However, NPCs frequently cluster in dysmorphic nuclei with a high progerin content. Additionally, nuclear envelope defects that arise during replicative senescence cause NPC clustering in senescent cells with dysmorphic nuclei.


Asunto(s)
Senescencia Celular , Poro Nuclear/metabolismo , Progeria/metabolismo , Línea Celular , Humanos , Poro Nuclear/patología , Progeria/patología
6.
Genes Dev ; 34(23-24): 1619-1636, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33122293

RESUMEN

Mutations in the telomere-binding protein POT1 are associated with solid tumors and leukemias. POT1 alterations cause rapid telomere elongation, ATR kinase activation, telomere fragility, and accelerated tumor development. Here, we define the impact of mutant POT1 alleles through complementary genetic and proteomic approaches based on CRISPR interference and biotin-based proximity labeling, respectively. These screens reveal that replication stress is a major vulnerability in cells expressing mutant POT1, which manifests as increased telomere mitotic DNA synthesis at telomeres. Our study also unveils a role for the nuclear pore complex in resolving replication defects at telomeres. Depletion of nuclear pore complex subunits in the context of POT1 dysfunction increases DNA damage signaling, telomere fragility and sister chromatid exchanges. Furthermore, we observed telomere repositioning to the nuclear periphery driven by nuclear F-actin polymerization in cells with POT1 mutations. In conclusion, our study establishes that relocalization of dysfunctional telomeres to the nuclear periphery is critical to preserve telomere repeat integrity.


Asunto(s)
Replicación del ADN/genética , Poro Nuclear/patología , Proteínas de Unión a Telómeros/genética , Telómero/genética , Línea Celular Tumoral , Daño del ADN/genética , Humanos , Mitosis/genética , Mutación , Neoplasias/genética , Neoplasias/fisiopatología , Complejo Shelterina , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismo
7.
Nature ; 588(7838): 459-465, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32866962

RESUMEN

Aberrant aggregation of the RNA-binding protein TDP-43 in neurons is a hallmark of frontotemporal lobar degeneration caused by haploinsufficiency in the gene encoding progranulin1,2. However, the mechanism leading to TDP-43 proteinopathy remains unclear. Here we use single-nucleus RNA sequencing to show that progranulin deficiency promotes microglial transition from a homeostatic to a disease-specific state that causes endolysosomal dysfunction and neurodegeneration in mice. These defects persist even when Grn-/- microglia are cultured ex vivo. In addition, single-nucleus RNA sequencing reveals selective loss of excitatory neurons at disease end-stage, which is characterized by prominent nuclear and cytoplasmic TDP-43 granules and nuclear pore defects. Remarkably, conditioned media from Grn-/- microglia are sufficient to promote TDP-43 granule formation, nuclear pore defects and cell death in excitatory neurons via the complement activation pathway. Consistent with these results, deletion of the genes encoding C1qa and C3 mitigates microglial toxicity and rescues TDP-43 proteinopathy and neurodegeneration. These results uncover previously unappreciated contributions of chronic microglial toxicity to TDP-43 proteinopathy during neurodegeneration.


Asunto(s)
Microglía/metabolismo , Microglía/patología , Neuronas/metabolismo , Neuronas/patología , Progranulinas/deficiencia , Proteinopatías TDP-43/metabolismo , Proteinopatías TDP-43/patología , Envejecimiento/genética , Envejecimiento/patología , Animales , Núcleo Celular/genética , Núcleo Celular/patología , Activación de Complemento/efectos de los fármacos , Activación de Complemento/inmunología , Complemento C1q/antagonistas & inhibidores , Complemento C1q/inmunología , Complemento C3b/antagonistas & inhibidores , Complemento C3b/inmunología , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/farmacología , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Poro Nuclear/metabolismo , Poro Nuclear/patología , Progranulinas/genética , RNA-Seq , Análisis de la Célula Individual , Proteinopatías TDP-43/tratamiento farmacológico , Proteinopatías TDP-43/genética , Tálamo/metabolismo , Tálamo/patología , Transcriptoma
8.
Transl Neurodegener ; 9(1): 25, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32616075

RESUMEN

In the ongoing process of uncovering molecular abnormalities in neurodegenerative diseases characterized by toxic protein aggregates, nucleo-cytoplasmic transport defects have an emerging role. Several pieces of evidence suggest a link between neuronal protein inclusions and nuclear pore complex (NPC) damage. These processes lead to oxidative stress, inefficient transcription, and aberrant DNA/RNA maintenance. The clinical and neuropathological spectrum of NPC defects is broad, ranging from physiological aging to a suite of neurodegenerative diseases. A better understanding of the shared pathways among these conditions may represent a significant step toward dissecting their underlying molecular mechanisms, opening the way to a real possibility of identifying common therapeutic targets.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Agregado de Proteínas/fisiología , Animales , Núcleo Celular/genética , Núcleo Celular/patología , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Poro Nuclear/genética , Poro Nuclear/metabolismo , Poro Nuclear/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
9.
Nat Commun ; 10(1): 3827, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444357

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown etiology. Although defects in nucleocytoplasmic transport (NCT) may be central to the pathogenesis of ALS and other neurodegenerative diseases, the molecular mechanisms modulating the nuclear pore function are still largely unknown. Here we show that genetic and pharmacological modulation of actin polymerization disrupts nuclear pore integrity, nuclear import, and downstream pathways such as mRNA post-transcriptional regulation. Importantly, we demonstrate that modulation of actin homeostasis can rescue nuclear pore instability and dysfunction caused by mutant PFN1 as well as by C9ORF72 repeat expansion, the most common mutation in ALS patients. Collectively, our data link NCT defects to ALS-associated cellular pathology and propose the regulation of actin homeostasis as a novel therapeutic strategy for ALS and other neurodegenerative diseases.


Asunto(s)
Actinas/metabolismo , Esclerosis Amiotrófica Lateral/patología , Neuronas Motoras/patología , Poro Nuclear/patología , Profilinas/metabolismo , Acrilamidas/farmacología , Actinas/ultraestructura , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Esclerosis Amiotrófica Lateral/genética , Biopsia , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Línea Celular , Corteza Cerebral/citología , Corteza Cerebral/patología , Embrión de Mamíferos , Fibroblastos , Humanos , Microscopía Electrónica de Transmisión , Neuronas Motoras/citología , Mutación , Poro Nuclear/efectos de los fármacos , Poro Nuclear/ultraestructura , Cultivo Primario de Células , Profilinas/genética , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/genética , Piel/citología , Piel/patología , Tiazoles/farmacología , Tiazolidinas/farmacología
10.
Am J Hum Genet ; 105(1): 48-64, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31178128

RESUMEN

We report biallelic missense and frameshift pathogenic variants in the gene encoding human nucleoporin NUP214 causing acute febrile encephalopathy. Clinical symptoms include neurodevelopmental regression, seizures, myoclonic jerks, progressive microcephaly, and cerebellar atrophy. NUP214 and NUP88 protein levels were reduced in primary skin fibroblasts derived from affected individuals, while the total number and density of nuclear pore complexes remained normal. Nuclear transport assays exhibited defects in the classical protein import and mRNA export pathways in affected cells. Direct surface imaging of fibroblast nuclei by scanning electron microscopy revealed a large increase in the presence of central particles (known as "plugs") in the nuclear pore channels of affected cells. This observation suggests that large transport cargoes may be delayed in passage through the nuclear pore channel, affecting its selective barrier function. Exposure of fibroblasts from affected individuals to heat shock resulted in a marked delay in their stress response, followed by a surge in apoptotic cell death. This suggests a mechanistic link between decreased cell survival in cell culture and severe fever-induced brain damage in affected individuals. Our study provides evidence by direct imaging at the single nuclear pore level of functional changes linked to a human disease.


Asunto(s)
Encefalopatía Aguda Febril/etiología , Fibroblastos/patología , Mutación del Sistema de Lectura , Canales Iónicos/fisiología , Mutación Missense , Proteínas de Complejo Poro Nuclear/genética , Poro Nuclear/patología , Transporte Activo de Núcleo Celular , Encefalopatía Aguda Febril/metabolismo , Encefalopatía Aguda Febril/patología , Apoptosis , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Femenino , Fibroblastos/metabolismo , Humanos , Lactante , Masculino , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Linaje , Conformación Proteica
11.
Hum Mol Genet ; 27(3): 407-420, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29186574

RESUMEN

A critical challenge to deciphering the pathophysiology of neurodevelopmental disease is identifying which of the myriad abnormalities that emerge during CNS maturation persist to contribute to long-term brain dysfunction. Childhood-onset dystonia caused by a loss-of-function mutation in the AAA+ protein torsinA exemplifies this challenge. Neurons lacking torsinA develop transient nuclear envelope (NE) malformations during CNS maturation, but no NE defects are described in mature torsinA null neurons. We find that during postnatal CNS maturation torsinA null neurons develop mislocalized and dysfunctional nuclear pore complexes (NPC) that lack NUP358, normally added late in NPC biogenesis. SUN1, a torsinA-related molecule implicated in interphase NPC biogenesis, also exhibits localization abnormalities. Whereas SUN1 and associated nuclear membrane abnormalities resolve in juvenile mice, NPC defects persist into adulthood. These findings support a role for torsinA function in NPC biogenesis during neuronal maturation and implicate altered NPC function in dystonia pathophysiology.


Asunto(s)
Chaperonas Moleculares/metabolismo , Poro Nuclear/metabolismo , Poro Nuclear/patología , Animales , Células Cultivadas , Trastornos Distónicos/metabolismo , Trastornos Distónicos/patología , Femenino , Genotipo , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Membrana Nuclear/genética , Membrana Nuclear/metabolismo
12.
ACS Nano ; 11(6): 5567-5578, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28530826

RESUMEN

Nuclear pore complexes (NPCs) are the sole turnstile implanted in the nuclear envelope (NE), acting as a central nanoregulator of transport between the cytosol and the nucleus. NPCs consist of ∼30 proteins, termed nucleoporins. About one-third of nucleoporins harbor natively unstructured, intrinsically disordered phenylalanine-glycine strings (FG-Nups), which engage in transport selectivity. Because the barriers insert deeply in the NPC, they are nearly inaccessible. Several in vitro barrier models have been proposed; however, the dynamic FG-Nups protein molecules themselves are imperceptible in vivo. We show here that high-speed atomic force microscopy (HS-AFM) can be used to directly visualize nanotopographical changes of the nuclear pore inner channel in colorectal cancer (CRC) cells. Furthermore, using MLN8237/alisertib, an apoptotic and autophagic inducer currently being tested in relapsed cancer clinical trials, we unveiled the functional loss of nucleoporins, particularly the deformation of the FG-Nups barrier, in dying cancer cells. We propose that the loss of this nanoscopic resilience is an irreversible dying code in cells. These findings not only illuminate the potential application of HS-AFM as an intracellular nanoendoscopy but also might aid in the design of future nuclear targeted nanodrug delivery tailored to the individual patient.


Asunto(s)
Neoplasias Colorrectales/patología , Microscopía de Fuerza Atómica/métodos , Poro Nuclear/patología , Apoptosis/efectos de los fármacos , Azepinas/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Células HCT116 , Humanos , Poro Nuclear/efectos de los fármacos , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/análisis , Proteínas de Complejo Poro Nuclear/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología
14.
Nature ; 525(7567): 129-33, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26308899

RESUMEN

The GGGGCC (G4C2) repeat expansion in a noncoding region of C9orf72 is the most common cause of sporadic and familial forms of amyotrophic lateral sclerosis and frontotemporal dementia. The basis for pathogenesis is unknown. To elucidate the consequences of G4C2 repeat expansion in a tractable genetic system, we generated transgenic fly lines expressing 8, 28 or 58 G4C2-repeat-containing transcripts that do not have a translation start site (AUG) but contain an open-reading frame for green fluorescent protein to detect repeat-associated non-AUG (RAN) translation. We show that these transgenic animals display dosage-dependent, repeat-length-dependent degeneration in neuronal tissues and RAN translation of dipeptide repeat (DPR) proteins, as observed in patients with C9orf72-related disease. This model was used in a large-scale, unbiased genetic screen, ultimately leading to the identification of 18 genetic modifiers that encode components of the nuclear pore complex (NPC), as well as the machinery that coordinates the export of nuclear RNA and the import of nuclear proteins. Consistent with these results, we found morphological abnormalities in the architecture of the nuclear envelope in cells expressing expanded G4C2 repeats in vitro and in vivo. Moreover, we identified a substantial defect in RNA export resulting in retention of RNA in the nuclei of Drosophila cells expressing expanded G4C2 repeats and also in mammalian cells, including aged induced pluripotent stem-cell-derived neurons from patients with C9orf72-related disease. These studies show that a primary consequence of G4C2 repeat expansion is the compromise of nucleocytoplasmic transport through the nuclear pore, revealing a novel mechanism of neurodegeneration.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Expansión de las Repeticiones de ADN/genética , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Sistemas de Lectura Abierta/genética , Proteínas/genética , Transporte de ARN/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Proteína C9orf72 , Drosophila melanogaster/genética , Ojo/metabolismo , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Músculos/citología , Músculos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Poro Nuclear/patología , Fenotipo , Biosíntesis de Proteínas , ARN/genética , ARN/metabolismo , Glándulas Salivales/citología , Glándulas Salivales/metabolismo , Glándulas Salivales/patología
15.
Cardiovasc Res ; 105(1): 31-43, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25341891

RESUMEN

AIMS: During cardiac hypertrophy, cardiomyocytes (CMs) increase in the size and expression of cytoskeletal proteins while reactivating a foetal gene programme. The process is proposed to be dependent on increased nuclear export and, since nuclear pore trafficking has limited capacity, a linked decrease in import. Our objective was to investigate the role of nuclear import and export in control of hypertrophy in rat and human heart failure (HF). METHODS AND RESULTS: In myocardial tissue and isolated CMs from patients with dilated cardiomyopathy, nuclear size was increased; Nucleoporin p62, cytoplasmic RanBP1, and nuclear translocation of importins (α and ß) were decreased while Exportin-1 was increased. CM from a rat HF model 16 weeks after myocardial infarction (MI) reproduced these nuclear changes. Nuclear import, determined by the rate of uptake of nuclear localization sequence (NLS)-tagged fluorescent substrate, was also decreased and this change was observed from 4 weeks after MI, before HF has developed. Treatment of isolated rat CMs with phenylephrine (PE) for 48 h produced similar cell and nuclear size increases, nuclear import and export protein rearrangement, and NLS substrate uptake decrease through p38 MAPK and HDAC-dependent pathways. The change in NLS substrate uptake occurred within 15 min of PE exposure. Inhibition of nuclear export with leptomycin B reversed established nuclear changes in PE-treated rat CMs and decreased NLS substrate uptake and cell/nuclear size in human CMs. CONCLUSIONS: Nuclear transport changes related to increased export and decreased import are an early event in hypertrophic development. Hypertrophy can be prevented, or even reversed, by targeting import/export, which may open new therapeutic opportunities.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Poro Nuclear/patología , Transporte Activo de Núcleo Celular , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Modelos Animales de Enfermedad , Histona Desacetilasas/metabolismo , Humanos , Masculino , Modelos Cardiovasculares , Señales de Localización Nuclear/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
PLoS Pathog ; 9(10): e1003744, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204278

RESUMEN

Hepatitis C virus (HCV) infection induces formation of a membranous web structure in the host cell cytoplasm where the viral genome replicates and virions assemble. The membranous web is thought to concentrate viral components and hide viral RNA from pattern recognition receptors. We have uncovered a role for nuclear pore complex proteins (Nups) and nuclear transport factors (NTFs) in the membranous web. We show that HCV infection leads to increased levels of cytoplasmic Nups that accumulate at sites enriched for HCV proteins. Moreover, we detected interactions between specific HCV proteins and both Nups and NTFs. We hypothesize that cytoplasmically positioned Nups facilitate formation of the membranous web and contribute to the compartmentalization of viral replication. Accordingly, we show that transport cargo proteins normally targeted to the nucleus are capable of entering regions of the membranous web, and that depletion of specific Nups or Kaps inhibits HCV replication and assembly.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C/metabolismo , Membranas Intracelulares/metabolismo , Poro Nuclear/metabolismo , Replicación Viral/fisiología , Transporte Activo de Núcleo Celular/genética , Línea Celular , Hepatitis C/genética , Hepatitis C/patología , Humanos , Membranas Intracelulares/virología , Poro Nuclear/genética , Poro Nuclear/patología , Poro Nuclear/virología
18.
Brain Res ; 1497: 101-5, 2013 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-23266724

RESUMEN

Cytosolic phospholipase A2α (cPLA2α) affects membrane fluidity and permeability by catalyzing the hydrolysis of membrane phospholipids. We hypothesize that cPLA2α deficiency induces rigidity and architectural changes in cell membranes, especially in large cortical neurons. These membrane changes are discernible using light and electron microscopy. Through careful comparison with wild-type counterparts, we observed significant morphological changes in cortical neurons of cPLA2α knockout mice. These changes included the following: (1) increased numbers of nucleoli and enlarged nuclei, (2) narrower spaces between the inner and outer nuclear membranes, (3) reduced numbers of nuclear pores and altered nuclear pore structure, and (4) morphological changes in synaptic clefts. These results further suggest that cPLA2α and its cleaved arachidonic acids play important roles in cortical neuronal maturation and in normal neurochemical processes.


Asunto(s)
Corteza Cerebral/anomalías , Fosfolipasas A2 Grupo IV/deficiencia , Neuronas/patología , Neuronas/ultraestructura , Sinapsis/ultraestructura , Animales , Ácidos Araquidónicos/metabolismo , Nucléolo Celular/patología , Nucléolo Celular/ultraestructura , Corteza Cerebral/patología , Fosfolipasas A2 Grupo IV/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Poro Nuclear/genética , Poro Nuclear/patología
19.
Int Rev Cell Mol Biol ; 299: 117-59, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22959302

RESUMEN

The nuclear envelope (NE) is a vital structure that separates the nucleus from the cytoplasm. Because the NE is such a critical cellular barrier, many viral pathogens have evolved to modulate its permeability. They do this either by breaching the NE or by disrupting the integrity and functionality of the nuclear pore complex (NPC). Viruses modulate NE permeability for different reasons. Some viruses disrupt NE to deliver the viral genome into the nucleus for replication, while others cause NE disruption during nuclear egress of newly assembled capsids. Yet, other viruses modulate NE permeability and affect the compartmentalization of host proteins or block the nuclear transport of host proteins involved in the host antiviral response. Recent scientific advances demonstrated that other viruses use proteins of the NPC for viral assembly or disassembly. Here we review the ways in which various viruses affect NE and NPC during infection.


Asunto(s)
Membrana Nuclear/patología , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/patología , Virosis/patología , Virosis/virología , Virus/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/virología , Poro Nuclear/metabolismo , Poro Nuclear/virología
20.
Cell Rep ; 2(2): 207-15, 2012 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-22902403

RESUMEN

The eukaryotic translation initiation factor eIF4E is a potent oncogene that promotes the nuclear export and translation of specific transcripts. Here, we have discovered that eIF4E alters the cytoplasmic face of the nuclear pore complex (NPC), which leads to enhanced mRNA export of eIF4E target mRNAs. Specifically, eIF4E substantially reduces the major component of the cytoplasmic fibrils of the NPC, RanBP2, relocalizes an associated nucleoporin, Nup214, and elevates RanBP1 and the RNA export factors, Gle1 and DDX19. Genetic or pharmacological inhibition of eIF4E impedes these effects. RanBP2 overexpression specifically inhibits the eIF4E mRNA export pathway and impairs oncogenic transformation by eIF4E. The RanBP2 cytoplasmic fibrils most likely slow the release and/or recycling of critical export factors to the nucleus. eIF4E overcomes this inhibitory mechanism by indirectly reducing levels of RanBP2. More generally, these results suggest that reprogramming the NPC is a means by which oncogenes can harness the proliferative capacity of the cell.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Factor 4E Eucariótico de Iniciación/biosíntesis , Poro Nuclear/metabolismo , Proteínas Oncogénicas/biosíntesis , ARN Mensajero/metabolismo , Transporte Activo de Núcleo Celular/genética , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Citoplasma/genética , Citoplasma/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Humanos , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Poro Nuclear/genética , Poro Nuclear/patología , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas Oncogénicas/genética , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...