Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 434(9): 167552, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35341741

RESUMEN

Mitochondrial permeability transition pore (mPTP) plays crucial roles in cell death in a variety of diseases, including ischemia/reperfusion injury in heart attack and stroke, neurodegenerative conditions, and cancer. To date, cyclophilin D is the only confirmed component of mPTP. Under stress, p53 can translocate into mitochondria and interact with CypD, triggering necrosis and cell growth arrest. However, the molecular details of p53/CypD interaction are still poorly understood. Previously, several studies reported that p53 interacts with CypD through its DNA-binding domain (DBD). However, using surface plasmon resonance (SPR), we found that both NTD-DBD, NTD and NTD (1-70) bind to CypD at ∼µM KD. In solution NMR, NTD binds CypD with µM affinity and mimics the pattern of FLp53 binding in chemical shift perturbation. In contrast, neither solution NMR nor fluorescence anisotropy detected DBD binding to CypD. Thus, instead of DBD, NTD is the major CypD binding site on p53. NMR titration and MD simulation revealed that NTD binds CypD with broad and dynamic interfaces dominated by electrostatic interactions. NTD 20-70 was further identified as the minimal binding region for CypD interaction, and two NTD fragments, D1 (residues 22-44) and D2 (58-70), can each bind CypD with mM affinity. Our detailed biophysical characterization of the dynamic interface between NTD and CypD provides novel insights on the p53-dependent mPTP opening and drug discovery targeting NTD/CypD interface in diseases.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Poro de Transición de la Permeabilidad Mitocondrial , Peptidil-Prolil Isomerasa F , Proteína p53 Supresora de Tumor , Sitios de Unión , Peptidil-Prolil Isomerasa F/química , Proteínas Intrínsecamente Desordenadas/química , Poro de Transición de la Permeabilidad Mitocondrial/química , Simulación de Dinámica Molecular , Dominios Proteicos , Proteína p53 Supresora de Tumor/química
2.
Oxid Med Cell Longev ; 2021: 6626484, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33574977

RESUMEN

The aging process is associated with significant alterations in mitochondrial function. These changes in mitochondrial function are thought to involve increased production of reactive oxygen species (ROS), which over time contribute to cell death, senescence, tissue degeneration, and impaired tissue repair. The mitochondrial permeability transition pore (mPTP) is likely to play a critical role in these processes, as increased ROS activates mPTP opening, which further increases ROS production. Injury and inflammation are also thought to increase mPTP opening, and chronic, low-grade inflammation is a hallmark of aging. Nicotinamide adenine dinucleotide (NAD+) can suppress the frequency and duration of mPTP opening; however, NAD+ levels are known to decline with age, further stimulating mPTP opening and increasing ROS release. Research on neurodegenerative diseases, particularly on Parkinson's disease (PD) and Alzheimer's disease (AD), has uncovered significant findings regarding mPTP openings and aging. Parkinson's disease is associated with a reduction in mitochondrial complex I activity and increased oxidative damage of DNA, both of which are linked to mPTP opening and subsequent ROS release. Similarly, AD is associated with increased mPTP openings, as evidenced by amyloid-beta (Aß) interaction with the pore regulator cyclophilin D (CypD). Targeted therapies that can reduce the frequency and duration of mPTP opening may therefore have the potential to prevent age-related declines in cell and tissue function in various systems including the central nervous system.


Asunto(s)
Envejecimiento/patología , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Degeneración Nerviosa/patología , Animales , Humanos , Poro de Transición de la Permeabilidad Mitocondrial/química , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo
3.
Proteins ; 89(5): 477-482, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33378096

RESUMEN

The mitochondrial F1 FO -ATPase in the presence of the natural cofactor Mg2+ acts as the enzyme of life by synthesizing ATP, but it can also hydrolyze ATP to pump H+ . Interestingly, Mg2+ can be replaced by Ca2+ , but only to sustain ATP hydrolysis and not ATP synthesis. When Ca2+ inserts in F1 , the torque generation built by the chemomechanical coupling between F1 and the rotating central stalk was reported as unable to drive the transmembrane H+ flux within FO . However, the failed H+ translocation is not consistent with the oligomycin-sensitivity of the Ca2+ -dependent F1 FO -ATP(hydrol)ase. New enzyme roles in mitochondrial energy transduction are suggested by recent advances. Accordingly, the structural F1 FO -ATPase distortion driven by ATP hydrolysis sustained by Ca2+ is consistent with the permeability transition pore signal propagation pathway. The Ca2+ -activated F1 FO -ATPase, by forming the pore, may contribute to dissipate the transmembrane H+ gradient created by the same enzyme complex.


Asunto(s)
Adenosina Trifosfato/química , Calcio/química , Coenzimas/química , Magnesio/química , Mitocondrias Cardíacas/química , ATPasas de Translocación de Protón Mitocondriales/química , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Calcio/metabolismo , Cationes Bivalentes , Coenzimas/metabolismo , Hidrólisis/efectos de los fármacos , Cinética , Magnesio/metabolismo , Mitocondrias Cardíacas/enzimología , Poro de Transición de la Permeabilidad Mitocondrial/química , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/aislamiento & purificación , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Moleculares , Miocardio/química , Miocardio/enzimología , Oligomicinas/farmacología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Especificidad por Sustrato , Porcinos , Termodinámica
4.
Cell Biochem Biophys ; 78(4): 429-437, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32964329

RESUMEN

Monosodium glutamate (MSG) is a major food additive used as a flavor enhancer. A lot of controversies have been generated over the use of MSG. The present study therefore investigated whether MSG would induce cytotoxicity via the induction of mitochondrial permeability transition (mPT) pore opening. 36 male albino rats were used for this study. The rats were equally divided into six groups: group I is the control while group II, III, IV, V, and VI were orally treated with MSG (25, 50, 100, 200, and 400 mg/kg) daily for 28 days. The opening of the pore, cytochrome c release, mitochondrial ATPase activity, mitochondrial lipid peroxidation and hepatic DNA fragmentation were determined spectrophotometrically. Histological assessment of prostate and brain was carried out. The results show that MSG at concentrations ≤30 µg/ml did not induce mPT pore opening while higher concentrations caused significant induction of pore opening. Also, at lower doses (25 and 50 mg/kg), MSG did not cause any significant induction of mPT pore opening while at higher doses, there were significant induction of pore opening. Similar trend of results was recorded for cytochrome c release, mitochondrial ATPase activity and lipid peroxidation. The histological results show that at low doses (25 and 50 mg/kg), no significant lesion was observed while higher doses caused benign prostatic hyperplasia (BPH) in the prostate and necrotic damage in the brain. MSG administration at low dose is tolerable while high doses induce cytotoxicity via mPT pore opening.


Asunto(s)
Citotoxinas/toxicidad , Activación del Canal Iónico/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/química , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Glutamato de Sodio/toxicidad , Animales , Calcio/farmacología , Fragmentación del ADN/efectos de los fármacos , Interacciones Farmacológicas , Masculino , Malondialdehído/metabolismo , ATPasas de Translocación de Protón/metabolismo , Ratas , Ratas Wistar , Espermina/farmacología
5.
Pharmacol Res ; 160: 105081, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32679179

RESUMEN

The current state of research on the mitochondrial permeability transition pore (PTP) can be described in terms of three major problems: molecular identity, atomic structure and gating mechanism. In this review these three problems are discussed in the light of recent findings with special emphasis on the discovery that the PTP is mitochondrial F-ATP synthase (mtFoF1). Novel features of the mitochondrial F-ATP synthase emerging from the success of single particle cryo electron microscopy (cryo-EM) to determine F-ATP synthase structures are surveyed along with their possible involvement in pore formation. Also, current findings from the gap junction field concerning the involvement of lipids in channel closure are examined. Finally, an earlier proposal denoted as the 'Death Finger' is discussed as a working model for PTP gating.


Asunto(s)
Mitocondrias/enzimología , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Animales , Apoptosis , Humanos , Activación del Canal Iónico , Potenciales de la Membrana , Mitocondrias/ultraestructura , Poro de Transición de la Permeabilidad Mitocondrial/química , ATPasas de Translocación de Protón Mitocondriales/química , Modelos Biológicos , Conformación Proteica , Subunidades de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...