Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.746
Filtrar
1.
Nutr Diabetes ; 14(1): 25, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729941

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a significant risk factor for non-alcoholic fatty liver disease (NAFLD). Increased fasting blood sugar (FBS), fasting insulin (FI), and insulin resistance (HOMA-IR) are observed in patients with NAFLD. Gut microbial modulation using prebiotics, probiotics, and synbiotics has shown promise in NAFLD treatment. This meta-umbrella study aimed to investigate the effects of gut microbial modulation on glycemic indices in patients with NAFLD and discuss potential mechanisms of action. METHODS: A systematic search was conducted in PubMed, Web of Science, Scopus, and Cochrane Library until March 2023 for meta-analyses evaluating the effects of probiotics, prebiotics, and synbiotics on patients with NAFLD. Random-effect models, sensitivity analysis, and subgroup analysis were employed. RESULTS: Gut microbial therapy significantly decreased HOMA-IR (ES: -0.41; 95%CI: -0.52, -0.31; P < 0.001) and FI (ES: -0.59; 95%CI: -0.77, -0.41; P < 0.001). However, no significant effect was observed on FBS (ES: -0.17; 95%CI: -0.36, 0.02; P = 0.082). Subgroup analysis revealed prebiotics had the most potent effect on HOMA-IR, followed by probiotics and synbiotics. For FI, synbiotics had the most substantial effect, followed by prebiotics and probiotics. CONCLUSION: Probiotics, prebiotics, and synbiotics administration significantly reduced FI and HOMA-IR, but no significant effect was observed on FBS.


Asunto(s)
Microbioma Gastrointestinal , Índice Glucémico , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Prebióticos , Probióticos , Simbióticos , Humanos , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Prebióticos/administración & dosificación , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Simbióticos/administración & dosificación , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/terapia , Insulina/sangre
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732060

RESUMEN

The human gut microbiota, an intricate ecosystem within the gastrointestinal tract, plays a pivotal role in health and disease. Prebiotics, non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of beneficial microorganisms, have emerged as a key modulator of this complex microbial community. This review article explores the evolution of the prebiotic concept, delineates various types of prebiotics, including fructans, galactooligosaccharides, xylooligosaccharides, chitooligosaccharides, lactulose, resistant starch, and polyphenols, and elucidates their impact on the gut microbiota composition. We delve into the mechanisms through which prebiotics exert their effects, particularly focusing on producing short-chain fatty acids and modulating the gut microbiota towards a health-promoting composition. The implications of prebiotics on human health are extensively reviewed, focusing on conditions such as obesity, inflammatory bowel disease, immune function, and mental health. The review further discusses the emerging concept of synbiotics-combinations of prebiotics and probiotics that synergistically enhance gut health-and highlights the market potential of prebiotics in response to a growing demand for functional foods. By consolidating current knowledge and identifying areas for future research, this review aims to enhance understanding of prebiotics' role in health and disease, underscoring their importance in maintaining a healthy gut microbiome and overall well-being.


Asunto(s)
Microbioma Gastrointestinal , Prebióticos , Humanos , Probióticos/farmacología , Obesidad/microbiología , Obesidad/dietoterapia , Obesidad/metabolismo , Ácidos Grasos Volátiles/metabolismo , Animales , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/dietoterapia
3.
Food Res Int ; 186: 114339, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729694

RESUMEN

The health-promoting activities of polyphenols and their metabolites originating from germinated quinoa (GQ) are closely related to their digestive behavior, absorption, and colonic fermentation; however, limited knowledge regarding these properties hinder further development. The aim of this study was to provide metabolomic insights into the profile, bioaccessibility, and transepithelial transport of polyphenols from germinated quinoa during in vitro gastrointestinal digestion and Caco-2 cell transport, whilst also investigating the changes in the major polyphenol metabolites and the effects of prebiotics during colonic fermentation. It was found that germination treatment increased the polyphenol content of quinoa by 21.91%. Compared with RQ group, 23 phenolic differential metabolites were upregulated and 47 phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after simulated digestion, 7 kinds of phenolic differential metabolites were upregulated and 17 kinds of phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after cell transport, 7 kinds of phenolic differential metabolites were upregulated and 9 kinds of phenolic differential metabolites were downregulated in GQ group. In addition, GQ improved the bioaccessibilities and transport rates of various polyphenol metabolites. During colonic fermentation, GQ group can also increase the content of SCFAs, reduce pH value, and adjust gut microbial populations by increasing the abundance of Actinobacteria, Bacteroidetes, Verrucomicrobiota, and Spirochaeota at the phylum level, as well as Bifidobacterium, Megamonas, Bifidobacterium, Brevundimonas, and Bacteroides at the genus level. Furthermore, the GQ have significantly inhibited the activity of α-amylase and α-glucosidase. Based on these results, it was possible to elucidate the underlying mechanisms of polyphenol metabolism in GQ and highlight its beneficial effects on the gut microbiota.


Asunto(s)
Chenopodium quinoa , Colon , Digestión , Fermentación , Metabolómica , Polifenoles , Prebióticos , Humanos , Polifenoles/metabolismo , Chenopodium quinoa/metabolismo , Células CACO-2 , Colon/metabolismo , Colon/microbiología , Germinación , Transporte Biológico , Disponibilidad Biológica , Microbioma Gastrointestinal/fisiología
4.
Cell Commun Signal ; 22(1): 268, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745207

RESUMEN

Ulcerative colitis (UC) is increasingly common, and it is gradually become a kind of global epidemic. UC is a type of inflammatory bowel disease (IBD), and it is a lifetime recurrent disease. UC as a common disease has become a financial burden for many people and has the potential to develop into cancer if not prevented or treated. There are multiple factors such as genetic factors, host immune system disorders, and environmental factors to cause UC. A growing body of research have suggested that intestinal microbiota as an environmental factor play an important role in the occurrence and development of UC. Meanwhile, evidence to date suggests that manipulating the gut microbiome may represent effective treatment for the prevention or management of UC. In addition, the main clinical drugs to treat UC are amino salicylate and corticosteroid. These clinical drugs always have some side effects and low success rate when treating patients with UC. Therefore, there is an urgent need for safe and efficient methods to treat UC. Based on this, probiotics and prebiotics may be a valuable treatment for UC. In order to promote the wide clinical application of probiotics and prebiotics in the treatment of UC. This review aims to summarize the recent literature as an aid to better understanding how the probiotics and prebiotics contributes to UC while evaluating and prospecting the therapeutic effect of the probiotics and prebiotics in the treatment of UC based on previous publications.


Asunto(s)
Colitis Ulcerosa , Microbioma Gastrointestinal , Prebióticos , Probióticos , Humanos , Colitis Ulcerosa/terapia , Colitis Ulcerosa/microbiología , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Prebióticos/administración & dosificación , Animales
5.
Microb Biotechnol ; 17(5): e14443, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722820

RESUMEN

Pectin structures have received increasing attention as emergent prebiotics due to their capacity to promote beneficial intestinal bacteria. Yet the collective activity of gut bacterial communities to cooperatively metabolize structural variants of this substrate remains largely unknown. Herein, the characterization of a pectin methylesterase, BpeM, from Bifidobacterium longum subsp. longum, is reported. The purified enzyme was able to remove methyl groups from highly methoxylated apple pectin, and the mathematical modelling of its activity enabled to tightly control the reaction conditions to achieve predefined final degrees of methyl-esterification in the resultant pectin. Demethylated pectin, generated by BpeM, exhibited differential fermentation patterns by gut microbial communities in in vitro mixed faecal cultures, promoting a stronger increase of bacterial genera associated with beneficial effects including Lactobacillus, Bifidobacterium and Collinsella. Our findings demonstrate that controlled pectin demethylation by the action of a B. longum esterase selectively modifies its prebiotic fermentation pattern, producing substrates that promote targeted bacterial groups more efficiently. This opens new possibilities to exploit biotechnological applications of enzymes from gut commensals to programme prebiotic properties.


Asunto(s)
Hidrolasas de Éster Carboxílico , Heces , Malus , Pectinas , Prebióticos , Malus/microbiología , Pectinas/metabolismo , Heces/microbiología , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Fermentación , Humanos , Bifidobacterium longum/metabolismo , Bifidobacterium longum/enzimología , Microbioma Gastrointestinal , Bifidobacterium/enzimología , Bifidobacterium/metabolismo
6.
Sci Rep ; 14(1): 10960, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744950

RESUMEN

The relationship between gut microbiota and obesity has recently been an important subject for research as the gut microbiota is thought to affect body homeostasis including body weight and composition, intervening with pro and prebiotics is an intelligent possible way for obesity management. To evaluate the effect of hypo caloric adequate fiber regimen with probiotic supplementation and physical exercise, whether it will have a good impact on health, body composition, and physique among obese Egyptian women or has no significant effect. The enrolled 58 women, in this longitudinal follow-up intervention study; followed a weight loss eating regimen (prebiotic), including a low-carbohydrate adequate-fiber adequate-protein dietary pattern with decreased energy intake. They additionally received daily probiotic supplements in the form of yogurt and were instructed to exercise regularly for 3 months. Anthropometric measurements, body composition, laboratory investigations, and microbiota analysis were obtained before and after the 3 months weight loss program. Statistically highly significant differences in the anthropometry, body composition parameters: and obesity-related biomarkers (Leptin, ALT, and AST) between the pre and post-follow-up measurements at the end of the study as they were all decreased. The prebiotic and probiotic supplementation induced statistically highly significant alterations in the composition of the gut microbiota with increased relative abundance of Lactobacillus, Bifidobacteria, and Bacteroidetes and decreased relative abundance of Firmicutes and Firmicutes/Bacteroidetes Ratio. Hypo caloric adequate fiber regimen diet with probiotics positively impacts body composition and is effective for weight loss normalizing serum Leptin and AST.


Asunto(s)
Composición Corporal , Microbioma Gastrointestinal , Obesidad , Prebióticos , Probióticos , Humanos , Probióticos/administración & dosificación , Femenino , Prebióticos/administración & dosificación , Adulto , Estudios Longitudinales , Obesidad/terapia , Obesidad/dietoterapia , Obesidad/microbiología , Programas de Reducción de Peso/métodos , Pérdida de Peso , Persona de Mediana Edad , Ejercicio Físico
7.
J R Soc Interface ; 21(214): 20240014, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715323

RESUMEN

Prebiotic peptide synthesis has consistently been a prominent topic within the field of the origin of life. While research predominantly centres on the 20 classical amino acids, the synthesis process encounters significant thermodynamic barriers. Consequently, amino acid analogues are being explored as potential building blocks for prebiotic peptide synthesis. This review delves into the pathway of polypeptide formation, identifying specific amino acid analogues that might have existed on early Earth, potentially participating in peptide synthesis and chemical evolution. Moreover, considering the complexity and variability of the environment on early Earth, we propose the plausibility of coevolution between amino acids and their analogues.


Asunto(s)
Aminoácidos , Evolución Química , Péptidos , Aminoácidos/química , Péptidos/química , Origen de la Vida , Prebióticos
8.
World J Gastroenterol ; 30(16): 2258-2271, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38690023

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is one of the most frequent and debilitating conditions leading to gastroenterological referrals. However, recommended treatments remain limited, yielding only limited therapeutic gains. Chitin-glucan (CG) is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority. To provide an alternative approach to managing patients with IBS, we performed preclinical molecular, cellular, and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS. AIM: To evaluate the roles of CG in visceral analgesia, intestinal inflammation, barrier function, and to develop computational molecular models. METHODS: Visceral pain was recorded through colorectal distension (CRD) in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS [15 milligrams (mg)/kilogram (kg)] in 33 Sprague-Dawley rats. Intracolonic pressure was regularly assessed during the 9 wk-experiment (weeks 0, 3, 5, and 7) in animals receiving CG (n = 14) at a human equivalent dose (HED) of 1.5 g/d or 3.0 g/d and compared to negative control (tap water, n = 11) and positive control (phloroglucinol at 1.5 g/d HED, n = 8) groups. The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate (DSS) administered in their drinking water during 14 d. HT-29 cells under basal conditions and after stimulation with lipopolysaccharide (LPS) were treated with CG to evaluate changes in pathways related to analgesia (µ-opioid receptor (MOR), cannabinoid receptor 2 (CB2), peroxisome proliferator-activated receptor alpha, inflammation [interleukin (IL)-10, IL-1b, and IL-8] and barrier function [mucin 2-5AC, claudin-2, zonula occludens (ZO)-1, ZO-2] using the real-time PCR method. Molecular modelling of CG, LPS, lipoteichoic acid (LTA), and phospholipomannan (PLM) was developed, and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations. Data were expressed as the mean ± SEM. RESULTS: Daily CG orally-administered to rats or mice was well tolerated without including diarrhea, visceral hypersensitivity, or inflammation, as evaluated at histological and molecular levels. In a model of CRD, CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14% after 2 wk of administration (P < 0.01) and reduced inflammation intensity by 50%, resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis. To better reproduce the characteristics of visceral pain in patients with IBS, we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity. CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20% five weeks after colitis induction (P < 0.01). When the CG dosage was increased to 3.0 g/d HED, this analgesic effect surpassed that of the spasmolytic agent phloroglucinol, manifesting more rapidly within 3 wk and leading to a 50% inhibition of pain perception (P < 0.0001). The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved, at least in part, a significant induction of MOR, CB2 receptor, and IL-10, as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8. CG also significantly upregulated barrier-related genes including muc5AC, claudin-2, and ZO-2. Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids, sequestering gram-negative LPS and gram-positive LTA bacterial toxins, as well as PLM in fungi at the lowesr energy conformations. CONCLUSION: CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products, suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBS-like symptoms.


Asunto(s)
Quitina , Colon , Modelos Animales de Enfermedad , Glucanos , Síndrome del Colon Irritable , Ratas Sprague-Dawley , Dolor Visceral , Animales , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/fisiopatología , Masculino , Humanos , Colon/efectos de los fármacos , Colon/patología , Ratas , Dolor Visceral/tratamiento farmacológico , Dolor Visceral/fisiopatología , Dolor Visceral/metabolismo , Dolor Visceral/etiología , Quitina/farmacología , Glucanos/farmacología , Glucanos/administración & dosificación , Ratones , Prebióticos/administración & dosificación , Ácido Trinitrobencenosulfónico/toxicidad , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/fisiopatología , Colitis/patología , Células HT29
10.
Int J Biol Macromol ; 267(Pt 1): 131419, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583831

RESUMEN

The booming mushroom industry envisages economic merits, and massive unutilized waste production (∼ 20 %) creates an opportunity for valorization. Chitosan, a bioactive polysaccharide, has drawn immense attention for its invaluable therapeutic potential. Thus, the present study was conducted to extract chitosan from mushroom waste (MCH) for its prebiotic potential. The structural characterization of MCH was carried out using NMR, FTIR, and XRD. The CP/MAS-13CNMR spectrum of MCH appeared at δ 57.67 (C2), 61.19 (C6), 75.39 (C3/C5), 83.53 (C4), 105.13 (C1), 23.69 (CH3), and 174.19 (C = O) ppm. The FTIR showed characteristic peaks at 3361 cm-1, 1582 cm-1, and 1262 cm-1 attributed to -NH stretching, amide II, and amide III bands of MCH. XRD interpretation of MCH exhibited a single strong reflection at 2θ =20.19, which may correspond to the "form-II" polymorph. The extracted MCH (∼ 47 kDa) exhibited varying degrees of deacetylation from 79 to 84 %. The prebiotic activity score of 0.73 to 0.82 was observed for MCH (1 %) when supplemented with probiotic strains (Lactobacillus casei, L. helveticus, L. plantarum, and L. rhamnosus). MCH enhanced the growth of Lactobacillus strains and SCFA's levels, particularly in L. rhamnosus. The MCH also inhibited the growth of pathogenic strains (MIC of 0.125 and 0.25 mg/mL against E. coli and S. aureus, respectively) and enhanced the adhesion efficiency of probiotics (3 to 8 % at 1 % MCH supplementation). L. rhamnosus efficiency was higher against pathogens in the presence of MCH, as indicated by anti-adhesion assays. These findings suggested that extracted polysaccharides from mushroom waste can be used as a prebiotic for ameliorating intestinal dysbiosis.


Asunto(s)
Quitosano , Peso Molecular , Pleurotus , Prebióticos , Pleurotus/química , Quitosano/química , Quitosano/farmacología , Residuos/análisis
11.
Food Funct ; 15(9): 4763-4772, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38590256

RESUMEN

Inulins, galacto-oligosaccharides (GOS) and polyphenols are considered to stimulate the growth of Akkermansia muciniphila (A. muciniphila) in the gut. We performed a meta-analysis of six microbiome studies (821 stool samples from 451 participants) to assess the effects of inulin, GOS, and polyphenols on the abundance of A. muciniphila in the gut. The intervention of GOS increased the relative abundance of A. muciniphila in healthy participants. Additionally, metabolic pathways associated with carbohydrate metabolism and short-chain fatty acid release were enriched following the GOS intervention. Furthermore, after the GOS intervention, the coexisting microbial communities of A. muciniphila, such as Eubacterium hallii and Bacteroides, exhibited an enhanced correlation with A. muciniphila. In conclusion, our findings suggest that GOS may promote the growth of A. muciniphila in the gut by modulating the gut microbiota composition.


Asunto(s)
Akkermansia , Microbioma Gastrointestinal , Inulina , Oligosacáridos , Polifenoles , Microbioma Gastrointestinal/efectos de los fármacos , Polifenoles/farmacología , Inulina/farmacología , Humanos , Oligosacáridos/farmacología , Oligosacáridos/metabolismo , Heces/microbiología , Verrucomicrobia , Prebióticos , Galactosa
12.
Lancet Gastroenterol Hepatol ; 9(5): 460-475, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604200

RESUMEN

The gut microbiome is acknowledged as a key determinant of human health, and technological progress in the past two decades has enabled the deciphering of its composition and functions and its role in human disorders. Therefore, manipulation of the gut microbiome has emerged as a promising therapeutic option for communicable and non-communicable disorders. Full exploitation of current therapeutic microbiome modulators (including probiotics, prebiotics, and faecal microbiota transplantation) is hindered by several factors, including poor precision, regulatory and safety issues, and the impossibility of providing reproducible and targeted treatments. Artificial microbiota therapeutics (which include a wide range of products, such as microbiota consortia, bacteriophages, bacterial metabolites, and engineered probiotics) have appeared as an evolution of current microbiota modulators, as they promise safe and reproducible effects, with variable levels of precision via different pathways. We describe the landscape of artificial microbiome therapeutics, from those already on the market to those still in the pipeline, and outline the major challenges for positioning these therapeutics in clinical practice.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Probióticos , Humanos , Probióticos/uso terapéutico , Prebióticos , Trasplante de Microbiota Fecal
13.
Calcif Tissue Int ; 114(5): 513-523, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38656326

RESUMEN

Previously, we demonstrated that prebiotics may provide a complementary strategy for increasing calcium (Ca) absorption in adolescents which may improve long-term bone health. However, not all children responded to prebiotic intervention. We determine if certain baseline characteristics of gut microbiome composition predict prebiotic responsiveness. In this secondary analysis, we compared differences in relative microbiota taxa abundance between responders (greater than or equal to 3% increase in Ca absorption) and non-responders (less than 3% increase). Dual stable isotope methodologies were used to assess fractional Ca absorption at the end of crossover treatments with placebo, 10, and 20 g/day of soluble corn fiber (SCF). Microbial DNA was obtained from stool samples collected before and after each intervention. Sequencing of the 16S rRNA gene was used to taxonomically characterize the gut microbiome. Machine learning techniques were used to build a predictive model for identifying responders based on baseline relative taxa abundances. Model output was used to infer which features contributed most to prediction accuracy. We identified 19 microbial features out of the 221 observed that predicted responsiveness with 96.0% average accuracy. The results suggest a simplified prescreening can be performed to determine if a subject's bone health may benefit from a prebiotic. Additionally, the findings provide insight and prompt further investigation into the metabolic and genetic underpinnings affecting calcium absorption during pubertal bone development.


Asunto(s)
Calcio , Microbioma Gastrointestinal , Prebióticos , Adolescente , Niño , Femenino , Humanos , Masculino , Calcio/metabolismo , Estudios Cruzados , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Microbioma Gastrointestinal/genética , Proyectos Piloto , Prebióticos/administración & dosificación
14.
Nutrients ; 16(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38613035

RESUMEN

Lactose intolerance, which affects about 65-75% of the world's population, is caused by a genetic post-weaning deficiency of lactase, the enzyme required to digest the milk sugar lactose, called lactase non-persistence. Symptoms of lactose intolerance include abdominal pain, bloating and diarrhea. Genetic variations, namely lactase persistence, allow some individuals to metabolize lactose effectively post-weaning, a trait thought to be an evolutionary adaptation to dairy consumption. Although lactase non-persistence cannot be altered by diet, prebiotic strategies, including the consumption of galactooligosaccharides (GOSs) and possibly low levels of lactose itself, may shift the microbiome and mitigate symptoms of lactose consumption. This review discusses the etiology of lactose intolerance and the efficacy of prebiotic approaches like GOSs and low-dose lactose in symptom management.


Asunto(s)
Intolerancia a la Lactosa , Humanos , Intolerancia a la Lactosa/genética , Lactosa , Lactasa/genética , Dolor Abdominal , Evolución Biológica , Prebióticos
15.
Nutrients ; 16(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38613071

RESUMEN

Obesity and depression are interdependent pathological disorders with strong inflammatory effects commonly found worldwide. They determine the health status of the population and cause key problems in terms of morbidity and mortality. The role of gut microbiota and its composition in the treatment of obesity and psychological factors is increasingly emphasized. Published research suggests that prebiotic, probiotic, or symbiotic preparations can effectively intervene in obesity treatment and mood-dysregulation alleviation. Thus, this literature review aims to highlight the role of intestinal microbiota in treating depression and obesity. An additional purpose is to indicate probiotics, including psychobiotics and prebiotics, potentially beneficial in supporting the treatment of these two diseases.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Depresión/terapia , Estado Nutricional , Ejercicio Físico , Obesidad/terapia , Prebióticos
16.
Nutrients ; 16(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38613120

RESUMEN

Food allergy represents a global health problem impacting patients' and caregivers' quality of life and contributing to increased healthcare costs. Efforts to identify preventive measures starting from pregnancy have recently intensified. This review aims to provide an overview of the role of maternal factors in food allergy prevention. Several studies indicate that avoiding food allergens during pregnancy does not reduce the risk of developing food allergies. International guidelines unanimously discourage avoidance diets due to potential adverse effects on essential nutrient intake and overall health for both women and children. Research on probiotics and prebiotics during pregnancy as preventive measures is promising, though evidence remains limited. Consequently, guidelines lack specific recommendations for their use in preventing food allergies. Similarly, given the absence of conclusive evidence, it is not possible to formulate definitive conclusions on the supplementation of vitamins, omega-3 fatty acids (n-3 PUFAs), and other antioxidant substances. A combination of maternal interventions, breastfeeding, and early introduction of foods to infants can reduce the risk of food allergies in the child. Further studies are needed to clarify the interaction between genetics, immunological pathways, and environmental factors.


Asunto(s)
Ácidos Grasos Omega-3 , Hipersensibilidad a los Alimentos , Niño , Lactante , Embarazo , Humanos , Femenino , Calidad de Vida , Hipersensibilidad a los Alimentos/prevención & control , Ingestión de Alimentos , Antioxidantes , Prebióticos
17.
Pharmacol Res ; 203: 107169, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583688

RESUMEN

BACKGROUND: Defining the ability of prebiotic dietary carbohydrates to influence the composition and metabolism of the gut microbiota is central to defining their health impact in diverse individuals. Many clinical trials are using indirect methods. This study aimed to validate collection and fermentation methods enabling their use in the context of clinical studies. METHODS AND RESULTS: Parameters tested included stool sample acquisition, storage, and growth conditions. Stool from 3 infants and 3 adults was collected and stored under varying conditions. Samples were cultured anaerobically for two days in the presence of prebiotics, whereupon optical density and pH were measured across time. Whole genome shotgun sequencing and NMR metabolomics were performed. Neither the type of collection vial (standard vial and two different BD anaerobic collection vials) nor cryopreservation (-80 °C or 4 °C) significantly influenced either microbial composition at 16 h of anaerobic culture or the principal components of the metabolome at 8 or 16 h. Metagenomic differences were driven primarily by subject, while metabolomic differences were driven by fermentation sugar (2'-fucosyllactose or dextrose). CONCLUSIONS: These data identified a feasible and valid approach for prebiotic fermentation analysis of individual samples in large clinical studies: collection of stool microbiota using standard vials; cryopreservation prior to testing; and collecting fermentation read-out at 8 and 16 hr. Thus, fermentation analysis can be a valid technique for testing the effects of prebiotics on human fecal microbiota.


Asunto(s)
Heces , Fermentación , Microbioma Gastrointestinal , Prebióticos , Humanos , Prebióticos/análisis , Heces/microbiología , Heces/química , Lactante , Adulto , Anaerobiosis , Masculino , Femenino , Manejo de Especímenes/métodos , Metabolómica/métodos
18.
J Agric Food Chem ; 72(15): 8506-8520, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38567990

RESUMEN

The dysregulation of lipid metabolism poses a significant health threat, necessitating immediate dietary intervention. Our previous research unveiled the prebiotic-like properties of theabrownin. This study aimed to further investigate the theabrownin-gut microbiota interactions and their downstream effects on lipid metabolism using integrated physiological, genomic, metabolomic, and transcriptomic approaches. The results demonstrated that theabrownin significantly ameliorated dyslipidemia, hepatic steatosis, and systemic inflammation induced by a high-fat/high-cholesterol diet (HFD). Moreover, theabrownin significantly improved HFD-induced gut microbiota dysbiosis and induced significant alterations in microbiota-derived metabolites. Additionally, the detailed interplay between theabrownin and gut microbiota was revealed. Analysis of hepatic transcriptome indicated that FoxO and PPAR signaling pathways played pivotal roles in response to theabrownin-gut microbiota interactions, primarily through upregulating hepatic Foxo1, Prkaa1, Pck1, Cdkn1a, Bcl6, Klf2, Ppara, and Pparg, while downregulating Ccnb1, Ccnb2, Fabp3, and Plin1. These findings underscored the critical role of gut-liver axis in theabrownin-mediated improvements in lipid metabolism disorders and supported the potential of theabrownin as an effective prebiotic compound for targeted regulation of metabolic diseases.


Asunto(s)
Catequina/análogos & derivados , Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Metabolismo de los Lípidos , Prebióticos , Receptores Activados del Proliferador del Peroxisoma , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , Transducción de Señal , Ratones Endogámicos C57BL
19.
Carbohydr Res ; 538: 109075, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38564901

RESUMEN

The global demand for therapeutic prebiotics persuades the quest for novel exopolysaccharides that can retard the growth of pathobionts and healthcare-associated pathogens. In this regard, an exopolysaccharide (3.69 mg/mL) producing strain showing prebiotic and antibiofilm activity was isolated from indigenous pineapple pomace of Tripura and identified as Bacillus subtilis PR-C18. Zymogram analysis revealed EPS PR-C18 was synthesized by levansucrase (∼57 kDa) with a maximal activity of 4.62 U/mg. Chromatography techniques, FTIR, and NMR spectral data revealed the homopolymeric nature of purified EPS with a molecular weight of 3.40 × 104 Da. SEM and rheological study unveiled its microporous structure and shear-thinning effect. Furthermore, EPS PR-C18 showed remarkable emulsification, flocculation, water retention, water solubilization, and antioxidant activity. DSC-TGA data demonstrated its high thermostability and cytotoxicity analysis verified its nontoxic biocompatible nature. In addition, the antibiofilm activity of EPS PR-C18 was validated using molecular docking, molecular simulation, MM-GBSA and PCA studies, which exhibited its strong binding affinity (-20.79 kcal/moL) with PelD, a virulence factor from Pseudomonas aeruginosa. Together, these findings support the future exploitation of EPS PR-C18 as an additive or adjuvant in food and pharmaceutical sectors.


Asunto(s)
Bacillus subtilis , Prebióticos , Simulación del Acoplamiento Molecular , Fructanos/farmacología , Fructanos/química , Biopelículas , Agua , Polisacáridos Bacterianos/farmacología , Polisacáridos Bacterianos/química
20.
Wei Sheng Yan Jiu ; 53(2): 237-242, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38604959

RESUMEN

OBJECTIVE: To understand the recommended dose distribution of prebiotic-containing health food in China. METHODS: The overall recommended dose of prebiotic health food was available from the label information of approved prebiotic health food from 1996 to 2022; the recommended dose distribution of prebiotic-containing health food was analyzed from different healthy functions and different ways of addition. RESULTS: There were 174 prebiotic-containing health food products with clear dose information, respectively, involving 5 prebiotics including Fructooligosaccharides, Galactooligosaccharides, Isomaltooligosaccharides, Xylo-oligosaccharides and Polydextrose, and the majority of prebiotics were added in combination, with 159 products. The recommended dose range of prebiotic-containing health food products was wide, and in general, the dose of prebiotic-containing health food products used alone was higher than the dose used in combination. The recommended daily intake range of health food containing Fructooligosaccharides was 5.28-17 500 mg/d, the recommended daily intake range of health food containing Isomaltooligosaccharides was 220-28 000 mg/d, the dose range of health food containing Xylo-oligosaccharides was 8.4-2 800 mg/d, the dose range of health food containing Polydextrose was 4-12 120 mg/d, the number of Galacto-Oligosaccharides products Only two kinds of products were included, with doses of 259.8 mg/d and 3500 mg/d, respectively. The claimed functions of prebiotic health food products were focused on laxative function, immunity enhancement, and regulation of intestinal flora. The application dose of prebiotic health food with different functional compounding additions was close to the overall dose. CONCLUSION: The recommended dosage range of prebiotics in health food containing prebiotics in China is large, and prebiotics in products are mainly added by compounding.


Asunto(s)
Microbioma Gastrointestinal , Prebióticos , Oligosacáridos , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...