Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.973
Filtrar
1.
Cell Mol Life Sci ; 81(1): 207, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709385

RESUMEN

The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.


Asunto(s)
Catepsina B , Lisosomas , Pancreatitis , Vesículas Secretoras , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Animales , Lisosomas/metabolismo , Pancreatitis/metabolismo , Pancreatitis/patología , Pancreatitis/genética , Catepsina B/metabolismo , Catepsina B/genética , Ratones , Vesículas Secretoras/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7/metabolismo , Enfermedad Aguda , Células Acinares/metabolismo , Células Acinares/patología , Tripsinógeno/metabolismo , Tripsinógeno/genética , Ceruletida , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/genética , Ratones Endogámicos C57BL , Ratones Noqueados
2.
FEBS J ; 291(9): 1958-1973, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700222

RESUMEN

Serratia marcescens is an emerging health-threatening, gram-negative opportunistic pathogen associated with a wide variety of localized and life-threatening systemic infections. One of the most crucial virulence factors produced by S. marcescens is serratiopeptidase, a 50.2-kDa repeats-in-toxin (RTX) family broad-specificity zinc metalloprotease. RTX family proteins are functionally diverse exoproteins of gram-negative bacteria that exhibit calcium-dependent structural dynamicity and are secreted through a common type-1 secretion system (T1SS) machinery. To evaluate the impact of various divalent ligands on the folding and maturation of serratiopeptidase zymogen, the protein was purified and a series of structural and functional investigations were undertaken. The results indicate that calcium binding to the C-terminal RTX domain acts as a folding switch, triggering a disordered-to-ordered transition in the enzyme's conformation. Further, the auto-processing of the 16-amino acid N-terminal pro-peptide results in the maturation of the enzyme. The binding of calcium ions to serratiopeptidase causes a highly cooperative conformational transition in its structure, which is essential for the enzyme's activation and maturation. This conformational change is accompanied by an increase in solubility and enzymatic activity. For efficient secretion and to minimize intracellular toxicity, the enzyme needs to be in an unfolded extended form. The calcium-rich extracellular environment favors the folding and processing of zymogen into mature serratiopeptidase, i.e., the holo-form required by S. marcescens to establish infections and survive in different environmental niches.


Asunto(s)
Calcio , Precursores Enzimáticos , Péptido Hidrolasas , Pliegue de Proteína , Serratia marcescens , Calcio/metabolismo , Serratia marcescens/enzimología , Serratia marcescens/genética , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Metaloendopeptidasas/química , Metaloendopeptidasas/metabolismo , Metaloendopeptidasas/genética , Modelos Moleculares , Conformación Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Unión Proteica
3.
Protein Sci ; 33(4): e4916, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501598

RESUMEN

Alongside vaccines and antiviral therapeutics, diagnostic tools are a crucial aid in combating the COVID-19 pandemic caused by the etiological agent SARS-CoV-2. All common assays for infection rely on the detection of viral sub-components, including structural proteins of the virion or fragments of the viral genome. Selective pressure imposed by human intervention of COVID-19 can, however, induce viral mutations that decrease the sensitivity of diagnostic assays based on biomolecular structure, leading to an increase in false-negative results. In comparison, mutations are unlikely to alter the function of viral proteins, and viral machinery is under less selective pressure from vaccines and therapeutics. Accordingly, diagnostic assays that rely on biomolecular function can be more robust than ones that rely on biopolymer structure. Toward this end, we used a split intein to create a circular ribonuclease zymogen that is activated by the SARS-CoV-2 main protease, 3CLpro . Zymogen activation by 3CLpro leads to a >300-fold increase in ribonucleolytic activity, which can be detected with a highly sensitive fluorogenic substrate. This coupled assay can detect low nanomolar concentrations of 3CLpro within a timeframe comparable to that of common antigen-detection protocols. More generally, the concept of detecting a protease by activating a ribonuclease could be the basis of diagnostic tools for other indications.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , Vacunas , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Precursores Enzimáticos/genética , Ribonucleasas , Pandemias , Proteínas no Estructurales Virales/química , Inhibidores de Proteasas/química , Antivirales/química
4.
Bioconjug Chem ; 35(3): 340-350, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38421254

RESUMEN

Microbial transglutaminase (MTG) from Streptomyces mobaraensis is a powerful biocatalytic glue for site-specific cross-linking of a range of biomolecules and synthetic molecules that have an MTG-reactive moiety. The preparation of active recombinant MTG requires post-translational proteolytic digestion of a propeptide that functions as an intramolecular chaperone to assist the correct folding of the MTG zymogen (MTGz) in the biosynthesis. Herein, we report engineered active zymogen of MTG (EzMTG) that is expressed in soluble form in the host Escherichia coli cytosol and exhibits cross-linking activity without limited proteolysis of the propeptide. We found that the saturation mutagenesis of residues K10 or Y12 in the propeptide domain generated several active MTGz mutants. In particular, the K10D/Y12G mutant exhibited catalytic activity comparable to that of mature MTG. However, the expression level was low, possibly because of decreased chaperone activity and/or the promiscuous substrate specificity of MTG, which is potentially harmful to the host cells. The K10R/Y12A mutant exhibited specific substrate-dependent reactivity toward peptidyl substrates. Quantitative analysis of the binding affinity of the mutated propeptides to the active site of MTG suggested an inverse relationship between the binding affinity and the catalytic activity of EzMTG. Our proof-of-concept study provides insights into the design of a new biocatalyst using the MTGz as a scaffold and a potential route to high-throughput screening of EzMTG mutants for bioconjugation applications.


Asunto(s)
Precursores Enzimáticos , Transglutaminasas , Precursores Enzimáticos/genética , Transglutaminasas/metabolismo
5.
Insect Biochem Mol Biol ; 164: 104048, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056530

RESUMEN

Phenoloxidase (PO) catalyzed melanization and other insect immune responses are mediated by serine proteases (SPs) and their noncatalytic homologs (SPHs). Many of these SP-like proteins have a regulatory clip domain and are called CLIPs. In most insects studied so far, PO precursors are activated by a PAP (i.e., PPO activating protease) and its cofactor of clip-domain SPHs. Although melanotic encapsulation is a well-known refractory mechanism of mosquitoes against malaria parasites, it is unclear if a cofactor is required for PPO activation. In Anopheles gambiae, CLIPA4 is 1:1 orthologous to Manduca sexta SPH2; CLIPs A5-7, A12-14, A26, A31, A32, E6, and E7 are 11:4 orthologous to M. sexta SPH1a, 1b, 4, and 101, SPH2 partners in the cofactors. Here we produced proCLIPs A4, A6, A7Δ, A12, and activated them with CLIPB9 or M. sexta PAP3. A. gambiae PPO2 and PPO7 were expressed in Escherichia coli for use as PAP substrates. CLIPB9 was mutated to CLIPB9Xa by including a Factor Xa cleavage site. CLIPA7Δ was a deletion mutant with a low complexity region removed. After PAP3 or CLIPB9Xa processing, CLIPA4 formed a high Mr complex with CLIPA6, A7Δ or A12, which assisted PPO2 and PPO7 activation. High levels of specific PO activity (55-85 U/µg for PO2 and 1131-1630 U/µg for PO7) were detected in vitro, indicating that cofactor-assisted PPO activation also occurs in this species. The cleavage sites and mechanisms for complex formation and cofactor function are like those reported in M. sexta and Drosophila melanogaster. In conclusion, these data suggest that the three (and perhaps more) SPHI-II pairs may form cofactors for CLIPB9-mediated activation of PPOs for melanotic encapsulation in A. gambiae.


Asunto(s)
Anopheles , Manduca , Animales , Serina Proteasas/metabolismo , Anopheles/metabolismo , Drosophila melanogaster/metabolismo , Serina Endopeptidasas , Catecol Oxidasa/genética , Catecol Oxidasa/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Monofenol Monooxigenasa , Manduca/metabolismo , Proteínas de Insectos/metabolismo , Hemolinfa
6.
Dev Comp Immunol ; 151: 105088, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37923098

RESUMEN

Prophenoloxidase (proPO) activating enzymes, known as PPAEs, are pivotal in activating the proPO system within invertebrate immunity. A cDNA encoding a PPAE derived from the hemocytes of banana shrimp, Fenneropenaeus merguiensis have cloned and analyzed, referred to as FmPPAE1. The open reading frame of FmPPAE1 encompasses 1392 base pairs, encoding a 464-amino acid peptide featuring a presumed 19-amino acid signal peptide. The projected molecular mass and isoelectric point of this protein stand at 50.5 kDa and 7.82, respectively. Structure of FmPPAE1 consists of an N-terminal clip domain and a C-terminal serine proteinase domain, housing a catalytic triad (His272, Asp321, Ser414) and a substrate binding site (Asp408, Ser435, Gly437). Expression of the FmPPAE1 transcript is specific to hemocytes and is heightened upon encountering pathogens like Vibrio parahaemolyticus, Vibrio harveyi, and white spot syndrome virus (WSSV). Using RNA interference to silence the FmPPAE1 gene resulted in reduced hemolymph phenoloxidase (PO) activity and decreased survival rates in shrimp co-injected with pathogenic agents. These findings strongly indicate that FmPPAE1 plays a vital role in regulating the proPO system in shrimp. Furthermore, upon successful production of recombinant FmPPAE1 protein (rFmPPAE1), it became evident that this protein exhibited remarkable abilities in both agglutinating and binding to a wide range of bacterial strains. These interactions were primarily facilitated through the recognition of bacterial lipopolysaccharides (LPS) or peptidoglycans (PGN) found in the cell wall. This agglutination process subsequently triggered melanization, a critical immune response. Furthermore, rFmPPAE1 exhibited the ability to actively impede the growth of pathogenic bacteria harmful to shrimp, including V. harveyi and V. parahaemolyticus. These findings strongly suggest that FmPPAE1 not only plays a pivotal role in activating the proPO system but also possesses inherent antibacterial properties, actively contributing to the suppression of bacterial proliferation. In summary, these results underscore the substantial involvement of FmPPAE1 in activating the proPO system in F. merguiensis and emphasize its crucial role in the shrimp's immune defense against invading pathogens.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Virus del Síndrome de la Mancha Blanca 1 , Animales , Hemocitos , Serina Endopeptidasas/genética , Catecol Oxidasa/genética , Catecol Oxidasa/metabolismo , Proteínas Recombinantes/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Aminoácidos , Virus del Síndrome de la Mancha Blanca 1/metabolismo
7.
Front Immunol ; 14: 1244792, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781370

RESUMEN

Insect phenoloxidases (POs) catalyze phenol oxygenation and o-diphenol oxidation to form reactive intermediates that kill invading pathogens and form melanin polymers. To reduce their toxicity to host cells, POs are produced as prophenoloxidases (PPOs) and activated by a serine protease cascade as required. In most insects studied so far, PPO activating proteases (PAPs) generate active POs in the presence of a high Mr cofactor, comprising two serine protease homologs (SPHs) each with a Gly residue replacing the catalytic Ser of an S1A serine protease (SP). These SPHs have a regulatory clip domain at the N-terminus, like most of the SP cascade members including PAPs. In Drosophila, PPO activation and PO-catalyzed melanization have been examined in genetic analyses but it is unclear if a cofactor is required for PPO activation. In this study, we produced the recombinant cSPH35 and cSPH242 precursors, activated them with Manduca sexta PAP3, and confirmed their predicted role as a cofactor for Drosophila PPO1 activation by MP2 (i.e., Sp7). The cleavage sites and mechanisms for complex formation and cofactor function are highly similar to those reported in M. sexta. In the presence of high Mr complexes of the cSPHs, PO at a high specific activity of 260 U/µg was generated in vitro. To complement the in vitro analysis, we measured hemolymph PO activity levels in wild-type flies, cSPH35, and cSPH242 RNAi lines. Compared with the wild-type flies, only 4.4% and 18% of the control PO level (26 U/µl) was detected in the cSPH35 and cSPH242 knockdowns, respectively. Consistently, percentages of adults with a melanin spot at the site of septic pricking were 82% in wild-type, 30% in cSPH35 RNAi, and 53% in cSPH242 RNAi lines; the survival rate of the control (45%) was significantly higher than those (30% and 15%) of the two RNAi lines. These data suggest that Drosophila cSPH35 and cSPH242 are components of a cofactor for MP2-mediated PPO1 activation, which are indispensable for early melanization in adults.


Asunto(s)
Catecol Oxidasa , Proteínas de Drosophila , Precursores Enzimáticos , Serina Proteasas , Animales , Drosophila melanogaster , Proteínas de Drosophila/genética , Melaninas , Monofenol Monooxigenasa , Serina Endopeptidasas , Serina Proteasas/genética , Catecol Oxidasa/genética , Precursores Enzimáticos/genética
8.
Appl Microbiol Biotechnol ; 106(24): 8285-8294, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36404357

RESUMEN

Current clinical laboratory assays are not sufficient for determining the activity of many specific human proteases yet. In this study, we developed a general approach that enables the determination of activities of caspase-3 based on the proteolytic activation of the engineered zymogen of the recombinant tyrosinase from Verrucomicrobium spinosum (Vs-tyrosinase) by detecting the diphenolase activity in an increase in absorbance at 475 nm. Here, we designed three different zymogen constructs of Vs-tyrosinase, including RSL-pre-pro-TYR, Pre-pro-TYR, and Pro-TYR. The active domain was fused to the reactive site loop (RSL) of α1-proteinase inhibitor and/or its own signal peptide (pre) and/or its own C-terminal domain (pro) via a linker containing a specific caspase-3 cleavage site. Further studies revealed that both RSL peptide and TAT signal peptide were able to inhibit tyrosinase diphenolase activity, in which RSL-pre-pro-TYR had the lowest background signals. Therefore, a specific protease activity such as caspase-3 could be detected when a suitable zymogen was established. Our results could provide a new way to directly detect the activities of key human proteases, for instance, to monitor the efficacy and safety of tumor therapy by determining the activity of apoptosis-related caspase-3 in patients. KEY POINTS: • RSL inhibited the activity of Verrucomicrobium spinosum tyrosinase. • N-pre and C-terminal domain exerted stronger dual inhibition on the Vs-tyrosinase. • The activity of caspase-3 could be measured by the zymogen activation system.


Asunto(s)
Proteínas Bacterianas , Pruebas Enzimáticas Clínicas , Precursores Enzimáticos , Monofenol Monooxigenasa , Péptido Hidrolasas , Verrucomicrobia , Humanos , Caspasa 3/análisis , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/genética , Señales de Clasificación de Proteína , Verrucomicrobia/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominios Proteicos , Péptido Hidrolasas/análisis
9.
Protein Sci ; 31(10): e4411, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36173161

RESUMEN

Many tyrosine kinases cannot be expressed readily in Escherichia coli, limiting facile production of these proteins for biochemical experiments. We used ancestral sequence reconstruction to generate a spleen tyrosine kinase (Syk) variant that can be expressed in bacteria and purified in soluble form, unlike the human members of this family (Syk and zeta-chain-associated protein kinase of 70 kDa [ZAP-70]). The catalytic activity, substrate specificity, and regulation by phosphorylation of this Syk variant are similar to the corresponding properties of human Syk and ZAP-70. Taking advantage of the ability to express this novel Syk-family kinase in bacteria, we developed a two-hybrid assay that couples the growth of E. coli in the presence of an antibiotic to successful phosphorylation of a bait peptide by the kinase. Using this assay, we screened a site-saturation mutagenesis library of the kinase domain of this reconstructed Syk-family kinase. Sites of loss-of-function mutations identified in the screen correlate well with residues established previously as critical to function and/or structure in protein kinases. We also identified activating mutations in the regulatory hydrophobic spine and activation loop, which are within key motifs involved in kinase regulation. Strikingly, one mutation in an ancestral Syk-family variant increases the soluble expression of the protein by 75-fold. Thus, through ancestral sequence reconstruction followed by deep mutational scanning, we have generated Syk-family kinase variants that can be expressed in bacteria with very high yield.


Asunto(s)
Escherichia coli , Péptidos y Proteínas de Señalización Intracelular , Antibacterianos , Precursores Enzimáticos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutagénesis , Péptidos/química , Fosforilación , Quinasa Syk/genética , Quinasa Syk/metabolismo , Tirosina/genética
10.
Insect Biochem Mol Biol ; 148: 103819, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35963292

RESUMEN

A prostate trypsin-like serine endopeptidase called initiatorin (BmIni) is an essential factor in triggering the sperm maturation response of the silkworm, Bombyx mori. BmIni has been predicted to specifically cleave the carboxyl side of two consecutive arginine residues present in certain seminal plasma and sperm proteins, but the actual substrates are still unknown. In an attempt to elucidate the molecular mechanism underlying the sperm maturation signaling pathway, in this study, we examined whether BmIni activates the seminal carboxypeptidase B (BmCPB) protein through specific degradation. First, we confirmed in vitro that the inactive BmCPB present in unmated male vesicula (v.) seminalis is activated by treatment with BmIni or trypsin. Molecular cloning of the gene encoding the seminal BmCPB protein has shown that BmCPB is produced as a secreted proenzyme and may be activated after a trypsin-like protease cleaves the boundary between the prodomain and the enzyme site. In support of these findings, both trypsin and BmIni significantly activated recombinant Pro-BmCPB, which was successfully expressed and purified as a proenzyme in Escherichia coli; moreover, two specific cleavage forms appeared in the activation by BmIni that did not appear in that by trypsin. Therefore, a recombinant protein with a mutated diarginine motif (Arg109-Arg110), which is presumed to be a pre-cleavage site of BmCPB based on its high homology with bovine CPB, was prepared and treated with BmIni. As a result, the two specific degraded peptides were no longer observed, and simultaneously the activation was suppressed. Taken together, these findings lead to the conclusion that zymogen BmCPB, which is synthesized and secreted in male reproductive organs, is activated by sequence-dependent proteolysis by BmIni during ejaculation and in the female reproductive organs, providing a clue to the mechanism underlying seminal plasma and/or sperm protein degradation by BmIni in the sperm maturation cascade of B. mori.


Asunto(s)
Bombyx , Animales , Bombyx/metabolismo , Carboxipeptidasa B/metabolismo , Bovinos , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Escherichia coli , Femenino , Masculino , Próstata/metabolismo , Proteolisis , Semen , Serina Endopeptidasas , Espermatozoides/metabolismo , Tripsina/metabolismo
11.
J Insect Physiol ; 139: 104399, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35568240

RESUMEN

Upon infection, the phenoloxidase system in arthropods is rapidly mobilized and constitutes a major defense system against invaders. The activation of the key enzymes prophenoloxidase (PPO) and their action in immunity through melanization and encapsulation of foreign bodies in hemolymph has been described in many insects. On the other hand, little is known about PPOs involvement in other essential functions related to insect development. In this paper, we investigated the function of the two PPOs of the crop pest, Spodoptera frugiperda (PPO1 and PPO2). We show that PPOs are mainly expressed in hemocytes with the PPO2 expressed at higher levels than the PPO1. In addition, these two genes are expressed in the same tissue and at the same stages of insect development. Through the generation of loss-of-function mutants by CRISPR/Cas9 method, we show that the presence of PPOs is essential for the normal development of the pupa and the survival of the insect.


Asunto(s)
Precursores Enzimáticos , Monofenol Monooxigenasa , Animales , Catecol Oxidasa , Precursores Enzimáticos/genética , Larva , Monofenol Monooxigenasa/genética , Mutagénesis , Spodoptera/genética
12.
Insect Biochem Mol Biol ; 144: 103762, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395380

RESUMEN

Phenoloxidase (PO) is a crucial component of the insect immune response against microbial infection. In the tobacco hornworm Manduca sexta, PO is generated from its precursor proPO by prophenoloxidase activating proteases (PAPs) in the presence of two noncatalytic serine protease homologs (SPHs). cDNA cloning and genome analysis indicate that SPH1a (formerly known as SPH1), SPH1b, SPH4, SPH101, and SPH2 contain a clip domain, a linker, and a protease-like domain (PLD). The first 22 residues of the SPH1b, SPH4, and SPH101 PLDs are identical, and differ from SPH1a only at position 4, Thr154 substituted with Asn154 in SPH1a. While the sequence from Edman degradation was used to establish PAP cofactor as a high Mr complex of SPH1a and SPH2, this assignment needed further validation, especially because SPH1b mRNA levels are much higher than SPH1a's and better correlate with SPH2 transcription. Thus, here we determined expression profiles of these SPH genes in different tissues from various developmental stages using highly specific primers. High levels of SPH1b and SPH2 proteins, low SPH4, and no SPH1a or SPH101 were detected in hemolymph from larvae in the feeding, wandering and bar stages, pupae, and adults by targeted LC-MS/MS analysis, based on unique peptides from the trypsin-treated SPHs. We expressed the five proSPHs in baculovirus-infected Sf9 cells for use as standards to identify and quantify their counterparts in plasma samples. Moreover, we tested their cleavage by PAP3 and efficacy of the SPH1a, 1b, 4, and 101 as SPH2 partners in PAP3-mediated proPO activation. PAP3 processed proSPH1b and 101 more readily than proSPH1a and 4; PAP3 activated proPO more efficiently in the presence of SPH2 with SPH101 or SPH1b than with SPH1a or SPH4. These results generally agree with their order of appearance or sequence similarity: SPH101 > SPH1b (98%) > SPH1a (90%) > SPH4 (83%). In other words, likely due to positive selection, products of the newly duplicated genes (SPH1b and SPH101) are more favorable substrates of PAP3 and better SPH2 partners in forming a high Mr cofactor than SPH1a or SPH4 is. Electrophoresis on native gel and immunoblot analysis further indicated that SPH101 or 1b form high Mr complexes more readily than SPH1a or 4 does. In comparison, SPH2 showed a small mobility decrease and then increase on native gel after PAP3 cleavage at the first site. Since the natural cofactor in bar-stage hemolymph is complexes of SPH1 and 2 with an average Mr of 790 kDa, PAP3-activated SPH2 may associate with the higher Mr SPH1b scaffolds to form super-complexes. Their structures and formation in relation to cleavage of SPH1b at different sites await further exploration.


Asunto(s)
Manduca , Animales , Ancirinas/deficiencia , Catecol Oxidasa/metabolismo , Cromatografía Liquida , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Hemolinfa/metabolismo , Proteínas de Insectos/metabolismo , Manduca/metabolismo , Monofenol Monooxigenasa , Serina Endopeptidasas/genética , Serina Proteasas/genética , Serina Proteasas/metabolismo , Esferocitosis Hereditaria , Espectrometría de Masas en Tándem
13.
Biochimie ; 199: 12-22, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35398151

RESUMEN

Asparagine endopeptidases (AEPs) were synthesized as a zymogen and were known to undergo pH-dependent autoproteolytic activation using their endopeptidase activity. Butelase-1, one of the few AEPs with ligation activity, can also be synthesized as a zymogen and activated at acidic pH in vitro, but the detailed activation process and potential activation sites of its zymogen are not fully understood. In this study, recombinant butelase-1 exhibited high ligation activity and ineffective endopeptidase activity, and its activities were strictly pH-dependent. The endopeptidase activity caused the activation of butelase-1 zymogen at acidic pH, which was autocatalytic, required sequential removal of C- and N-terminal pro-peptides, and was a bimolecular reaction. The pro-peptides were critical to the stability of butelase-1. Once the pro-peptides left the active domain, butelase-1 was quickly inactivated at pH 7.0. Based on the LC-MS/MS sequencing of activation products, Asp319 and Asn322 were identified as potential C-terminal pro-region hydrolysis sites of the butelase-1 zymogen, which was validated by site-directed mutagenesis. Our results provided a reasonable explanation for the self-activation of butelase-1 zymogen in vitro and provided supplementary information for the activation of AEP ligase zymogen.


Asunto(s)
Clitoria , Secuencia de Aminoácidos , Cromatografía Liquida , Clitoria/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Péptidos/química , Espectrometría de Masas en Tándem
14.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36613850

RESUMEN

Melanization mediated by the prophenoloxidase (PPO)-activating system is an important innate immunity to fight pathogens in insects. In this study, the in vitro time-dependent increase in the intensity of melanization and phenoloxidase (PO) activity from the hemolymph of Odontotermes formosanus (Shiraki) challenged by pathogenic bacteria was detected. PPO is one of the key genes in melanization pathway, whereas the molecular characteristics and functions of O. formosanus PPO are unclear. The OfPPO gene was cloned and characterized. The open reading frame of OfPPO is 2085 bp in length and encodes a 79.497 kDa protein with 694 amino acids. A BLASTx search and phylogenetic analyses revealed that OfPPO shares a high degree of homology to the Blattodea PPOs. Moreover, real-time fluorescent quantitative PCR analysis showed that OfPPO is ubiquitously expressed in all castes and tissues examined, with the highest expression in workers and variable expression patterns in tissues of different termite castes. Furthermore, the expression of OfPPO was significantly induced in O. formosanus infected by pathogenic bacteria. Intriguingly, in combination with silencing of OfPPO expression, pathogenic bacteria challenge caused greatly increased mortality of O. formosanus. These results suggest that OfPPO plays a role in defense against bacteria and highlight the novel termite control strategy combining pathogenic bacteria application with termite PPO silencing.


Asunto(s)
Infecciones Bacterianas , Cucarachas , Isópteros , Animales , Cucarachas/metabolismo , Isópteros/genética , Isópteros/metabolismo , Filogenia , Catecol Oxidasa/genética , Catecol Oxidasa/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo
15.
AIDS Res Ther ; 18(1): 77, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702287

RESUMEN

BACKGROUND: Targeting RNA is a promising yet underdeveloped modality for the selective killing of cells infected with HIV-1. The secretory ribonucleases (RNases) found in vertebrates have cytotoxic ribonucleolytic activity that is kept in check by a cytosolic ribonuclease inhibitor protein, RI. METHODS: We engineered amino acid substitutions that enable human RNase 1 to evade RI upon its cyclization into a zymogen that is activated by the HIV-1 protease. In effect, the zymogen has an HIV-1 protease cleavage site between the termini of the wild-type enzyme, thereby positioning a cleavable linker over the active site that blocks access to a substrate. RESULTS: The amino acid substitutions in RNase 1 diminish its affinity for RI by 106-fold and confer high toxicity for T-cell leukemia cells. Pretreating these cells with the zymogen leads to a substantial drop in their viability upon HIV-1 infection, indicating specific toxicity toward infected cells. CONCLUSIONS: These data demonstrate the utility of ribonuclease zymogens as biologic prodrugs.


Asunto(s)
Infecciones por VIH , VIH-1 , Animales , Precursores Enzimáticos/genética , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Humanos , Modelos Moleculares , Ribonucleasas/genética
16.
J Biol Chem ; 297(4): 101227, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34562451

RESUMEN

TMPRSS13, a member of the type II transmembrane serine protease (TTSP) family, harbors four N-linked glycosylation sites in its extracellular domain. Two of the glycosylated residues are located in the scavenger receptor cysteine-rich (SRCR) protein domain, while the remaining two sites are in the catalytic serine protease (SP) domain. In this study, we examined the role of N-linked glycosylation in the proteolytic activity, autoactivation, and cellular localization of TMPRSS13. Individual and combinatory site-directed mutagenesis of the glycosylated asparagine residues indicated that glycosylation of the SP domain is critical for TMPRSS13 autoactivation and catalytic activity toward one of its protein substrates, the prostasin zymogen. Additionally, SP domain glycosylation-deficient TMPRSS13 displayed impaired trafficking of TMPRSS13 to the cell surface, which correlated with increased retention in the endoplasmic reticulum. Importantly, we showed that N-linked glycosylation was a critical determinant for subsequent phosphorylation of endogenous TMPRSS13. Taken together, we conclude that glycosylation plays an important role in regulating TMPRSS13 activation and activity, phosphorylation, and cell surface localization.


Asunto(s)
Membrana Celular/enzimología , Precursores Enzimáticos/metabolismo , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Serina Endopeptidasas/metabolismo , Animales , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Precursores Enzimáticos/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Dominios Proteicos , Transporte de Proteínas/genética , Serina Endopeptidasas/genética
17.
Mol Vis ; 27: 142-150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33907369

RESUMEN

Purpose: To evaluate the plasma levels of matrix metalloproteinase 9 (MMP9) and tissue inhibitors of metalloproteinase 3 (TIMP3) in neovascular age-related macular degeneration (nAMD) patients compared to controls, and to explore the potential effect of AMD-associated genetic variants on MMP9 and TIMP3 protein levels. Methods: nAMD and control patients were selected from the European Genetic Database (EUGENDA) based on different genotypes of rs142450006 near MMP9 and rs5754227 near TIMP3. Plasma total MMP9, active MMP9 and TIMP3 levels were measured using the enzyme linked immunosorbent assay (ELISA) and compared between nAMD patients and controls, as well as between different genotype groups. Results: nAMD patients had significantly higher total MMP9 levels compared to controls (median 46.58 versus 26.90 ng/ml; p = 0.0004). In addition, the median MMP9 level in the homozygous genotype group for the AMD-risk allele (44.23 ng/ml) was significantly higher than the median for the heterozygous genotype group (26.90 ng/ml; p = 0.0082) and the median for the homozygous group for the non-risk allele (28.55 ng/ml; p = 0.0355). No differences were detected for the active MMP9. TIMP3 levels did not significantly differ between the AMD and control groups, nor between the different genotype groups for rs5754227. Conclusions: The results of our MMP9 analyses indicate that nAMD patients have on average higher systemic MMP9 levels than control individuals, and that this is partly driven by the rs142450006 variant near MMP9. This finding might be an interesting starting point for further exploration of MMP9 as a therapeutic target in nAMD, particularly among individuals carrying the risk-conferring allele rs142450006.


Asunto(s)
Neovascularización Coroidal/enzimología , Precursores Enzimáticos/sangre , Precursores Enzimáticos/genética , Metaloproteinasa 9 de la Matriz/sangre , Metaloproteinasa 9 de la Matriz/genética , Degeneración Macular Húmeda/enzimología , Anciano , Anciano de 80 o más Años , Alelos , Neovascularización Coroidal/genética , Ensayo de Inmunoadsorción Enzimática , Femenino , Frecuencia de los Genes , Técnicas de Genotipaje , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Inhibidor Tisular de Metaloproteinasa-3/sangre , Inhibidor Tisular de Metaloproteinasa-3/genética , Degeneración Macular Húmeda/genética
18.
PLoS One ; 16(4): e0250454, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33914781

RESUMEN

In the epididymis, lysosomal proteins of the epithelial cells are normally targeted from the Golgi apparatus to lysosomes for degradation, although their secretion into the epididymal lumen has been documented and associated with sperm maturation. In this study, cathepsin D (CatD) and prosaposin (PSAP) were examined in adult epididymis of control, and 2-day castrated rats without (Ct) and with testosterone replacement (Ct+T) to evaluate their expression and regulation within epididymal epithelial cells. By light microscope-immunocytochemistry, a quantitative increase in size of lysosomes in principal cells of Ct animals was noted from the distal initial segment to the proximal cauda. Androgen replacement did not restore the size of lysosomes to control levels. Western blot analysis revealed a significant increase in CatD expression in the epididymis of Ct animals, which suggested an upregulation of its expression in principal cells; androgens restored levels of CatD to that of controls. In contrast, PSAP expression in Ct animals was not altered from controls. Additionally, an increase in procathepsin D levels was noted from samples of the epididymal fluid of Ct compared to control animals, accompanied by an increased complex formation with PSAP. Moreover, an increased oligomerization of prosaposin was observed in the epididymal lumen of Ct rats, with changes reverted to controls in Ct+T animals. Taken together these data suggest castration causes an increased uptake of substrates that are acted upon by CatD in lysosomes of principal cells and in the lumen by procathepsin D. These substrates may be derived from apoptotic cells noted in the lumen of proximal regions and possibly by degenerating sperm in distal regions of the epididymis of Ct animals. Exploring the mechanisms by which lysosomal enzymes are synthesized and secreted by the epididymis may help resolve some of the issues originating from epididymal dysfunctions with relevance to sperm maturation.


Asunto(s)
Andrógenos/genética , Catepsina D/genética , Precursores Enzimáticos/genética , Saposinas/genética , Andrógenos/metabolismo , Animales , Castración/efectos adversos , Epidídimo/crecimiento & desarrollo , Epidídimo/metabolismo , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/genética , Lisosomas/genética , Lisosomas/fisiología , Masculino , Ratas , Espermatozoides/metabolismo , Testosterona/genética , Testosterona/metabolismo
19.
Sci Rep ; 11(1): 7230, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790319

RESUMEN

Generally, animals extract nutrients from food by degradation using digestive enzymes. Trypsin and chymotrypsin, one of the major digestive enzymes in vertebrates, are pancreatic proenzymes secreted into the intestines. In this investigation, we report the identification of a digestive teleost enzyme, a pancreatic astacin that we termed pactacin. Pactacin, which belongs to the astacin metalloprotease family, emerged during the evolution of teleosts through gene duplication of astacin family enzymes containing six cysteine residues (C6astacin, or C6AST). In this study, we first cloned C6AST genes from pot-bellied seahorse (Hippocampus abdominalis) and analyzed their phylogenetic relationships using over 100 C6AST genes. Nearly all these genes belong to one of three clades: pactacin, nephrosin, and patristacin. Genes of the pactacin clade were further divided into three subclades. To compare the localization and functions of the three pactacin subclades, we studied pactacin enzymes in pot-bellied seahorse and medaka (Oryzias latipes). In situ hybridization revealed that genes of all three subclades were commonly expressed in the pancreas. Western blot analysis indicated storage of pactacin pro-enzyme form in the pancreas, and conversion to the active forms in the intestine. Finally, we partially purified the pactacin from digestive fluid, and found that pactacin is novel digestive enzyme that is specific in teleosts.


Asunto(s)
Precursores Enzimáticos , Proteínas de Peces , Regulación Enzimológica de la Expresión Génica , Metaloendopeptidasas , Oryzias , Páncreas/enzimología , Smegmamorpha , Secuencia de Aminoácidos , Animales , Clonación Molecular , Precursores Enzimáticos/biosíntesis , Precursores Enzimáticos/genética , Proteínas de Peces/biosíntesis , Proteínas de Peces/genética , Metaloendopeptidasas/biosíntesis , Metaloendopeptidasas/genética , Oryzias/genética , Oryzias/metabolismo , Homología de Secuencia de Aminoácido , Smegmamorpha/genética , Smegmamorpha/metabolismo
20.
Sci Rep ; 11(1): 3821, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589707

RESUMEN

MicroRNAs (miRNAs) suppress gene expression and regulate biological processes. Following small RNA sequencing, shrimp hemocytes miRNAs differentially expressed in response to acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus (VPAHPND) were discovered and some were confirmed by qRT-PCR. VPAHPND-responsive miRNAs were predicted to target several genes in various immune pathways. Among them, lva-miR-4850 is of interest because its predicted target mRNAs are two important genes of the proPO system; proPO2 (PO2) and proPO activating factor 2 (PPAF2). The expression of lva-miR-4850 was significantly decreased after VPAHPND infection, whereas those of the target mRNAs, PO2 and PPAF2, and PO activity were significantly upregulated. Introducing the lva-miR-4850 mimic into VPAHPND-infected shrimps caused a reduction in the PO2 and PPAF2 transcript levels and the PO activity, but significantly increased the number of bacteria in the VPAHPND targeted tissues. This result inferred that lva-miR-4850 plays a crucial role in regulating the proPO system via suppressing expression of PPAF2 and PO2. To fight against VPAHPND infection, shrimp downregulated lva-miR-4850 expression resulted in proPO activation.


Asunto(s)
Infecciones Bacterianas/veterinaria , Catecol Oxidasa/genética , Precursores Enzimáticos/genética , Regulación Enzimológica de la Expresión Génica , Interacciones Huésped-Patógeno/genética , MicroARNs/genética , Penaeidae/genética , Penaeidae/microbiología , Animales , Catecol Oxidasa/metabolismo , Precursores Enzimáticos/metabolismo , Redes Reguladoras de Genes , Genes Reporteros , Hemocitos/metabolismo , Modelos Biológicos , Especificidad de Órganos , Penaeidae/enzimología , Interferencia de ARN , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...