Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 291(14): 3072-3079, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38151772

RESUMEN

Dicer, a multi-domain ribonuclease III (RNase III) protein, is crucial for gene regulation via RNA interference. It processes hairpin-like precursors into microRNAs (miRNAs) and long double-stranded RNAs (dsRNAs) into small interfering RNAs (siRNAs). During the "dicing" process, the miRNA or siRNA substrate is stably anchored and cleaved by Dicer's RNase III domain. Although numerous studies have investigated long dsRNA cleavage by Dicer, the specific mechanism by which human Dicer (hDICER) processes pre-miRNA remains unelucidated. This review introduces the recently revealed hDICER structure bound to pre-miRNA uncovered through cryo-electron microscopy and compares it with previous reports describing Dicer. The domain-wise movements of the helicase and dsRNA-binding domain (dsRBD) and specific residues involved in substrate sequence recognition have been identified. During RNA substrate binding, the hDICER apical domains and dsRBD recognize the pre-miRNA termini and cleavage site, respectively. Residue rearrangements in positively charged pockets within the apical domain influence substrate recognition and cleavage site determination. The specific interactions between dsRBD positively charged residues and nucleotide bases near the cleavage site emphasize the significance of cis-acting elements in the hDICER processing mechanism. These findings provide valuable insights for understanding hDICER-related diseases.


Asunto(s)
Microscopía por Crioelectrón , ARN Helicasas DEAD-box , MicroARNs , Ribonucleasa III , Humanos , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/ultraestructura , MicroARNs/genética , MicroARNs/metabolismo , MicroARNs/química , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/ultraestructura , ARN Bicatenario/metabolismo , ARN Bicatenario/química , ARN Bicatenario/genética , Modelos Moleculares , Precursores del ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/química , Precursores del ARN/ultraestructura , Especificidad por Sustrato , Dominios Proteicos , Unión Proteica , Sitios de Unión
2.
Nature ; 624(7992): 682-688, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37993708

RESUMEN

The group II intron ribonucleoprotein is an archetypal splicing system with numerous mechanistic parallels to the spliceosome, including excision of lariat introns1,2. Despite the importance of branching in RNA metabolism, structural understanding of this process has remained elusive. Here we present a comprehensive analysis of three single-particle cryogenic electron microscopy structures captured along the splicing pathway. They reveal the network of molecular interactions that specifies the branchpoint adenosine and positions key functional groups to catalyse lariat formation and coordinate exon ligation. The structures also reveal conformational rearrangements of the branch helix and the mechanism of splice site exchange that facilitate the transition from branching to ligation. These findings shed light on the evolution of splicing and highlight the conservation of structural components, catalytic mechanism and dynamical strategies retained through time in premessenger RNA splicing machines.


Asunto(s)
Biocatálisis , Intrones , Conformación de Ácido Nucleico , Empalme del ARN , Adenosina/metabolismo , Microscopía por Crioelectrón , Exones , Precursores del ARN/química , Precursores del ARN/metabolismo , Precursores del ARN/ultraestructura , Sitios de Empalme de ARN
3.
Nature ; 615(7951): 331-338, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813958

RESUMEN

Dicer has a key role in small RNA biogenesis, processing double-stranded RNAs (dsRNAs)1,2. Human DICER (hDICER, also known as DICER1) is specialized for cleaving small hairpin structures such as precursor microRNAs (pre-miRNAs) and has limited activity towards long dsRNAs-unlike its homologues in lower eukaryotes and plants, which cleave long dsRNAs. Although the mechanism by which long dsRNAs are cleaved has been well documented, our understanding of pre-miRNA processing is incomplete because structures of hDICER in a catalytic state are lacking. Here we report the cryo-electron microscopy structure of hDICER bound to pre-miRNA in a dicing state and uncover the structural basis of pre-miRNA processing. hDICER undergoes large conformational changes to attain the active state. The helicase domain becomes flexible, which allows the binding of pre-miRNA to the catalytic valley. The double-stranded RNA-binding domain relocates and anchors pre-miRNA in a specific position through both sequence-independent and sequence-specific recognition of the newly identified 'GYM motif'3. The DICER-specific PAZ helix is also reoriented to accommodate the RNA. Furthermore, our structure identifies a configuration of the 5' end of pre-miRNA inserted into a basic pocket. In this pocket, a group of arginine residues recognize the 5' terminal base (disfavouring guanine) and terminal monophosphate; this explains the specificity of hDICER and how it determines the cleavage site. We identify cancer-associated mutations in the 5' pocket residues that impair miRNA biogenesis. Our study reveals how hDICER recognizes pre-miRNAs with stringent specificity and enables a mechanistic understanding of hDICER-related diseases.


Asunto(s)
Microscopía por Crioelectrón , ARN Helicasas DEAD-box , MicroARNs , Precursores del ARN , Ribonucleasa III , Humanos , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/ultraestructura , MicroARNs/biosíntesis , MicroARNs/química , MicroARNs/metabolismo , MicroARNs/ultraestructura , Mutación , Ribonucleasa III/química , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Ribonucleasa III/ultraestructura , Precursores del ARN/química , Precursores del ARN/metabolismo , Precursores del ARN/ultraestructura , ARN Bicatenario/metabolismo , Especificidad por Sustrato
4.
Nature ; 596(7871): 296-300, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34349264

RESUMEN

During the splicing of introns from precursor messenger RNAs (pre-mRNAs), the U2 small nuclear ribonucleoprotein (snRNP) must undergo stable integration into the spliceosomal A complex-a poorly understood, multistep process that is facilitated by the DEAD-box helicase Prp5 (refs. 1-4). During this process, the U2 small nuclear RNA (snRNA) forms an RNA duplex with the pre-mRNA branch site (the U2-BS helix), which is proofread by Prp5 at this stage through an unclear mechanism5. Here, by deleting the branch-site adenosine (BS-A) or mutating the branch-site sequence of an actin pre-mRNA, we stall the assembly of spliceosomes in extracts from the yeast Saccharomyces cerevisiae directly before the A complex is formed. We then determine the three-dimensional structure of this newly identified assembly intermediate by cryo-electron microscopy. Our structure indicates that the U2-BS helix has formed in this pre-A complex, but is not yet clamped by the HEAT domain of the Hsh155 protein (Hsh155HEAT), which exhibits an open conformation. The structure further reveals a large-scale remodelling/repositioning of the U1 and U2 snRNPs during the formation of the A complex that is required to allow subsequent binding of the U4/U6.U5 tri-snRNP, but that this repositioning is blocked in the pre-A complex by the presence of Prp5. Our data suggest that binding of Hsh155HEAT to the bulged BS-A of the U2-BS helix triggers closure of Hsh155HEAT, which in turn destabilizes Prp5 binding. Thus, Prp5 proofreads the branch site indirectly, hindering spliceosome assembly if branch-site mutations prevent the remodelling of Hsh155HEAT. Our data provide structural insights into how a spliceosomal helicase enhances the fidelity of pre-mRNA splicing.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Precursores del ARN/química , Precursores del ARN/genética , Empalme del ARN , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Empalmosomas/enzimología , Actinas/genética , Adenosina/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/ultraestructura , Modelos Moleculares , Mutación , Dominios Proteicos , Precursores del ARN/metabolismo , Precursores del ARN/ultraestructura , Empalme del ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Empalmosomas/química , Empalmosomas/metabolismo
5.
Nat Commun ; 11(1): 6275, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293523

RESUMEN

Biochemical assays and computational analyses have discovered RNA structures throughout various transcripts. However, the roles of these structures are mostly unknown. Here we develop folded RNA element profiling with structure library (FOREST), a multiplexed affinity assay system to identify functional interactions from transcriptome-wide RNA structure datasets. We generate an RNA structure library by extracting validated or predicted RNA motifs from gene-annotated RNA regions. The RNA structure library with an affinity enrichment assay allows for the comprehensive identification of target-binding RNA sequences and structures in a high-throughput manner. As a proof-of-concept, FOREST discovers multiple RNA-protein interaction networks with quantitative scores, including translational regulatory elements that function in living cells. Moreover, FOREST reveals different binding landscapes of RNA G-quadruplex (rG4) structures-binding proteins and discovers rG4 structures in the terminal loops of precursor microRNAs. Overall, FOREST serves as a versatile platform to investigate RNA structure-function relationships on a large scale.


Asunto(s)
G-Cuádruplex , MicroARNs/metabolismo , Biosíntesis de Proteínas/genética , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Regiones no Traducidas 5'/genética , Simulación por Computador , Conjuntos de Datos como Asunto , Ensayo de Cambio de Movilidad Electroforética , Factor 3 de Iniciación Eucariótica/metabolismo , Biblioteca de Genes , Genoma Viral/genética , Células HEK293 , VIH-1/genética , Humanos , MicroARNs/ultraestructura , Motivos de Nucleótidos , Prueba de Estudio Conceptual , Unión Proteica/genética , Pliegue del ARN/genética , Precursores del ARN/ultraestructura , ARN Mensajero/ultraestructura , ARN Viral/metabolismo , ARN Viral/ultraestructura , Proteínas de Unión al ARN/metabolismo
6.
Mol Cell ; 80(2): 227-236.e5, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32991829

RESUMEN

The pathways for ribosomal RNA (rRNA) maturation diverge greatly among the domains of life. In the Gram-positive model bacterium, Bacillus subtilis, the final maturation steps of the two large ribosomal subunit (50S) rRNAs, 23S and 5S pre-rRNAs, are catalyzed by the double-strand specific ribonucleases (RNases) Mini-RNase III and RNase M5, respectively. Here we present a protocol that allowed us to solve the 3.0 and 3.1 Å resolution cryoelectron microscopy structures of these RNases poised to cleave their pre-rRNA substrates within the B. subtilis 50S particle. These data provide the first structural insights into rRNA maturation in bacteria by revealing how these RNases recognize and process double-stranded pre-rRNA. Our structures further uncover how specific ribosomal proteins act as chaperones to correctly fold the pre-rRNA substrates and, for Mini-III, anchor the RNase to the ribosome. These r-proteins thereby serve a quality-control function in the process from accurate ribosome assembly to rRNA processing.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Precursores del ARN/metabolismo , Ribonucleasas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/ultraestructura , Secuencia de Bases , Microscopía por Crioelectrón , Modelos Moleculares , Precursores del ARN/ultraestructura , Ribonucleasas/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Especificidad por Sustrato
7.
Mol Cell ; 76(5): 767-783.e11, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31540874

RESUMEN

Fibrillar centers (FCs) and dense fibrillar components (DFCs) are essential morphologically distinct sub-regions of mammalian cell nucleoli for rDNA transcription and pre-rRNA processing. Here, we report that a human nucleolus consists of several dozen FC/DFC units, each containing 2-3 transcriptionally active rDNAs at the FC/DFC border. Pre-rRNA processing factors, such as fibrillarin (FBL), form 18-24 clusters that further assemble into the DFC surrounding the FC. Mechanistically, the 5' end of nascent 47S pre-rRNA binds co-transcriptionally to the RNA-binding domain of FBL. FBL diffuses to the DFC, where local self-association via its glycine- and arginine-rich (GAR) domain forms phase-separated clusters to immobilize FBL-interacting pre-rRNA, thus promoting directional traffic of nascent pre-rRNA while facilitating pre-rRNA processing and DFC formation. These results unveil FC/DFC ultrastructures in nucleoli and suggest a conceptual framework for considering nascent RNA sorting using multivalent interactions of their binding proteins.


Asunto(s)
Nucléolo Celular/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Transporte Activo de Núcleo Celular , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Precursores del ARN/genética , Precursores del ARN/ultraestructura , ARN Ribosómico/genética , ARN Ribosómico/ultraestructura
8.
Mol Cell ; 72(4): 715-726.e3, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30415953

RESUMEN

Compared to noncoding RNAs (ncRNAs), such as rRNAs and ribozymes, for which high-resolution structures abound, little is known about the tertiary structures of mRNAs. In eukaryotic cells, newly made mRNAs are packaged with proteins in highly compacted mRNA particles (mRNPs), but the manner of this mRNA compaction is unknown. Here, we developed and implemented RIPPLiT (RNA immunoprecipitation and proximity ligation in tandem), a transcriptome-wide method for probing the 3D conformations of RNAs stably associated with defined proteins, in this case, exon junction complex (EJC) core factors. EJCs multimerize with other mRNP components to form megadalton-sized complexes that protect large swaths of newly synthesized mRNAs from endonuclease digestion. Unlike ncRNPs, wherein strong locus-specific structures predominate, mRNPs behave more like flexible polymers. Polymer analysis of proximity ligation data for hundreds of mRNA species demonstrates that nascent and pre-translational mammalian mRNAs are compacted by their associated proteins into linear rod-like structures.


Asunto(s)
Precursores del ARN/ultraestructura , Ribonucleoproteínas/genética , Ribonucleoproteínas/ultraestructura , Núcleo Celular , Exones , Células HEK293 , Humanos , Inmunoprecipitación/métodos , Procesamiento Proteico-Postraduccional , Precursores del ARN/genética , Empalme del ARN , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/ultraestructura , ARN no Traducido , Empalmosomas , Transcripción Genética
9.
J Cell Biol ; 217(7): 2503-2518, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29691304

RESUMEN

Ribosome biogenesis involves numerous preribosomal RNA (pre-rRNA) processing events to remove internal and external transcribed spacer sequences, ultimately yielding three mature rRNAs. Removal of the internal transcribed spacer 2 spacer RNA is the final step in large subunit pre-rRNA processing and begins with endonucleolytic cleavage at the C2 site of 27SB pre-rRNA. C2 cleavage requires the hierarchical recruitment of 11 ribosomal proteins and 14 ribosome assembly factors. However, the function of these proteins in C2 cleavage remained unclear. In this study, we have performed a detailed analysis of the effects of depleting proteins required for C2 cleavage and interpreted these results using cryo-electron microscopy structures of assembling 60S subunits. This work revealed that these proteins are required for remodeling of several neighborhoods, including two major functional centers of the 60S subunit, suggesting that these remodeling events form a checkpoint leading to C2 cleavage. Interestingly, when C2 cleavage is directly blocked by depleting or inactivating the C2 endonuclease, assembly progresses through all other subsequent steps.


Asunto(s)
Precursores del ARN/ultraestructura , ARN Ribosómico/ultraestructura , Proteínas Ribosómicas/ultraestructura , Ribosomas/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/ultraestructura , Precursores del ARN/química , Precursores del ARN/genética , ARN Ribosómico/química , ARN Ribosómico/genética , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/genética , Ribosomas/química , Ribosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura
10.
Science ; 360(6385): 219-222, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29519915

RESUMEN

The RNA exosome complex processes and degrades a wide range of transcripts, including ribosomal RNAs (rRNAs). We used cryo-electron microscopy to visualize the yeast nuclear exosome holocomplex captured on a precursor large ribosomal subunit (pre-60S) during 7S-to-5.8S rRNA processing. The cofactors of the nuclear exosome are sandwiched between the ribonuclease core complex (Exo-10) and the remodeled "foot" structure of the pre-60S particle, which harbors the 5.8S rRNA precursor. The exosome-associated helicase Mtr4 recognizes the preribosomal substrate by docking to specific sites on the 25S rRNA, captures the 3' extension of the 5.8S rRNA, and channels it toward Exo-10. The structure elucidates how the exosome forms a structural and functional unit together with its massive pre-60S substrate to process rRNA during ribosome maturation.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/química , Exosomas/química , Ribosomas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/química , Núcleo Celular/ultraestructura , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/ultraestructura , Complejo Multienzimático de Ribonucleasas del Exosoma/ultraestructura , Exosomas/ultraestructura , Conformación Proteica , Precursores del ARN/química , Precursores del ARN/ultraestructura , ARN Ribosómico/química , ARN Ribosómico/ultraestructura , ARN Ribosómico 5.8S/química , ARN Ribosómico 5.8S/ultraestructura , Ribosomas/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura
11.
Chem Rev ; 118(8): 4156-4176, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29377672

RESUMEN

Nuclear pre-mRNA splicing and group II intron self-splicing both proceed by two-step transesterification reactions via a lariat intron intermediate. Recently determined cryo-electron microscopy (cryo-EM) structures of catalytically active spliceosomes revealed the RNA-based catalytic core and showed how pre-mRNA substrates and reaction products are positioned in the active site. These findings highlight a strong structural similarity to the group II intron active site, strengthening the notion that group II introns and spliceosomes evolved from a common ancestor. Prp8, the largest and most conserved protein in the spliceosome, cradles the active site RNA. Prp8 and group II intron maturase have a similar domain architecture, suggesting that they also share a common evolutionary origin. The interactions between maturase and key group II intron RNA elements, such as the exon-binding loop and domains V and VI, are recapitulated in the interactions between Prp8 and key elements in the spliceosome's catalytic RNA core. Structural comparisons suggest that the extensive RNA scaffold of the group II intron was gradually replaced by proteins as the spliceosome evolved. A plausible model of spliceosome evolution is discussed.


Asunto(s)
Microscopía por Crioelectrón/métodos , Intrones , Conformación de Ácido Nucleico , Precursores del ARN/química , Empalme del ARN , ARN Mensajero/química , Núcleo Celular/química , Cristalografía por Rayos X , Exones , Hidrólisis , Filogenia , Precursores del ARN/ultraestructura , ARN Mensajero/ultraestructura , Empalmosomas
12.
Nat Struct Mol Biol ; 24(11): 954-964, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28967883

RESUMEN

The 40S small ribosomal subunit is cotranscriptionally assembled in the nucleolus as part of a large chaperone complex called the 90S preribosome or small-subunit processome. Here, we present the 3.2-Å-resolution structure of the Chaetomium thermophilum 90S preribosome, which allowed us to build atomic structures for 34 assembly factors, including the Mpp10 complex, Bms1, Utp14 and Utp18, and the complete U3 small nucleolar ribonucleoprotein. Moreover, we visualized the U3 RNA heteroduplexes with a 5' external transcribed spacer (5' ETS) and pre-18S RNA, and their stabilization by 90S factors. Overall, the structure explains how a highly intertwined network of assembly factors and pre-rRNA guide the sequential, independent folding of the individual pre-40S domains while the RNA regions forming the 40S active sites are kept immature. Finally, by identifying the unprocessed A1 cleavage site and the nearby Utp24 endonuclease, we suggest a proofreading model for regulated 5'-ETS separation and 90S-pre-40S transition.


Asunto(s)
Chaetomium/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Microscopía por Crioelectrón , ADN Ribosómico/química , ADN Ribosómico/genética , Proteínas Fúngicas/ultraestructura , Precursores del ARN/ultraestructura , ARN Ribosómico 18S/ultraestructura
13.
Cell ; 171(1): 120-132.e12, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28919079

RESUMEN

The disassembly of the intron lariat spliceosome (ILS) marks the end of a splicing cycle. Here we report a cryoelectron microscopy structure of the ILS complex from Saccharomyces cerevisiae at an average resolution of 3.5 Å. The intron lariat remains bound in the spliceosome whereas the ligated exon is already dissociated. The step II splicing factors Prp17 and Prp18, along with Cwc21 and Cwc22 that stabilize the 5' exon binding to loop I of U5 small nuclear RNA (snRNA), have been released from the active site assembly. The DEAH family ATPase/helicase Prp43 binds Syf1 at the periphery of the spliceosome, with its RNA-binding site close to the 3' end of U6 snRNA. The C-terminal domain of Ntr1/Spp382 associates with the GTPase Snu114, and Ntr2 is anchored to Prp8 while interacting with the superhelical domain of Ntr1. These structural features suggest a plausible mechanism for the disassembly of the ILS complex.


Asunto(s)
Intrones , Empalmosomas/ultraestructura , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/química , Modelos Moleculares , Precursores del ARN/química , Precursores del ARN/ultraestructura , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/ultraestructura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Schizosaccharomyces/química , Empalmosomas/química
14.
Nature ; 546(7660): 617-621, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28530653

RESUMEN

Intron removal requires assembly of the spliceosome on precursor mRNA (pre-mRNA) and extensive remodelling to form the spliceosome's catalytic centre. Here we report the cryo-electron microscopy structure of the yeast Saccharomyces cerevisiae pre-catalytic B complex spliceosome at near-atomic resolution. The mobile U2 small nuclear ribonucleoprotein particle (snRNP) associates with U4/U6.U5 tri-snRNP through the U2/U6 helix II and an interface between U4/U6 di-snRNP and the U2 snRNP SF3b-containing domain, which also transiently contacts the helicase Brr2. The 3' region of the U2 snRNP is flexibly attached to the SF3b-containing domain and protrudes over the concave surface of tri-snRNP, where the U1 snRNP may reside before its release from the pre-mRNA 5' splice site. The U6 ACAGAGA sequence forms a hairpin that weakly tethers the 5' splice site. The B complex proteins Prp38, Snu23 and Spp381 bind the Prp8 N-terminal domain and stabilize U6 ACAGAGA stem-pre-mRNA and Brr2-U4 small nuclear RNA interactions. These results provide important insights into the events leading to active site formation.


Asunto(s)
Microscopía por Crioelectrón , Saccharomyces cerevisiae , Empalmosomas/química , Empalmosomas/ultraestructura , Secuencia de Bases , Biocatálisis , Dominio Catalítico , Intrones/genética , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Helicasas/ultraestructura , Precursores del ARN/genética , Precursores del ARN/metabolismo , Precursores del ARN/ultraestructura , Sitios de Empalme de ARN/genética , Empalme del ARN , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Empalmosomas/metabolismo
15.
Biochem Biophys Res Commun ; 482(1): 68-74, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27810361

RESUMEN

Ribonuclease P (RNase P) is a ribonucleoprotein that catalyzes the processing of 5' leader sequences of precursor tRNAs (pre-tRNA). RNase P proteins PhoRpp21 and PhoRpp29 in the hyperthermophilic archaeon Pyrococcus horikoshii, homologs of human nuclear RNase P proteins Rpp21 and Rpp29 respectively, fold into a heterodimeric structure and synergistically function in the activation of the specificity domain (S-domain) in RNase P RNA (PhopRNA). To elucidate the molecular basis for their cooperativity, we first analyzed binding ability to PhopRNA using a pull-down assay. The result showed that PhoRpp21 is able to bind to PhopRNA in the absence of PhoRpp29, whereas PhoRpp29 alone has reduced affinity to PhopRNA, suggesting that PhoRpp21 primarily functions as a binding element for PhopRNA in the PhoRpp21-PhoRpp29 complex. Mutational analyses suggested that although individual positively charged clusters contribute little to the PhopRNA binding, Lys53, Lys54, and Lys56 at the N-terminal helix (α2) in PhoRpp21 and 10 C-terminal residues in PhoRpp29 are essential for PhopRNA activation. Moreover, deletion of a single stranded loop linking P11 and P12 helices in the PhopRNA S-domain impaired the PhoRpp21-PhoRpp29 complex binding to PhopRNA. Collectively, the present results suggest that PhoRpp21 binds the loop between P11 and P12 helices through overall positively charged clusters on the surface of the complex and serves as a scaffold for PhoRpp29 to optimize structural conformation of its N-terminal helix (α2) in PhoRpp21, as well as C-terminal residues in PhoRpp29, for RNase P activity.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Precursores del ARN/química , Precursores del ARN/ultraestructura , Ribonucleasa P/química , Ribonucleasa P/ultraestructura , Proteínas Arqueales , Sitios de Unión , Catálisis , Simulación por Computador , Activación Enzimática , Humanos , Unión Proteica , Conformación Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
16.
Nature ; 537(7619): 197-201, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27459055

RESUMEN

Precursor mRNA (pre-mRNA) splicing proceeds by two consecutive transesterification reactions via a lariat-intron intermediate. Here we present the 3.8 Å cryo-electron microscopy structure of the spliceosome immediately after lariat formation. The 5'-splice site is cleaved but remains close to the catalytic Mg2+ site in the U2/U6 small nuclear RNA (snRNA) triplex, and the 5'-phosphate of the intron nucleotide G(+1) is linked to the branch adenosine 2'OH. The 5'-exon is held between the Prp8 amino-terminal and linker domains, and base-pairs with U5 snRNA loop 1. Non-Watson-Crick interactions between the branch helix and 5'-splice site dock the branch adenosine into the active site, while intron nucleotides +3 to +6 base-pair with the U6 snRNA ACAGAGA sequence. Isy1 and the step-one factors Yju2 and Cwc25 stabilize docking of the branch helix. The intron downstream of the branch site emerges between the Prp8 reverse transcriptase and linker domains and extends towards the Prp16 helicase, suggesting a plausible mechanism of remodelling before exon ligation.


Asunto(s)
Microscopía por Crioelectrón , Precursores del ARN/metabolismo , Empalme del ARN , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Empalmosomas/metabolismo , Empalmosomas/ultraestructura , Adenosina/metabolismo , Adenosina Trifosfatasas/metabolismo , Emparejamiento Base , Secuencia de Bases , Dominio Catalítico , Esterificación , Exones/genética , Intrones/genética , Magnesio/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , ARN Helicasas/metabolismo , Precursores del ARN/química , Precursores del ARN/ultraestructura , Sitios de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Hongos/ultraestructura , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Empalmosomas/química
17.
Exp Cell Res ; 337(2): 208-18, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26226217

RESUMEN

Nucleolus-like bodies (NLBs) of fully-grown (germinal vesicle, GV) mammalian oocytes are traditionally considered as morphologically distinct entities, which, unlike normal nucleoli, contain transcribed ribosomal genes (rDNA) solely at their surface. In the current study, we for the first time showed that active ribosomal genes are present not only on the surface but also inside NLBs of the NSN-type oocytes. The "internal" rRNA synthesis was evidenced by cytoplasmic microinjections of BrUTP as precursor and by fluorescence in situ hybridization with a probe to the short-lived 5'ETS segment of the 47S pre-rRNA. We further showed that in the NLB mass of NSN-oocytes, distribution of active rDNA, RNA polymerase I (UBF) and rRNA processing (fibrillarin) protein factors, U3 snoRNA, pre-rRNAs and 18S/28S rRNAs is remarkably similar to that in somatic nucleoli capable to make pre-ribosomes. Overall, these observations support the occurrence of rDNA transcription, rRNA processing and pre-ribosome assembly in the NSN-type NLBs and so that their functional similarity to normal nucleoli. Unlike the NSN-type NLBs, the NLBs of more mature SN-oocytes do not contain transcribed rRNA genes, U3 snoRNA, pre-rRNAs, 18S and 28S rRNAs. These results favor the idea that in a process of transformation of NSN-oocytes to SN-oocytes, NLBs cease to produce pre-ribosomes and, moreover, lose their rRNAs. We also concluded that a denaturing fixative 70% ethanol used in the study to fix oocytes could be more appropriate for light microscopy analysis of nucleolar RNAs and proteins in mammalian fully-grown oocytes than a commonly used cross-linking aldehyde fixative, formalin.


Asunto(s)
Nucléolo Celular/metabolismo , Genes de ARNr/genética , Oocitos/metabolismo , Precursores del ARN/ultraestructura , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Animales , Nucléolo Celular/ultraestructura , Femenino , Immunoblotting , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Células 3T3 NIH , Oocitos/citología , Procesamiento Postranscripcional del ARN
18.
Methods Mol Biol ; 1126: 271-83, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24549671

RESUMEN

The dynamic process of pre-mRNA splicing is regulated by combinatorial control exerted by overlapping cis-elements that are unique to every exon and its flanking intronic sequences. Splicing cis-elements are usually 4-8-nucleotide-long linear motifs that furnish interaction sites for specific proteins. Secondary and higher-order RNA structures exert an additional layer of control by providing accessibility to cis-elements. Antisense oligonucleotides (ASOs) that block splicing cis-elements and/or affect RNA structure have been shown to modulate alternative splicing in vivo. Consistently, ASO-based strategies have emerged as a powerful tool for therapeutic manipulation of aberrant splicing in pathological conditions. Here we describe the application of an ASO-based approach for the enhanced production of the full-length mRNA of SMN2 in spinal muscular atrophy patient cells.


Asunto(s)
Biología Molecular/métodos , Atrofia Muscular Espinal/genética , Precursores del ARN/genética , Humanos , Intrones , Atrofia Muscular Espinal/patología , Oligorribonucleótidos Antisentido/genética , Precursores del ARN/ultraestructura , Empalme del ARN/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética
19.
RNA ; 18(7): 1347-57, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22627774

RESUMEN

A first step in understanding the architecture of the spliceosome is elucidating the positions of individual spliceosomal components and functional centers. Catalysis of the first step of pre-mRNA splicing leads to the formation of the spliceosomal C complex, which contains the pre-mRNA intermediates--the cleaved 5' exon and the intron-3' exon lariat. To topographically locate the catalytic center of the human C complex, we first determined, by DNA oligonucleotide-directed RNAse H digestions, accessible pre-mRNA regions closest to nucleotides of the cleaved 5' splice site (i.e., the 3' end of exon 1 and the 5' end of the intron) and the intron lariat branch point, which are expected to be at/near the catalytic center in complex C. For electron microscopy (EM) localization studies, C complexes were allowed to form, and biotinylated 2'-OMe RNA oligonucleotides were annealed to these accessible regions. To allow localization by EM of the bound oligonucleotide, first antibiotin antibodies and then protein A-coated colloidal gold were additionally bound. EM analyses allowed us to map the position of exon and intron nucleotides near the cleaved 5' splice site, as well as close to the anchoring site just upstream of the branch adenosine. The identified positions in the C complex EM map give first hints as to the path of the pre-mRNA splicing intermediates in an active spliceosomal C complex and further define a possible location for its catalytic center.


Asunto(s)
Precursores del ARN/ultraestructura , Empalmosomas/ultraestructura , Exones , Oro Coloide/química , Humanos , Intrones , Microscopía Inmunoelectrónica/métodos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , Ribonucleasa H/metabolismo , Empalmosomas/metabolismo
20.
Tsitologiia ; 52(1): 30-40, 2010.
Artículo en Ruso | MEDLINE | ID: mdl-20302015

RESUMEN

At the diplotene stage of meiotic prophase, the nucleus of mouse preovulatory oocytes contains multiple interchromatin granule clusters (IGC). These nuclear compartments are universal and evolutionary conserved and enriched in pre-mRNA splicing factors. Nowadays, IGCs are believed to play an important role in gene expression events and contain different molecular components that allow coupling of many processes from transcription to mRNA export. We obtained the data on the distributions of poly(A)+RNA, hnRNPS A/B, and NXF1/TAP factor of mRNA export. These factors were found to associate with IGCs of mouse preovulatory oocytes. In the present study, we have demonstrated for the first time the dynamics of large IGCs after specific phosphorilation of SR-proteins with okadaic acid, an inhibitor of protein phosphatases. Using electron microscopy, conventional fluorescent and confocal microscopies, as well as microinjections of olygonucleotide probes in mouse oocytes, some features of structural organization and molecular compositions of IGCs in the nuclei of mouse oocyte from antral follicles were established. Possible roles of IGCs in pre-mRNA metabolism and the participation of these structures in mRNA export are discussed.


Asunto(s)
Cromatina/ultraestructura , Fase Folicular , Oocitos/ultraestructura , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/ultraestructura , Núcleo Celular/ultraestructura , Femenino , Ribonucleoproteínas Nucleares Heterogéneas/ultraestructura , Profase Meiótica I , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Microscopía Electrónica , Oocitos/fisiología , Precursores del ARN/metabolismo , Precursores del ARN/ultraestructura , ARN Mensajero/ultraestructura , Ribonucleoproteínas/química , Ribonucleoproteínas/fisiología , Ribonucleoproteínas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA