Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 31(12): e4510, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36382881

RESUMEN

The emergence of oligomers is common during the evolution and diversification of protein families, yet the selective advantage of oligomerization is often cryptic or unclear. Oligomerization can involve the formation of isologous head-to-head interfaces (e.g., in symmetrical dimers) or heterologous head-to-tail interfaces (e.g., in cyclic complexes), the latter of which is less well studied and understood. In this work, we retrace the emergence of the trimeric form of cyclohexadienyl dehydratase from Pseudomonas aeruginosa (PaCDT) by introducing residues that form the PaCDT trimer-interfaces into AncCDT-5 (a monomeric reconstructed ancestor of PaCDT). We find that single interface mutations can switch the oligomeric state of the variants and that trimerization corresponds with a reduction in the KM value of the enzyme from a promiscuous level to the physiologically relevant range. In addition, we find that removal of a C-terminal extension present in PaCDT leads to a variant with reduced catalytic activity, indicating that the C-terminal region has a role in tuning enzymatic activity. We show that these observations can be rationalized at the structural and dynamic levels, with trimerization and C-terminal extension leading to reduced sampling of non-catalytic conformational substates in molecular dynamics simulations. Overall, this work provides insight into how neutral sampling of distinct oligomeric states along an evolutionary trajectory can facilitate the evolution and optimization of enzyme function.


Asunto(s)
Simulación de Dinámica Molecular , Prefenato Deshidratasa , Prefenato Deshidratasa/química , Prefenato Deshidratasa/genética , Prefenato Deshidratasa/metabolismo , Pseudomonas aeruginosa , Conformación Molecular , Multimerización de Proteína
2.
Sci Rep ; 11(1): 12255, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112823

RESUMEN

Previously, we reported the isolation of a quorum quenching protein (QQ), designated GqqA, from Komagataeibacter europaeus CECT 8546 that is highly homologous to prephenate dehydratases (PDT) (Valera et al. in Microb Cell Fact 15, 88. https://doi.org/10.1186/s12934-016-0482-y , 2016). GqqA strongly interfered with N-acyl-homoserine lactone (AHL) quorum sensing signals from Gram-negative bacteria and affected biofilm formation in its native host strain Komagataeibacter europaeus. Here we present and discuss data identifying GqqA as a novel acylase. ESI-MS-MS data showed unambiguously that GqqA hydrolyzes the amide bond of the acyl side-chain of AHL molecules, but not the lactone ring. Consistent with this observation the protein sequence does not carry a conserved Zn2+ binding motif, known to be essential for metal-dependent lactonases, but in fact harboring the typical periplasmatic binding protein domain (PBP domain), acting as catalytic domain. We report structural details for the native structure at 2.5 Å resolution and for a truncated GqqA structure at 1.7 Å. The structures obtained highlight that GqqA acts as a dimer and complementary docking studies indicate that the lactone ring of the substrate binds within a cleft of the PBP domain and interacts with polar residues Y16, S17 and T174. The biochemical and phylogenetic analyses imply that GqqA represents the first member of a novel type of QQ family enzymes.


Asunto(s)
Acetobacteraceae/enzimología , Proteínas Bacterianas/metabolismo , Prefenato Deshidratasa/metabolismo , Acetobacteraceae/clasificación , Acetobacteraceae/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Activación Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólisis , Modelos Moleculares , Prefenato Deshidratasa/química , Prefenato Deshidratasa/genética , Conformación Proteica , Percepción de Quorum , Especificidad por Sustrato
3.
Nat Commun ; 11(1): 5945, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230119

RESUMEN

Several enzymes are known to have evolved from non-catalytic proteins such as solute-binding proteins (SBPs). Although attention has been focused on how a binding site can evolve to become catalytic, an equally important question is: how do the structural dynamics of a binding protein change as it becomes an efficient enzyme? Here we performed a variety of experiments, including propargyl-DO3A-Gd(III) tagging and double electron-electron resonance (DEER) to study the rigid body protein dynamics of reconstructed evolutionary intermediates to determine how the conformational sampling of a protein changes along an evolutionary trajectory linking an arginine SBP to a cyclohexadienyl dehydratase (CDT). We observed that primitive dehydratases predominantly populate catalytically unproductive conformations that are vestiges of their ancestral SBP function. Non-productive conformational states, including a wide-open state, are frozen out of the conformational landscape via remote mutations, eventually leading to extant CDT that exclusively samples catalytically relevant compact states. These results show that remote mutations can reshape the global conformational landscape of an enzyme as a mechanism for increasing catalytic activity.


Asunto(s)
Enzimas/química , Enzimas/metabolismo , Evolución Molecular , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Catálisis , Dominio Catalítico , Enzimas/genética , Modelos Moleculares , Mutación , Filogenia , Prefenato Deshidratasa/química , Prefenato Deshidratasa/genética , Prefenato Deshidratasa/metabolismo , Conformación Proteica , Relación Estructura-Actividad
4.
J Agric Food Chem ; 68(21): 5917-5926, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32367713

RESUMEN

In this study, the metabolic pathway of phenethylamine synthesis was reconstructed by chromosomal integration and overexpression of the Enterococcus faecium pdc gene encoding phenylalanine decarboxylase in Escherichia coli. The genes encoding 3-deoxy-d-arabinoheptulosonate-7-phosphate synthase (aroG), shikimate kinase II (aroL), chorismate mutase/prephenate dehydratase (pheA), and tyrosine aminotransferase (tyrB) in the phenethylamine synthetic pathway were sequentially chromosomally overexpressed. The phosphotransferase system was replaced by deleting the ptsH-ptsI-crr genes and chromosomally overexpressing the genes encoding galactose permease (galP) and glucokinase (glk). In addition, the zwf gene encoding glucose-6-phosphate dehydrogenase in the pentose phosphate pathway was chromosomally overexpressed, generating the final engineered E. coli strain AUD9. The AUD9 strain produced 2.65 g L-1 phenethylamine with a yield of 0.27 g of phenethylamine g-1 glucose in batch fermentation; fed-batch fermentation of AUD9 produced 38.82 g L-1 phenethylamine with a productivity of 1.08 g L-1 h-1 phenethylamine, demonstrating its potential for industrial fermentative production of phenethylamine.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Fenetilaminas/metabolismo , Vías Biosintéticas , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glucoquinasa/genética , Glucoquinasa/metabolismo , Glucosa/metabolismo , Ingeniería Metabólica , Redes y Vías Metabólicas , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Prefenato Deshidratasa/genética , Prefenato Deshidratasa/metabolismo
5.
Nat Commun ; 10(1): 15, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30604768

RESUMEN

In addition to being a vital component of proteins, phenylalanine is also a precursor of numerous aromatic primary and secondary metabolites with broad physiological functions. In plants phenylalanine is synthesized predominantly via the arogenate pathway in plastids. Here, we describe the structure, molecular players and subcellular localization of a microbial-like phenylpyruvate pathway for phenylalanine biosynthesis in plants. Using a reverse genetic approach and metabolic flux analysis, we provide evidence that the cytosolic chorismate mutase is responsible for directing carbon flux towards cytosolic phenylalanine production via the phenylpyruvate pathway. We also show that an alternative transcription start site of a known plastidial enzyme produces a functional cytosolic prephenate dehydratase that catalyzes the conversion of prephenate to phenylpyruvate, the intermediate step between chorismate mutase and phenylpyruvate aminotransferase. Thus, our results complete elucidation of phenylalanine biosynthesis via phenylpyruvate in plants, showing that this pathway splits from the known plastidial arogenate pathway at chorismate, instead of prephenate as previously thought, and the complete pathway is localized in the cytosol.


Asunto(s)
Vías Biosintéticas , Corismato Mutasa/metabolismo , Fenilalanina/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Plantas/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Ácidos Ciclohexanocarboxílicos/metabolismo , Ciclohexenos/metabolismo , Citosol/metabolismo , Plantas/genética , Plastidios/genética , Plastidios/metabolismo , Prefenato Deshidratasa/genética , Prefenato Deshidratasa/metabolismo , Transaminasas/metabolismo , Sitio de Iniciación de la Transcripción , Tirosina/análogos & derivados , Tirosina/metabolismo
6.
Nat Chem Biol ; 14(6): 542-547, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29686357

RESUMEN

The emergence of enzymes through the neofunctionalization of noncatalytic proteins is ultimately responsible for the extraordinary range of biological catalysts observed in nature. Although the evolution of some enzymes from binding proteins can be inferred by homology, we have a limited understanding of the nature of the biochemical and biophysical adaptations along these evolutionary trajectories and the sequence in which they occurred. Here we reconstructed and characterized evolutionary intermediate states linking an ancestral solute-binding protein to the extant enzyme cyclohexadienyl dehydratase. We show how the intrinsic reactivity of a desolvated general acid was harnessed by a series of mutations radiating from the active site, which optimized enzyme-substrate complementarity and transition-state stabilization and minimized sampling of noncatalytic conformations. Our work reveals the molecular evolutionary processes that underlie the emergence of enzymes de novo, which are notably mirrored by recent examples of computational enzyme design and directed evolution.


Asunto(s)
Escherichia coli/enzimología , Prefenato Deshidratasa/química , Prefenato Deshidratasa/genética , Proteínas Portadoras , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Análisis Mutacional de ADN , Evolución Molecular , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis , Mutación , Oligonucleótidos/genética , Filogenia , Unión Proteica , Conformación Proteica , Espectrometría de Fluorescencia , Especificidad por Sustrato
7.
Infect Immun ; 84(12): 3290-3301, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27600507

RESUMEN

The A1 subunits of Shiga toxin 1 (Stx1A1) and Shiga toxin 2 (Stx2A1) interact with the conserved C termini of ribosomal-stalk P-proteins to remove a specific adenine from the sarcin/ricin loop. We previously showed that Stx2A1 has higher affinity for the ribosome and higher catalytic activity than Stx1A1. To determine if conserved arginines at the distal face of the active site contribute to the higher affinity of Stx2A1 for the ribosome, we mutated Arg172, Arg176, and Arg179 in both toxins. We show that Arg172 and Arg176 are more important than Arg179 for the depurination activity and toxicity of Stx1A1 and Stx2A1. Mutation of a single arginine reduced the depurination activity of Stx1A1 more than that of Stx2A1. In contrast, mutation of at least two arginines was necessary to reduce depurination by Stx2A1 to a level similar to that of Stx1A1. R176A and R172A/R176A mutations eliminated interaction of Stx1A1 and Stx2A1 with ribosomes and with the stalk, while mutation of Arg170 at the active site reduced the binding affinity of Stx1A1 and Stx2A1 for the ribosome, but not for the stalk. These results demonstrate that conserved arginines at the distal face of the active site are critical for interactions of Stx1A1 and Stx2A1 with the stalk, while a conserved arginine at the active site is critical for non-stalk-specific interactions with the ribosome. Arginine mutations at either site reduced ribosome interactions of Stx1A1 and Stx2A1 similarly, indicating that conserved arginines are critical for ribosome interactions but do not contribute to the higher affinity of Stx2A1 for the ribosome.


Asunto(s)
Secuencia Conservada , Proteínas de Escherichia coli/metabolismo , Complejos Multienzimáticos/metabolismo , Prefenato Deshidratasa/metabolismo , Ribosomas/metabolismo , Saccharomyces/metabolismo , Toxinas Shiga/metabolismo , Animales , Sitios de Unión , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Modelos Moleculares , Complejos Multienzimáticos/genética , Mutación , Plásmidos , Prefenato Deshidratasa/genética , Unión Proteica , Conformación Proteica , Subunidades de Proteína , ARN de Hongos/metabolismo , Ratas , Ribosomas/química , Saccharomyces/genética , Toxinas Shiga/química
8.
Sci Rep ; 6: 30080, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27417146

RESUMEN

Genome engineering has become a powerful tool for creating useful strains in research and industry. In this study, we applied singleplex and multiplex genome engineering approaches to construct an E. coli strain for the production of L-DOPA from glucose. We first used the singleplex genome engineering approach to create an L-DOPA-producing strain, E. coli DOPA-1, by deleting transcriptional regulators (tyrosine repressor tyrR and carbon storage regulator A csrA), altering glucose transport from the phosphotransferase system (PTS) to ATP-dependent uptake and the phosphorylation system overexpressing galactose permease gene (galP) and glucokinase gene (glk), knocking out glucose-6-phosphate dehydrogenase gene (zwf) and prephenate dehydratase and its leader peptide genes (pheLA) and integrating the fusion protein chimera of the downstream pathway of chorismate. Then, multiplex automated genome engineering (MAGE) based on 23 targets was used to further improve L-DOPA production. The resulting strain, E. coli DOPA-30N, produced 8.67 g/L of L-DOPA in 60 h in a 5 L fed-batch fermentation. This titer is the highest achieved in metabolically engineered E. coli having PHAH activity from glucose.


Asunto(s)
Reactores Biológicos/microbiología , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Genética/métodos , Glucosa/metabolismo , Levodopa/biosíntesis , Proteínas Bacterianas/genética , Proteínas de Unión al Calcio/biosíntesis , Proteínas de Unión al Calcio/genética , Proteínas de Escherichia coli/genética , Glucoquinasa/genética , Glucosafosfato Deshidrogenasa/genética , Levodopa/genética , Proteínas de Transporte de Monosacáridos/biosíntesis , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Unión Periplasmáticas/biosíntesis , Proteínas de Unión Periplasmáticas/genética , Prefenato Deshidratasa/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética
9.
Extremophiles ; 20(4): 503-14, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27290727

RESUMEN

Biosynthesis of L-tyrosine (L-Tyr) and L-phenylalanine (L-Phe) is directed by the interplay of three enzymes. Chorismate mutase (CM) catalyzes the rearrangement of chorismate to prephenate, which can be either converted to hydroxyphenylpyruvate by prephenate dehydrogenase (PD) or to phenylpyruvate by prephenate dehydratase (PDT). This work reports the first characterization of a trifunctional PD-CM-PDT from the smallest hyperthermophilic archaeon Nanoarchaeum equitans and a bifunctional CM-PD from its host, the crenarchaeon Ignicoccus hospitalis. Hexa-histidine tagged proteins were expressed in Escherichia coli and purified by affinity chromatography. Specific activities determined for the trifunctional enzyme were 21, 80, and 30 U/mg for CM, PD, and PDT, respectively, and 47 and 21 U/mg for bifunctional CM and PD, respectively. Unlike most PDs, these two archaeal enzymes were insensitive to regulation by L-Tyr and preferred NADP(+) to NAD(+) as a cofactor. Both the enzymes were highly thermally stable and exhibited maximal activity at 90 °C. N. equitans PDT was feedback inhibited by L-Phe (Ki = 0.8 µM) in a non-competitive fashion consistent with L-Phe's combination at a site separate from that of prephenate. Our results suggest that PD from the unique symbiotic archaeal pair encompass a distinct subfamily of prephenate dehydrogenases with regard to their regulation and co-substrate specificity.


Asunto(s)
Proteínas Arqueales/metabolismo , Corismato Mutasa/metabolismo , Desulfurococcaceae/enzimología , Nanoarchaeota/enzimología , Prefenato Deshidratasa/metabolismo , Prefenato Deshidrogenasa/metabolismo , Aminoácidos Aromáticos/biosíntesis , Proteínas Arqueales/química , Proteínas Arqueales/genética , Corismato Mutasa/química , Corismato Mutasa/genética , Desulfurococcaceae/fisiología , Estabilidad de Enzimas , Calor , Nanoarchaeota/fisiología , Nitrosaminas/metabolismo , Prefenato Deshidratasa/química , Prefenato Deshidratasa/genética , Prefenato Deshidrogenasa/química , Prefenato Deshidrogenasa/genética , Especificidad por Sustrato , Simbiosis
10.
Plant J ; 87(2): 215-29, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27125254

RESUMEN

l-Phenylalanine serves as a building block for the biosynthesis of proteins, but also as a precursor for a wide range of plant-derived compounds essential for plants and animals. Plants can synthesize Phe within the plastids using arogenate as a precursor; however, an alternative pathway using phenylpyruvate as an intermediate, described for most microorganisms, has recently been proposed. The functionality of this pathway requires the existence of enzymes with prephenate dehydratase (PDT) activity (EC 4.2.1.51) in plants. Using phylogenetic studies, functional complementation assays in yeast and biochemical analysis, we have identified the enzymes displaying PDT activity in Pinus pinaster. Through sequence alignment comparisons and site-directed mutagenesis we have identified a 22-amino acid region conferring PDT activity (PAC domain) and a single Ala314 residue critical to trigger this activity. Our results demonstrate that all plant clades include PAC domain-containing ADTs, suggesting that the PDT activity, and thus the ability to synthesize Phe using phenylpyruvate as an intermediate, has been preserved throughout the evolution of plants. Moreover, this pathway together with the arogenate pathway gives plants a broad and versatile capacity to synthesize Phe and its derived compounds. PAC domain-containing enzymes are also present in green and red algae, and glaucophytes, the three emerging clades following the primary endosymbiont event resulting in the acquisition of plastids in eukaryotes. The evolutionary prokaryotic origin of this domain is discussed.


Asunto(s)
Pinus/genética , Prefenato Deshidratasa/genética , Aminoácidos Dicarboxílicos/metabolismo , Ciclohexenos/metabolismo , Genes de Plantas/fisiología , Redes y Vías Metabólicas/fisiología , Fenilalanina/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Filogenia , Pinus/enzimología , Pinus/metabolismo , Plantas , Prefenato Deshidratasa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
11.
PLoS One ; 9(9): e108868, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25275514

RESUMEN

Nitric oxide (NO) is emerging as an important regulator of bacterial stress resistance, biofilm development, and virulence. One potential source of endogenous NO production in the pathogen Staphylococcus aureus is its NO-synthase (saNOS) enzyme, encoded by the nos gene. Although a role for saNOS in oxidative stress resistance, antibiotic resistance, and virulence has been recently-described, insights into the regulation of nos expression and saNOS enzyme activity remain elusive. To this end, transcriptional analysis of the nos gene in S. aureus strain UAMS-1 was performed, which revealed that nos expression increases during low-oxygen growth and is growth-phase dependent. Furthermore, nos is co-transcribed with a downstream gene, designated pdt, which encodes a prephenate dehydratase (PDT) enzyme involved in phenylalanine biosynthesis. Deletion of pdt significantly impaired the ability of UAMS-1 to grow in chemically-defined media lacking phenylalanine, confirming the function of this enzyme. Bioinformatics analysis revealed that the operon organization of nos-pdt appears to be unique to the staphylococci. As described for other S. aureus nos mutants, inactivation of nos in UAMS-1 conferred sensitivity to oxidative stress, while deletion of pdt did not affect this phenotype. The nos mutant also displayed reduced virulence in a murine sepsis infection model, and increased carotenoid pigmentation when cultured on agar plates, both previously-undescribed nos mutant phenotypes. Utilizing the fluorescent stain 4-Amino-5-Methylamino-2',7'-Difluorofluorescein (DAF-FM) diacetate, decreased levels of intracellular NO/reactive nitrogen species (RNS) were detected in the nos mutant on agar plates. These results reinforce the important role of saNOS in S. aureus physiology and virulence, and have identified an in vitro growth condition under which saNOS activity appears to be upregulated. However, the significance of the operon organization of nos-pdt and potential relationship between these two enzymes remains to be elucidated.


Asunto(s)
Meticilina/farmacología , Óxido Nítrico Sintasa/genética , Operón/genética , Prefenato Deshidratasa/genética , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Animales , Carotenoides/metabolismo , Modelos Animales de Enfermedad , Femenino , Fluoresceínas/metabolismo , Genes Bacterianos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Ratones , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Fenilalanina/farmacología , Pigmentación/efectos de los fármacos , Especies de Nitrógeno Reactivo/metabolismo , Sepsis/microbiología , Sepsis/patología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Análisis de Supervivencia , Transcripción Genética/efectos de los fármacos , Virulencia/efectos de los fármacos , Virulencia/genética
12.
J Ind Microbiol Biotechnol ; 40(6): 643-51, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23526182

RESUMEN

Metabolic engineering is a powerful tool which has been widely used for producing valuable products. For improving L-phenylalanine (L-Phe) accumulation in Corynebacterium glutamicum, we have investigated the target genes involved in the biosynthetic pathways. The genes involved in the biosynthesis of L-Phe were found to be strictly regulated genes by feedback inhibition. As a result, overexpression of the native wild-type genes aroF, aroG or pheA resulted in a slight increase of L-Phe. In contrast, overexpression of aroF (wt) or pheA (fbr) from E. coli significantly increased L-Phe production. Co-overexpression of aroF (wt) and pheA (fbr) improved the titer of L-Phe to 4.46 ± 0.06 g l⁻¹. To further analyze the target enzymes in the aromatic amino acid synthesis pathway between C. glutamicum and E. coli, the wild-type gene aroH from E. coli was overexpressed and evaluated in C. glutamicum. As predicted, upregulation of the wild-type gene aroH resulted in a remarkable increase of L-Phe production. Co-overexpression of the mutated pheA (fbr) and the wild-type gene aroH resulted in the production of L-Phe up to 4.64 ± 0.09 g l⁻¹. Based on these results we conclude that the wild-type gene aroH from E. coli is an appropriate target gene for pathway engineering in C. glutamicum for the production of aromatic amino acids.


Asunto(s)
Transferasas Alquil y Aril/genética , Vías Biosintéticas/genética , Corynebacterium glutamicum/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , Escherichia coli/genética , Fenilalanina/biosíntesis , Transferasas Alquil y Aril/metabolismo , Corynebacterium glutamicum/genética , Proteínas de Escherichia coli/metabolismo , Retroalimentación Fisiológica , Expresión Génica , Ingeniería Metabólica , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Prefenato Deshidratasa/genética , Prefenato Deshidratasa/metabolismo
13.
Appl Environ Microbiol ; 78(8): 3004-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22307284

RESUMEN

We performed suppression subtractive hybridization to identify genomic differences between Streptococcus mitis and Streptococcus pneumoniae. Based on the pheA gene, a primer set specific to S. mitis detection was found in 18 out of 103 S. mitis-specific clones. Our findings would be useful for discrimination of S. mitis from other closely related cocci in the oral environment.


Asunto(s)
Prefenato Deshidratasa/genética , Streptococcus mitis/enzimología , Streptococcus mitis/genética , Cartilla de ADN/genética , Genética Microbiana/métodos , Hibridación de Ácido Nucleico/métodos , Streptococcus mitis/clasificación , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/enzimología , Streptococcus pneumoniae/genética
14.
J Ind Microbiol Biotechnol ; 38(12): 1921-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21541714

RESUMEN

Construction and improvement of industrial strains play a central role in the commercial development of microbial fermentation processes. L-tryptophan producers have usually been developed by classical random mutagenesis due to its complicated metabolic network and regulatory mechanism. However, in the present study, an L-tryptophan overproducing Escherichia coli strain was developed by defined genetic modification methodology. Feedback inhibitions of 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (AroF) and anthranilate synthase (TrpED) were eliminated by site-directed mutagenesis. Expression of deregulated AroF and TrpED was achieved by using a temperature-inducible expression plasmid pSV. Transcriptional regulation of trp repressor was removed by deleting trpR. Pathway for L-Trp degradation was removed by deleting tnaA. L-phenylalanine and L-tyrosine biosynthesis pathways that compete with L-tryptophan biosynthesis were blocked by deleting their critical genes (pheA and tyrA). The final engineered E. coli can produce 13.3 g/l of L-tryptophan. Fermentation characteristics of the engineered strains were also analyzed.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Triptófano/biosíntesis , Antranilato Sintasa/genética , Antranilato Sintasa/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Retroalimentación Fisiológica , Técnicas de Inactivación de Genes , Complejos Multienzimáticos/genética , Mutagénesis Sitio-Dirigida , Fenilalanina/biosíntesis , Plásmidos , Prefenato Deshidratasa/genética , Proteínas Represoras/metabolismo , Triptofanasa/genética , Tirosina/biosíntesis
15.
J Ind Microbiol Biotechnol ; 38(11): 1845-52, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21512819

RESUMEN

L-3,4-dihydroxyphenylalanine (L-DOPA) is an aromatic compound employed for the treatment of Parkinson's disease. Metabolic engineering was applied to generate Escherichia coli strains for the production of L-DOPA from glucose by modifying the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and aromatic biosynthetic pathways. Carbon flow was directed to the biosynthesis of L-tyrosine (L-Tyr), an L-DOPA precursor, by transforming strains with compatible plasmids carrying genes encoding a feedback-inhibition resistant version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, transketolase, the chorismate mutase domain from chorismate mutase-prephenate dehydratase from E. coli and cyclohexadienyl dehydrogenase from Zymomonas mobilis. The effects on L-Tyr production of PTS inactivation (PTS(-) gluc(+) phenotype), as well as inactivation of the regulatory protein TyrR, were evaluated. PTS inactivation caused a threefold increase in the specific rate of L-Tyr production (q( L-Tyr)), whereas inactivation of TyrR caused 1.7- and 1.9-fold increases in q( L-Tyr) in the PTS(+) and the PTS(-) gluc(+) strains, respectively. An 8.6-fold increase in L-Tyr yield from glucose was observed in the PTS(-) gluc(+) tyrR (-) strain. Expression of hpaBC genes encoding the enzyme 4-hydroxyphenylacetate 3-hydroxylase from E. coli W in the strains modified for L-Tyr production caused the synthesis of L-DOPA. One of such strains, having the PTS(-) gluc(+) tyrR (-) phenotype, displayed the best production parameters in minimal medium, with a specific rate of L-DOPA production of 13.6 mg/g/h, L-DOPA yield from glucose of 51.7 mg/g and a final L-DOPA titer of 320 mg/l. In a batch fermentor culture in rich medium this strain produced 1.51 g/l of L-DOPA in 50 h.


Asunto(s)
Escherichia coli/metabolismo , Glucosa/metabolismo , Levodopa/biosíntesis , 3-Desoxi-7-Fosfoheptulonato Sintasa/genética , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Corismato Mutasa/genética , Corismato Mutasa/metabolismo , Escherichia coli/genética , Ingeniería Metabólica , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Plásmidos , Prefenato Deshidratasa/genética , Prefenato Deshidratasa/metabolismo , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo , Transcetolasa/genética , Transcetolasa/metabolismo , Tirosina/biosíntesis , Zymomonas/enzimología
16.
Plant Physiol Biochem ; 49(8): 882-90, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21388819

RESUMEN

The final steps of phenylalanine (Phe) biosynthesis in bacteria, fungi and plants can occur via phenylpyruvate or arogenate intermediates. These routes are determined by the presence of prephenate dehydratase (PDT, EC4.2.1.51), which forms phenylpyruvate from prephenate, or arogenate dehydratase (ADT, EC4.2.1.91), which forms phenylalanine directly from arogenate. We compared sequences from select yeast species to those of Arabidopsis thaliana. The in silico analysis showed that plant ADTs and yeast PDTs share many common features allowing them to act as dehydratase/decarboxylases. However, plant and yeast sequences clearly group independently conferring distinct substrate specificities. Complementation of the Saccharomyces cerevisiae pha2 mutant, which lacks PDT activity and cannot grow in the absence of exogenous Phe, was used to test the PDT activity of A. thaliana ADTs in vivo. Previous biochemical characterization showed that all six AtADTs had high catalytic activity with arogenate as a substrate, while AtADT1, AtADT2 and AtADT6 also had limited activity with prephenate. Consistent with these results, the complementation test showed AtADT2 readily recovered the pha2 phenotype after ∼6 days growth at 30 °C, while AtADT1 required ∼13 days to show visible growth. By contrast, AtADT6 (lowest PDT activity) and AtADT3-5 (no PDT activity) were unable to recover the phenotype. These results suggest that only AtADT1 and AtADT2, but not the other four ADTs from Arabidopsis, have functional PDT activity in vivo, showing that there are two functional distinct groups. We hypothesize that plant ADTs have evolved to use the arogenate route for Phe synthesis while keeping some residual PDT activity.


Asunto(s)
Arabidopsis/enzimología , Hidroliasas/genética , Hidroliasas/metabolismo , Prefenato Deshidratasa/genética , Saccharomyces cerevisiae/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Ciclohexanocarboxílicos/metabolismo , Ciclohexenos/metabolismo , Prueba de Complementación Genética , Mutación , Fenilalanina/biosíntesis , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
17.
Biochim Biophys Acta ; 1804(4): 752-4, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19948253

RESUMEN

The (13)C isotope effect for the conversion of prephenate to phenylpyruvate by the enzyme prephenate dehydratase from Methanocaldococcus jannaschii is 1.0334+/-0.0006. The size of this isotope effect suggests that the reaction is concerted. From the X-ray structure of a related enzyme, it appears that the only residue capable of acting as the general acid needed for removal of the hydroxyl group is threonine-172, which is contained in a conserved TRF motif. The more favorable entropy of activation for the enzyme-catalyzed process (25 eu larger than for the acid-catalyzed reaction) has been explained by a preorganized microenvironment that obviates the need for extensive solvent reorganization. This is consistent with forced planarity of the ring and side chain, which would place the leaving carboxyl and hydroxyl out of plane. Such distortion of the substrate may be a major contributor to catalysis.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Methanococcales/enzimología , Prefenato Deshidratasa/química , Prefenato Deshidratasa/metabolismo , Proteínas Arqueales/genética , Isótopos de Carbono , Catálisis , Dominio Catalítico , Entropía , Activación Enzimática , Cinética , Methanococcales/genética , Prefenato Deshidratasa/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Treonina/química
18.
Plant J ; 60(1): 156-67, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19508381

RESUMEN

Plants can synthesize the aromatic amino acid Phe via arogenate, but it is still not known whether they also use an alternative route for Phe biosynthesis via phenylpyruvate, like many micro-organisms. To examine this possibility, we expressed a bacterial bi-functional PheA (chorismate mutase/prephenate dehydratase) gene in Arabidopsis thaliana that converts chorismate via prephenate into phenylpyruvate. The PheA-expressing plants showed a large increase in the level of Phe, implying that they can convert phenylpyruvate into Phe. In addition, PheA expression rendered the plants more sensitive than wild-type plants to the Trp biosynthesis inhibitor 5-methyl-Trp, implying that Phe biosynthesis competes with Trp biosynthesis from their common precursor chorismate. Surprisingly, GC-MS, LC-MS and microarray analyses showed that this increase in Phe accumulation only had a very minor effect on the levels of other primary metabolites as well as on the transcriptome profile, implying little regulatory cross-interaction between the aromatic amino acid biosynthesis network and the bulk of the Arabidopsis transcriptome and primary metabolism. However, the levels of a number of secondary metabolites derived from all three aromatic amino acids (Phe, Trp and Tyr) were altered in the PheA plants, implying regulatory cross-interactions between the flux of aromatic amino acid biosynthesis from chorismate and their further metabolism into various secondary metabolites. Taken together, our results provide insights into the regulatory mechanisms of aromatic amino acid biosynthesis and their interaction with central primary metabolism, as well as the regulatory interface between primary and secondary metabolism.


Asunto(s)
Aminoácidos Aromáticos/metabolismo , Arabidopsis/metabolismo , Prefenato Deshidratasa/genética , Arabidopsis/genética , Ácido Corísmico/metabolismo , Biología Computacional , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación de la Expresión Génica de las Plantas , Metabolómica , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenilalanina/biosíntesis , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Prefenato Deshidratasa/metabolismo , ARN de Planta/genética
19.
Plant Biotechnol J ; 6(9): 870-86, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18662373

RESUMEN

Flavonols and caffeoylquinates represent important groups of phenolic antioxidants with health-promoting activities. The genetic potential of potato (Solanum tuberosum) to produce high levels of these dietary compounds has not been realized in currently available commodity varieties. In this article, it is demonstrated that tuber-specific expression of the native and slightly modified MYB transcription factor gene StMtf1(M) activates the phenylpropanoid biosynthetic pathway. Compared with untransformed controls, transgenic tubers contained fourfold increased levels of caffeoylquinates, including chlorogenic acid (CGA) (1.80 mg/g dry weight), whilst also accumulating various flavonols and anthocyanins. Subsequent impairment of anthocyanin biosynthesis through silencing of the flavonoid-3',5'-hydroxylase (F3'5'h) gene resulted in the accumulation of kaempferol-rut (KAR) to levels that were approximately 100-fold higher than in controls (0.12 mg/g dry weight). The biochemical changes were associated with increased expression of both the CGA biosynthetic hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (Hqt) gene and the upstream chorismate mutase (Cm) and prephenate dehydratase (Pdh) genes. Field trials indicated that transgenic lines produced similar tuber yields to the original potato variety Bintje. Processed products of these lines retained most of their phenylpropanoids and were indistinguishable from untransformed controls in texture and taste.


Asunto(s)
Quempferoles/biosíntesis , Ácido Quínico/análogos & derivados , Solanum tuberosum/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Aminoácidos Aromáticos/metabolismo , Antocianinas/metabolismo , Cartilla de ADN , Activación Enzimática , Flavonoles/metabolismo , Perfilación de la Expresión Génica , Ingeniería Genética/métodos , Tubérculos de la Planta/enzimología , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Prefenato Deshidratasa/genética , Prefenato Deshidratasa/metabolismo , Ácido Quínico/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Solanum tuberosum/enzimología , Solanum tuberosum/metabolismo
20.
Plant Cell ; 20(5): 1316-29, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18487352

RESUMEN

Two distinct biosynthetic pathways for Phe in plants have been proposed: conversion of prephenate to Phe via phenylpyruvate or arogenate. The reactions catalyzed by prephenate dehydratase (PDT) and arogenate dehydratase (ADT) contribute to these respective pathways. The Mtr1 mutant of rice (Oryza sativa) manifests accumulation of Phe, Trp, and several phenylpropanoids, suggesting a link between the synthesis of Phe and Trp. Here, we show that the Mtr1 mutant gene (mtr1-D) encodes a form of rice PDT with a point mutation in the putative allosteric regulatory region of the protein. Transformed callus lines expressing mtr1-D exhibited all the characteristics of Mtr1 callus tissue. Biochemical analysis revealed that rice PDT possesses both PDT and ADT activities, with a preference for arogenate as substrate, suggesting that it functions primarily as an ADT. The wild-type enzyme is feedback regulated by Phe, whereas the mutant enzyme showed a reduced feedback sensitivity, resulting in Phe accumulation. In addition, these observations indicate that rice PDT is critical for regulating the size of the Phe pool in plant cells. Feeding external Phe to wild-type callus tissue and seedlings resulted in Trp accumulation, demonstrating a connection between Phe accumulation and Trp pool size.


Asunto(s)
Mutación , Fenilalanina/metabolismo , Proteínas de Plantas/metabolismo , Triptófano/metabolismo , Secuencia de Aminoácidos , Cromatografía Liquida , Hidroliasas/genética , Hidroliasas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Estructura Molecular , Fenilalanina/biosíntesis , Fenilalanina/química , Proteínas de Plantas/genética , Mutación Puntual , Prefenato Deshidratasa/genética , Prefenato Deshidratasa/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem , Triptófano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...