Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.376
Filtrar
1.
Expert Opin Drug Deliv ; 21(4): 639-662, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38703363

RESUMEN

INTRODUCTION: Novel injectables possess applications in both local and systemic therapeutics delivery. The advancement in utilized materials for the construction of complex injectables has tremendously upgraded their safety and efficacy. AREAS COVERED: This review focuses on various strategies to produce novel injectables, including oily dispersions, in situ forming implants, injectable suspensions, microspheres, liposomes, and antibody-drug conjugates. We herein present a detailed description of complex injectable technologies and their related drug formulations permitted for clinical use by the United States Food and Drug Administration (USFDA). The excipients used, their purpose and the challenges faced during manufacturing such formulations have been critically discussed. EXPERT OPINION: Novel injectables can deliver therapeutic agents in a controlled way at the desired site. However, several challenges persist with respect to their genericization. Astronomical costs incurred by innovator companies during product development, complexity of the product itself, supply limitations with respect to raw materials, intricate manufacturing processes, patent evergreening, product life-cycle extensions, relatively few and protracted generic approvals contribute to the exorbitant prices and access crunch. Moreover, regulatory guidance are grossly underdeveloped and significant efforts have to be directed toward development of effective characterization techniques.


Asunto(s)
Aprobación de Drogas , Sistemas de Liberación de Medicamentos , Inyecciones , United States Food and Drug Administration , Humanos , Estados Unidos , Desarrollo de Medicamentos , Composición de Medicamentos , Excipientes/química , Preparaciones Farmacéuticas/administración & dosificación , Animales , Química Farmacéutica
2.
Expert Opin Drug Discov ; 19(6): 683-698, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38727016

RESUMEN

INTRODUCTION: Prediction of pharmacokinetic (PK) properties is crucial for drug discovery and development. Machine-learning (ML) models, which use statistical pattern recognition to learn correlations between input features (such as chemical structures) and target variables (such as PK parameters), are being increasingly used for this purpose. To embed ML models for PK prediction into workflows and to guide future development, a solid understanding of their applicability, advantages, limitations, and synergies with other approaches is necessary. AREAS COVERED: This narrative review discusses the design and application of ML models to predict PK parameters of small molecules, especially in light of established approaches including in vitro-in vivo extrapolation (IVIVE) and physiologically based pharmacokinetic (PBPK) models. The authors illustrate scenarios in which the three approaches are used and emphasize how they enhance and complement each other. In particular, they highlight achievements, the state of the art and potentials of applying machine learning for PK prediction through a comphrehensive literature review. EXPERT OPINION: ML models, when carefully crafted, regularly updated, and appropriately used, empower users to prioritize molecules with favorable PK properties. Informed practitioners can leverage these models to improve the efficiency of drug discovery and development process.


Asunto(s)
Desarrollo de Medicamentos , Descubrimiento de Drogas , Aprendizaje Automático , Modelos Biológicos , Farmacocinética , Humanos , Descubrimiento de Drogas/métodos , Desarrollo de Medicamentos/métodos , Animales , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/administración & dosificación
3.
Clin Transl Sci ; 17(5): e13810, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716900

RESUMEN

One of the key pharmacokinetic properties of most small molecule drugs is their ability to bind to serum proteins. Unbound or free drug is responsible for pharmacological activity while the balance between free and bound drug can impact drug distribution, elimination, and other safety parameters. In the hepatic impairment (HI) and renal impairment (RI) clinical studies, unbound drug concentration is often assessed; however, the relevance and impact of the protein binding (PB) results is largely limited. We analyzed published clinical safety and pharmacokinetic studies in subjects with HI or RI with PB assessment up to October 2022 and summarized the contribution of PB results on their label dose recommendations. Among drugs with HI publication, 32% (17/53) associated product labels include PB results in HI section. Of these, the majority (9/17, 53%) recommend dose adjustments consistent with observed PB change. Among drugs with RI publication, 27% (12/44) of associated product labels include PB results in RI section with the majority (7/12, 58%) recommending no dose adjustment, consistent with the reported absence of PB change. PB results were found to be consistent with a tailored dose recommendation in 53% and 58% of the approved labels for HI and RI section, respectively. We further discussed the interpretation challenges of PB results, explored treatment decision factors including total drug concentration, exposure-response relationships, and safety considerations in these case examples. Collectively, comprehending the alterations in free drug levels in HI and RI informs treatment decision through a risk-based approach.


Asunto(s)
Etiquetado de Medicamentos , Unión Proteica , Humanos , Insuficiencia Renal/metabolismo , Relación Dosis-Respuesta a Droga , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Hepatopatías/metabolismo , Hepatopatías/tratamiento farmacológico , Proteínas Sanguíneas/metabolismo , Cálculo de Dosificación de Drogas
4.
AAPS J ; 26(3): 59, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724865

RESUMEN

Drug clearance in obese subjects varies widely among different drugs and across subjects with different severity of obesity. This study investigates correlations between plasma clearance (CLp) and drug- and patient-related characteristics in obese subjects, and evaluates the systematic accuracy of common weight-based dosing methods. A physiologically-based pharmacokinetic (PBPK) modeling approach that uses recent information on obesity-related changes in physiology was used to simulate CLp for a normal-weight subject (body mass index [BMI] = 20) and subjects with various severities of obesity (BMI 25-60) for hypothetical hepatically cleared drugs with a wide range of properties. Influential variables for CLp change were investigated. For each drug and obese subject, the exponent that yields perfect allometric scaling of CLp from normal-weight subjects was assessed. Among all variables, BMI and relative changes in enzyme activity resulting from obesity proved highly correlated with obesity-related CLp changes. Drugs bound to α1-acid glycoprotein (AAG) had lower CLp changes compared to drugs bound to human serum albumin (HSA). Lower extraction ratios (ER) corresponded to higher CLp changes compared to higher ER. The allometric exponent for perfect scaling ranged from -3.84 to 3.34 illustrating that none of the scaling methods performed well in all situations. While all three dosing methods are generally systematically accurate for drugs with unchanged or up to 50% increased enzyme activity in subjects with a BMI below 30 kg/m2, in any of the other cases, information on the different drug properties and severity of obesity is required to select an appropriate dosing method for individuals with obesity.


Asunto(s)
Índice de Masa Corporal , Modelos Biológicos , Obesidad , Humanos , Obesidad/metabolismo , Tasa de Depuración Metabólica/fisiología , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Hígado/metabolismo , Orosomucoide/metabolismo , Albúmina Sérica Humana/metabolismo , Albúmina Sérica Humana/análisis , Masculino , Adulto
5.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731891

RESUMEN

The past five decades have witnessed remarkable advancements in the field of inhaled medicines targeting the lungs for respiratory disease treatment. As a non-invasive drug delivery route, inhalation therapy offers numerous benefits to respiratory patients, including rapid and targeted exposure at specific sites, quick onset of action, bypassing first-pass metabolism, and beyond. Understanding the characteristics of pulmonary drug transporters and metabolizing enzymes is crucial for comprehending efficient drug exposure and clearance processes within the lungs. These processes are intricately linked to both local and systemic pharmacokinetics and pharmacodynamics of drugs. This review aims to provide a comprehensive overview of the literature on lung transporters and metabolizing enzymes while exploring their roles in exogenous and endogenous substance disposition. Additionally, we identify and discuss the principal challenges in this area of research, providing a foundation for future investigations aimed at optimizing inhaled drug administration. Moving forward, it is imperative that future research endeavors to focus on refining and validating in vitro and ex vivo models to more accurately mimic the human respiratory system. Such advancements will enhance our understanding of drug processing in different pathological states and facilitate the discovery of novel approaches for investigating lung-specific drug transporters and metabolizing enzymes. This deeper insight will be crucial in developing more effective and targeted therapies for respiratory diseases, ultimately leading to improved patient outcomes.


Asunto(s)
Pulmón , Proteínas de Transporte de Membrana , Humanos , Administración por Inhalación , Pulmón/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Transporte Biológico
6.
Drug Des Devel Ther ; 18: 1469-1495, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707615

RESUMEN

This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.


Asunto(s)
Disponibilidad Biológica , Nanotecnología , Solubilidad , Humanos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/administración & dosificación , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Portadores de Fármacos/química , Animales
7.
AAPS PharmSciTech ; 25(5): 96, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710855

RESUMEN

Central nervous system-related disorders have become a continuing threat to human life and the current statistic indicates an increasing trend of such disorders worldwide. The primary therapeutic challenge, despite the availability of therapies for these disorders, is to sustain the drug's effective concentration in the brain while limiting its accumulation in non-targeted areas. This is attributed to the presence of the blood-brain barrier and first-pass metabolism which limits the transportation of drugs to the brain irrespective of popular and conventional routes of drug administration. Therefore, there is a demand to practice alternative routes for predictable drug delivery using advanced drug delivery carriers to overcome the said obstacles. Recent research attracted attention to intranasal-to-brain drug delivery for promising targeting therapeutics in the brain. This review emphasizes the mechanisms to deliver therapeutics via different pathways for nose-to-brain drug delivery with recent advancements in delivery and formulation aspects. Concurrently, for the benefit of future studies, the difficulties in administering medications by intranasal pathway have also been highlighted.


Asunto(s)
Administración Intranasal , Barrera Hematoencefálica , Encéfalo , Sistemas de Liberación de Medicamentos , Administración Intranasal/métodos , Humanos , Sistemas de Liberación de Medicamentos/métodos , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Animales , Portadores de Fármacos/química , Preparaciones Farmacéuticas/administración & dosificación , Mucosa Nasal/metabolismo
8.
Curr Pharm Des ; 30(6): 410-419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747045

RESUMEN

Foam-based delivery systems contain one or more active ingredients and dispersed solid or liquid components that transform into gaseous form when the valve is actuated. Foams are an attractive and effective delivery approach for medical, cosmetic, and pharmaceutical uses. The foams-based delivery systems are gaining attention due to ease of application as they allow direct application onto the affected area of skin without using any applicator or finger, hence increasing the compliance and satisfaction of the patients. In order to develop foam-based delivery systems with desired qualities, it is vital to understand which type of material and process parameters impact the quality features of foams and which methodologies may be utilized to investigate foams. For this purpose, Quality-by-Design (QbD) approach is used. It aids in achieving quality-based development during the development process by employing the QbD concept. The critical material attributes (CMAs) and critical process parameters (CPPs) were discovered through the first risk assessment to ensure the requisite critical quality attributes (CQAs). During the initial risk assessment, the high-risk CQAs were identified, which affect the foam characteristics. In this review, the authors discussed the various CMAs, CPPs, CQAs, and risk factors associated in order to develop an ideal foam-based formulation with desired characteristics.


Asunto(s)
Sistemas de Liberación de Medicamentos , Humanos , Composición de Medicamentos , Diseño de Fármacos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/administración & dosificación , Química Farmacéutica
9.
Expert Opin Drug Deliv ; 21(4): 553-572, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38720439

RESUMEN

INTRODUCTION: Intranasal administration is an effective drug delivery routes in modern pharmaceutics. However, unlike other in vivo biological barriers, the nasal mucosal barrier is characterized by high turnover and selective permeability, hindering the diffusion of both particulate drug delivery systems and drug molecules. The in vivo fate of administrated nanomedicines is often significantly affected by nano-biointeractions. AREAS COVERED: The biological barriers that nanomedicines encounter when administered intranasally are introduced, with a discussion on the factors influencing the interaction between nanomedicines and the mucus layer/mucosal barriers. General design strategies for nanomedicines administered via the nasal route are further proposed. Furthermore, the most common methods to investigate the characteristics and the interactions of nanomedicines when in presence of the mucus layer/mucosal barrier are briefly summarized. EXPERT OPINION: Detailed investigation of nanomedicine-mucus/mucosal interactions and exploration of their mechanisms provide solutions for designing better intranasal nanomedicines. Designing and applying nanomedicines with mucus interaction properties or non-mucosal interactions should be customized according to the therapeutic need, considering the target of the drug, i.e. brain, lung or nose. Then how to improve the precise targeting efficiency of nanomedicines becomes a difficult task for further research.


Asunto(s)
Administración Intranasal , Sistemas de Liberación de Medicamentos , Moco , Nanomedicina , Mucosa Nasal , Mucosa Nasal/metabolismo , Humanos , Animales , Moco/metabolismo , Permeabilidad , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/metabolismo , Diseño de Fármacos , Nanopartículas
10.
Int J Pharm ; 656: 124089, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599444

RESUMEN

Oral delivery is considered the most patient preferred route of drug administration, however, the drug must be sufficiently soluble and permeable to successfully formulate an oral formulation. There have been advancements in the development of more predictive solubility and dissolution tools, but the tools that has been developed for permeability assays have not been validated as extensively as the gold-standard Caco-2 Transwell assay. Here, we evaluated Caco-2 intestinal permeability assay in Transwells and a commercially available microfluidic Chip using 19 representative Biopharmaceutics Classification System (BCS) Class I-IV compounds. For each selected compound, we performed a comprehensive viability test, quantified its apparent permeability (Papp), and established an in vitro in vivo correlation (IVIVC) to the human fraction absorbed (fa) in both culture conditions. Permeability differences were observed across the models as demonstrated by antipyrine (Transwell Papp: 38.5 ± 6.1 × 10-8 cm/s vs Chip Papp: 32.9 ± 11.3 × 10-8 cm/s) and nadolol (Transwell Papp: 0.6 ± 0.1 × 10-7 cm/s vs Chip Papp: 3 ± 1.2 × 10-7 cm/s). The in vitro in vivo correlation (IVIVC; Papp vs. fa) of the Transwell model (r2 = 0.59-0.83) was similar to the Chip model (r2 = 0.41-0.79), highlighting similar levels of predictivity. Comparing to historical data, our Chip Papp data was more closely aligned to native tissues assessed in Ussing chambers. This is the first study to comprehensively validate a commercial Gut-on-a-Chip model as a predictive tool for assessing oral absorption to further reduce our reliance on animal models.


Asunto(s)
Absorción Intestinal , Dispositivos Laboratorio en un Chip , Permeabilidad , Humanos , Células CACO-2 , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Solubilidad , Administración Oral , Biofarmacia/métodos , Modelos Biológicos
11.
Drug Dev Ind Pharm ; 50(5): 387-400, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38634708

RESUMEN

OBJECTIVE: TheDES are formed by mixing a Hydrogen Bond Donor (HBD) and a Hydrogen Bond Acceptor (HBA) in appropriate molar ratios. These solvents have been shown to enhance drug solubility, permeability, and delivery. The main objective of the present article is to review these advantages of TheDES. SIGNIFICANCE: TheDES show unique properties, such as low toxicity, biodegradability, improved bioavailability and enhanced drug delivery of poorly soluble active pharmaceutical ingredients. They are also biocompatible in nature which makes them a promising candidate for various therapeutic applications, including drug formulations, drug delivery and other biomedical uses. The development and utilization of TheDES shows significant advancement in pharmaceutical research, providing new opportunities for improving drug delivery. METHODS: The current study was carried out by conducting a systematic literature review that identified relevant papers from indexed databases. Numerous studies and research are cited and quoted in this article to demonstrate the effectiveness of TheDES in enhancing drug solubility, permeability, and delivery. All chosen articles were selected considering their significance, quality, and approach to addressing issues. RESULT: As a result, various TheDES were identified that can be formulated in different ways: one component can act as a vehicle for an API, either HBD or HBA can be an API, both HBD and HBA can be APIs, or the individual components of DES are not therapeutically active but the resulting DES possesses therapeutic activity. Additionally, TheDES were also recognized to enhance drug delivery and solubility for different APIs, including NSAIDs, anesthetic drugs, antifungals, and others.


Asunto(s)
Disolventes Eutécticos Profundos , Solubilidad , Disolventes Eutécticos Profundos/química , Sistemas de Liberación de Medicamentos/métodos , Permeabilidad , Humanos , Composición de Medicamentos/métodos , Enlace de Hidrógeno , Química Farmacéutica/métodos , Disponibilidad Biológica , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/administración & dosificación , Solventes/química
13.
Expert Opin Drug Deliv ; 21(4): 537-551, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568159

RESUMEN

INTRODUCTION: The nose has been receiving increased attention as a route for drug delivery. As the site of deposition constitutes the first point of contact of the body with the drug, characterization of the regional deposition of intranasally delivered droplets or particles is paramount to formulation and device design of new products. AREAS COVERED: This review article summarizes the recent literature on intranasal regional drug deposition evaluated in vivo, in vitro and in silico, with the aim of correlating parameters measured in vitro with formulation and device performance. We also highlight the relevance of regional deposition to two emerging applications: nose-to-brain drug delivery and intranasal vaccines. EXPERT OPINION: As in vivo studies of deposition can be costly and time-consuming, researchers have often turned to predictive in vitro and in silico models. Variability in deposition is high due in part to individual differences in nasal geometry, and a complete predictive model of deposition based on spray characteristics remains elusive. Carefully selected or idealized geometries capturing population average deposition can be useful surrogates to in vivo measurements. Continued development of in vitro and in silico models may pave the way for development of less variable and more effective intranasal drug products.


Asunto(s)
Administración Intranasal , Simulación por Computador , Sistemas de Liberación de Medicamentos , Humanos , Animales , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Vacunas/administración & dosificación , Vacunas/farmacocinética , Mucosa Nasal/metabolismo , Diseño de Equipo , Modelos Biológicos , Química Farmacéutica/métodos , Distribución Tisular , Cavidad Nasal/metabolismo
14.
Expert Opin Drug Metab Toxicol ; 20(4): 181-195, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480460

RESUMEN

INTRODUCTION: Pharmacokinetic parameters assessment is a critical aspect of drug discovery and development, yet challenges persist due to limited training data. Despite advancements in machine learning and in-silico predictions, scarcity of data hampers accurate prediction of drug candidates' pharmacokinetic properties. AREAS COVERED: The study highlights current developments in human pharmacokinetic prediction, talks about attempts to apply synthetic approaches for molecular design, and searches several databases, including Scopus, PubMed, Web of Science, and Google Scholar. The article stresses importance of rigorous analysis of machine learning model performance in assessing progress and explores molecular modeling (MM) techniques, descriptors, and mathematical approaches. Transitioning to clinical drug development, article highlights AI (Artificial Intelligence) based computer models optimizing trial design, patient selection, dosing strategies, and biomarker identification. In-silico models, including molecular interactomes and virtual patients, predict drug performance across diverse profiles, underlining the need to align model results with clinical studies for reliability. Specialized training for human specialists in navigating predictive models is deemed critical. Pharmacogenomics, integral to personalized medicine, utilizes predictive modeling to anticipate patient responses, contributing to more efficient healthcare system. Challenges in realizing potential of predictive modeling, including ethical considerations and data privacy concerns, are acknowledged. EXPERT OPINION: AI models are crucial in drug development, optimizing trials, patient selection, dosing, and biomarker identification and hold promise for streamlining clinical investigations.


Asunto(s)
Inteligencia Artificial , Simulación por Computador , Desarrollo de Medicamentos , Aprendizaje Automático , Farmacocinética , Medicina de Precisión , Humanos , Diseño de Fármacos , Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Modelos Biológicos , Modelos Moleculares , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Farmacogenética , Medicina de Precisión/métodos , Reproducibilidad de los Resultados
15.
Clin Pharmacokinet ; 63(4): 439-468, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38551787

RESUMEN

BACKGROUND AND OBJECTIVE: Drug dosing should ideally be based on the drug concentrations at the target site, which, for most drugs, corresponds to the tissue. The exact influence of growth and development on drug tissue distribution is unclear. This systematic review compiles the current knowledge on the tissue distribution of systemically applied drugs in children, with the aim to identify priorities in tissue pharmacokinetic (PK) research in this population. METHODS: A systematic literature search was performed in the MEDLINE and Embase databases. RESULTS: Forty-two relevant articles were identified, of which 71% investigated antibiotics, while drug classes from the other studies were anticancer drugs, antifungals, anthelmintics, sedatives, thyreostatics, immunomodulators, antiarrhythmics, and exon skipping therapy. The majority of studies (83%) applied tissue biopsy as the sampling technique. Tonsil and/or adenoid tissue was most frequently examined (70% of all included patients). The majority of studies had a small sample size (median 9, range 1-93), did not include the youngest age categories (neonates and infants), and were of low reporting quality. Due to the heterogeneous data from different study compounds, dosing schedules, populations, and target tissues, the possibility for comparison of PK data between studies was limited. CONCLUSION: The influence of growth and development on drug tissue distribution continues to be a knowledge gap, due to the paucity of tissue PK data in children, especially in the younger age categories. Future research in this field should be encouraged as techniques to safely investigate drug tissue disposition in children are available.


Asunto(s)
Farmacocinética , Humanos , Niño , Distribución Tisular , Lactante , Preescolar , Recién Nacido , Adolescente , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/metabolismo
16.
CPT Pharmacometrics Syst Pharmacol ; 13(5): 870-879, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38465417

RESUMEN

Noncompartmental analysis (NCA) is a model-independent approach for assessing pharmacokinetics (PKs). Although the existing NCA algorithms are very well-established and widely utilized, they suffer from low accuracies in the setting of sparse PK samples. In response, we developed Deep-NCA, a deep learning (DL) model to improve the prediction of key noncompartmental PK parameters. Our methodology utilizes synthetic PK data for model training and uses an innovative patient-specific normalization method for data preprocessing. Deep-NCA demonstrated adequate performance across six previously unseen simulated drugs under multiple dosing, showcasing effective generalization. Compared to traditional NCA, Deep-NCA exhibited superior performance for sparse PK data. This study advances the application of DL to PK studies and introduces an effective method for handling sparse PK data. With further validation and refinement, Deep-NCA could significantly enhance the efficiency of drug development by providing more accurate NCA estimates while requiring fewer PK samples.


Asunto(s)
Aprendizaje Profundo , Farmacocinética , Humanos , Algoritmos , Simulación por Computador , Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Desarrollo de Medicamentos/métodos
17.
Ned Tijdschr Geneeskd ; 1682024 02 08.
Artículo en Holandés | MEDLINE | ID: mdl-38375868

RESUMEN

Most women use medication during pregnancy. The disposition of drugs may be altered due to changes in pregnant women's bodies. This may call for pregnancy-adjusted doses for certain medications. However, in the face of scarce evidence, such doses are generally lacking, potentially contributing to an increased risk of treatment failure or toxicity in pregnant women and their unborn children. By integrating physiological and/or population data, pharmacokinetic models can be used to determine appropriate medication dosages among pregnant women and their unborn children, as well as other patient groups for which evidence-based doses may be lacking such as children, elderly or obese patients. In order to translate model predictions into clinically usable doses, a number of conditions must be met, including careful model validation, an assessment of evidence from pharmacokinetic modelling alongside available clinical studies by multidisciplinary experts, as well as transparent communication towards end-users on the considerations for determining appropriate medication doses.


Asunto(s)
Preparaciones Farmacéuticas , Mujeres Embarazadas , Femenino , Humanos , Embarazo , Preparaciones Farmacéuticas/administración & dosificación
19.
J Pharm Sci ; 113(6): 1555-1565, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38232804

RESUMEN

Drug release plays a crucial role in drug delivery. While current formulation approaches are capable of coarse-tuning the release profile, their precision and reproducibility are limited by the physicochemical properties of the excipients and active pharmaceutical ingredient (API). Innovative and advanced approaches are urgently needed, especially for site-specific targeting of drugs and to address their pharmacological requirements for optimal therapy. The 5 × 5 × 0.6 mm3 piezoelectric micropump developed by Fraunhofer EMFT was designed to enable precise drug delivery in a low volume format. In this study, we investigated the ability of the micropump to deliver solutions of highly soluble APIs using a wide range of customized pump profiles. Additionally, we examined the ability of the micropump to deliver suspensions containing various defined particle sizes. While results for suspensions indicate that pumping performance is highly dependent on the size and concentration of the suspended particles, results with API solutions demonstrate high precision and reproducibility of release, coupled with maximum flexibility in the release profile of the API. The piezoelectric micropump thus lays the cornerstone in the development of a wide range of innovative drug delivery profiles, enabling customized release profiles to be programmed and thus paving the way to fully personalized medicine.


Asunto(s)
Sistemas de Liberación de Medicamentos , Silicio , Sistemas de Liberación de Medicamentos/métodos , Silicio/química , Diseño de Equipo , Tamaño de la Partícula , Liberación de Fármacos , Reproducibilidad de los Resultados , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/administración & dosificación , Excipientes/química
20.
N Engl J Med ; 390(4): 338-345, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38265645

RESUMEN

BACKGROUND: Hospitals can leverage their position between the ultimate buyers and sellers of drugs to retain a substantial share of insurer pharmaceutical expenditures. METHODS: In this study, we used 2020-2021 national Blue Cross Blue Shield claims data regarding patients in the United States who had drug-infusion visits for oncologic conditions, inflammatory conditions, or blood-cell deficiency disorders. Markups of the reimbursement prices were measured in terms of amounts paid by Blue Cross Blue Shield plans to hospitals and physician practices relative to the amounts paid by these providers to drug manufacturers. Acquisition-price reductions in hospital payments to drug manufacturers were measured in terms of discounts under the federal 340B Drug Pricing Program. We estimated the percentage of Blue Cross Blue Shield drug spending that was received by drug manufacturers and the percentage retained by provider organizations. RESULTS: The study included 404,443 patients in the United States who had 4,727,189 drug-infusion visits. The median price markup (defined as the ratio of the reimbursement price to the acquisition price) for hospitals eligible for 340B discounts was 3.08 (interquartile range, 1.87 to 6.38). After adjustment for drug, patient, and geographic factors, price markups at hospitals eligible for 340B discounts were 6.59 times (95% confidence interval [CI], 6.02 to 7.16) as high as those in independent physician practices, and price markups at noneligible hospitals were 4.34 times (95% CI, 3.77 to 4.90) as high as those in physician practices. Hospitals eligible for 340B discounts retained 64.3% of insurer drug expenditures, whereas hospitals not eligible for 340B discounts retained 44.8% and independent physician practices retained 19.1%. CONCLUSIONS: This study showed that hospitals imposed large price markups and retained a substantial share of total insurer spending on physician-administered drugs for patients with private insurance. The effects were especially large for hospitals eligible for discounts under the federal 340B Drug Pricing Program on acquisition costs paid to manufacturers. (Funded by Arnold Ventures and the National Institute for Health Care Management.).


Asunto(s)
Planes de Seguros y Protección Cruz Azul , Honorarios Farmacéuticos , Precios de Hospital , Seguro de Salud , Preparaciones Farmacéuticas , Humanos , Planes de Seguros y Protección Cruz Azul/economía , Planes de Seguros y Protección Cruz Azul/estadística & datos numéricos , Personal de Salud , Hospitales , Aseguradoras , Médicos/economía , Seguro de Salud/economía , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/economía , Sector Privado , Revisión de Utilización de Seguros/economía , Revisión de Utilización de Seguros/estadística & datos numéricos , Estados Unidos/epidemiología , Infusiones Parenterales/economía , Infusiones Parenterales/estadística & datos numéricos , Economía Hospitalaria/estadística & datos numéricos , Práctica Profesional/economía , Práctica Profesional/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...