Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.619
Filtrar
1.
J Cell Biol ; 223(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38722279

RESUMEN

In addition to its well-established role in actin assembly, profilin 1 (PFN1) has been shown to bind to tubulin and alter microtubule growth. However, whether PFN1's predominant control over microtubules in cells occurs through direct regulation of tubulin or indirectly through the polymerization of actin has yet to be determined. Here, we manipulated PFN1 expression, actin filament assembly, and actomyosin contractility and showed that reducing any of these parameters for extended periods of time caused an adaptive response in the microtubule cytoskeleton, with the effect being significantly more pronounced in neuronal processes. All the observed changes to microtubules were reversible if actomyosin was restored, arguing that PFN1's regulation of microtubules occurs principally through actin. Moreover, the cytoskeletal modifications resulting from PFN1 depletion in neuronal processes affected microtubule-based transport and mimicked phenotypes that are linked to neurodegenerative disease. This demonstrates how defects in actin can cause compensatory responses in other cytoskeleton components, which in turn significantly alter cellular function.


Asunto(s)
Actinas , Microtúbulos , Profilinas , Animales , Humanos , Ratones , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actinas/genética , Actomiosina/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Profilinas/metabolismo , Profilinas/genética , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética
2.
Science ; 384(6692): eadn9560, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38603491

RESUMEN

Formins control the assembly of actin filaments (F-actin) that drive cell morphogenesis and motility in eukaryotes. However, their molecular interaction with F-actin and their mechanism of action remain unclear. In this work, we present high-resolution cryo-electron microscopy structures of F-actin barbed ends bound by three distinct formins, revealing a common asymmetric formin conformation imposed by the filament. Formation of new intersubunit contacts during actin polymerization sterically displaces formin and triggers its translocation. This "undock-and-lock" mechanism explains how actin-filament growth is coordinated with formin movement. Filament elongation speeds are controlled by the positioning and stability of actin-formin interfaces, which distinguish fast and slow formins. Furthermore, we provide a structure of the actin-formin-profilin ring complex, which resolves how profilin is rapidly released from the barbed end during filament elongation.


Asunto(s)
Citoesqueleto de Actina , Actinas , Forminas , Citoesqueleto de Actina/química , Actinas/química , Microscopía por Crioelectrón , Forminas/química , Forminas/genética , Profilinas/química , Mutación , Schizosaccharomyces
3.
Int J Biol Macromol ; 266(Pt 2): 131247, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565371

RESUMEN

Essential to plant adaptation, cell wall (CW) integrity is maintained by CW-biosynthesis genes. Cytoskeletal actin-(de)polymerizing, phospholipid-binding profilin (PRF) proteins play important roles in maintaining cellular homeostasis across kingdoms. However, evolutionary selection of PRF genes and their systematic characterization in family Brassicaceae, especially in Brassica juncea remain unexplored. Here, a comprehensive analysis of genome-wide identification of BjPRFs, their phylogenetic association, genomic localization, gene structure, and transcriptional profiling were performed in an evolutionary framework. Identification of 23 BjPRFs in B. juncea indicated an evolutionary conservation within Brassicaceae. The BjPRFs evolved through paralogous and orthologous gene formation in Brassica genomes. Evolutionary divergence of BjPRFs indicated purifying selection, with nonsynonymous (dN)/synonymous (dS) value of 0.090 for orthologous gene-pairs. Hybrid homology-modeling identified evolutionary distinct and conserved domains in BjPRFs which suggested that these proteins evolved following the divergence of monocot and eudicot plants. RNA-seq profiles of BjPRFs revealed their functional evolution in spatiotemporal manner during plant-development and stress-conditions in diploid/amphidiploid Brassica species. Real-Time PCR experiments in seedling, vegetative, floral and silique tissues of B. juncea suggested their essential roles in systematic plant development. These observations underscore the expansion of BjPRFs in B. juncea, and offer valuable evolutionary insights for exploring cellular mechanisms, and stress resilience.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Planta de la Mostaza , Filogenia , Proteínas de Plantas , Profilinas , Estrés Fisiológico , Planta de la Mostaza/genética , Estrés Fisiológico/genética , Profilinas/genética , Profilinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Genoma de Planta , Perfilación de la Expresión Génica
4.
Rev Alerg Mex ; 71(1): 78, 2024 Feb 01.
Artículo en Español | MEDLINE | ID: mdl-38683095

RESUMEN

OBJECTIVE: Analyze phylogenetic relationships and molecular mimicry of Cit s 2 and other plant profilins. METHODS: Online bioinformatics tools including Basic Local Alignment Search Tool (BLASTP), PRALINE and MEGA were used for multiple alignments and phylogenetic analysis. A 3D-homology model of Cit s 2 was predicted. Models were calculated with MODELLER. The best model was selected with the model scoring option of MAESTRO. Conserved regions between Cit s 2 and other profilins were located on the 3D model and antigenic regions were predicted by ElliPro server (3-5). RESULTS: Cit s 2 amino acid sequence (Uniprot code:P84177) was compared with other 30 profilins from different allergenic sources. The identity between Cit s 2 and other profilins ranged between 82 and 99%. The highest identity was observed with Cucumis melo (99%) followed by Prunus persica (98%) and Malus domestica (92%). High conserved antigenic regions were observed on the 3D predicted model. Seven lineal and six discontinuous epitopes were found in Cit s 2. CONCLUSION: High conserved antigenic regions were observed on the 3D predicted model of Cit s 2, which might involve potential cross-reactivity between Cit s 2 and other profilins. Future studies are needed to further analyze these results.


OBJETIVO: Analizar las relaciones filogenéticas y el mimetismo molecular de Cit s 2 y otras profilinas vegetales. MÉTODOS: Se utilizaron herramientas bioinformáticas en línea, incluida la de búsqueda de alineación local básica (BLASTP), PRALINE y MEGA, para alineamientos múltiples y análisis filogenético. Se predijo un modelo de homología 3D de Cit s 2. Los modelos se calcularon con MODELLER. El mejor modelo fue seleccionado con la opción de puntuación de modelo de Maestro. Las regiones conservadas entre Cit s 2 y otras profilinas se ubicaron en el modelo 3D y las regiones antigénicas fueron predichas por el servidor ElliPro (3-5). RESULTADOS: La secuencia de aminoácidos de Cit s 2 (código Uniprot: P84177), se comparó con otras 30 profilinas de diferentes fuentes alergénicas. La mayor identidad se observó con Cucumis melo (99%) seguida de Prunus persica (98%) y Malus domestica (92%). Se observaron regiones antigénicas altamente conservadas en el modelo predicho en 3D. Se encontraron siete epítopes lineales, y seis epítopes discontinuos en Cit s 2. CONCLUSIÓN: Se observaron regiones antigénicas altamente conservadas en el modelo 3D predicho de Cit s 2, lo que podría implicar una posible reactividad cruzada entre Cit s 2 y otras profilinas. Se necesitan estudios futuros para analizar más a fondo estos resultados.


Asunto(s)
Antígenos de Plantas , Profilinas , Alérgenos/inmunología , Secuencia de Aminoácidos , Simulación por Computador , Secuencia Conservada , Modelos Moleculares , Filogenia , Proteínas de Plantas/inmunología , Profilinas/inmunología , Profilinas/genética , Profilinas/química , Cucumis/química , Cucumis/metabolismo , Prunus persica/química , Prunus persica/metabolismo , Malus/química , Malus/metabolismo , Antígenos de Plantas/química
5.
Ann Ital Chir ; 95(2): 246-252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38684494

RESUMEN

BACKGROUND: Bladder cancer is the most common malignancy of the urinary system, and the search for new and reliable biomarkers has important clinical significance for the personalized treatment of bladder cancer. This study aims to explore the correlation between nuclear proliferation antigen (Ki-67) or Profilin-1 (PFN1) levels, clinicopathological characteristics, and postoperative prognosis in patients with bladder cancer. METHODS: Patients with bladder cancer who underwent transurethral resection of bladder cancer tumor in The Fourth Affiliated Hospital of Soochow University, hospital from January 2019 to January 2021 were selected as the study group (n = 60), and patients with benign lesions of bladder cancer during the same period were selected as the control group (n = 60). The expression of Ki-67 and PFN1 in tumor and bladder tissues of the two groups was analyzed. Ki-67 recorded the patient's pathological parameters and calculated the patient's postoperative prognosis. The correlation between Ki-67 and PFN1 expression levels, pathological parameters, and postoperative prognosis was analyzed. RESULTS: The positive expression rates of Ki-67 and PFN1 in the study group were 63.33% and 73.33%, respectively, which were significantly higher than the positive expression rates in the control group (χ2 = 14.803, 17.757, p < 0.001). The positive expression rates of Ki-67 and PFN1 were related to histological grade, clinical stage, infiltration, and lymph node metastasis, and the differences were statistically significant (p < 0.05). Bladder cancer patients with non muscle-invasive bladder cancer (NMIBC), high-grade histological grade, Ta~T1 clinical stage, invasive, and lymph node metastasis have a higher Ki-67 positive expression rate than bladder cancer patients with muscle-invasive bladder cancer (MIBC), low-grade histological grade, T2~T4, non-invasive, and no lymph node metastasis. The high expression level of Ki-67 has little relationship with gender, age, tumor diameter, and vascular invasion (p > 0.05). The survival time and three-year survival rate of the Ki-67 positive expression group were significantly lower than those of the Ki-67 negative expression group (p < 0.05). The survival time and three-year survival rate of the PFN1 positive expression group were significantly lower than those of the PFN1 negative expression group (p < 0.05). CONCLUSION: The positive expression rates of Ki-67 and PFN1 in bladder tumor tissue are significantly higher than those in bladder tissue, and pathological pattern, histological grade, clinical stage, infiltration, and lymph node metastasis are related to the positive expression rates of Ki-67 and PFN1, and different genders, ages, tumors diameter and vascular invasion are not related to the positive expression rates of Ki-67 and PFN1. The survival time and three-year survival rates of bladder cancer patients with Ki-67 positive and PFN1 positive expression are shorter.


Asunto(s)
Antígeno Ki-67 , Profilinas , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/cirugía , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/mortalidad , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/química , Antígeno Ki-67/análisis , Profilinas/análisis , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Anciano , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Estadificación de Neoplasias
6.
ACS Chem Neurosci ; 15(7): 1548-1559, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38527459

RESUMEN

Ischemic strokes, prevalence and impactful, underscore the necessity of advanced research models closely resembling human physiology. Our study utilizes nonhuman primates (NHPs) to provide a detailed exploration of ischemic stroke, integrating neuroimaging data, behavioral outcomes, and serum proteomics to elucidate the complex interplay of factors involved in stroke pathophysiology. We observed a consistent pattern in infarct volume, peaking at 1-month postmiddle cerebral artery occlusion (MCAO) and then stabilized. This pattern was strongly correlated to notable changes in motor function and working memory performance. Using diffusion tensor imaging (DTI), we detected significant alterations in fractional anisotropy (FA) and mean diffusivity (MD) values, signaling microstructural changes in the brain. These alterations closely correlated with the neurological and cognitive deficits that we observed, highlighting the sensitivity of DTI metrics in stroke assessment. Behaviorally, the monkeys exhibited a reliance on their unaffected limb for compensatory movements, a common response to stroke impairment. This adaptation, along with consistent DTI findings, suggests a significant impact of stroke on motor function and spatial perception. Proteomic analysis through MS/MS functional enrichment identified two distinct groups of proteins with significant changes post-MCAO. Notably, MMP9, THBS1, MB, PFN1, and YWHAZ were identified as potential biomarkers and therapeutic targets for ischemic stroke. Our results underscore the complex nature of stroke and advocate for an integrated approach, combining neuroimaging, behavioral studies, and proteomics, for advancing our understanding and treatment of this condition.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Proteómica , Espectrometría de Masas en Tándem , Accidente Cerebrovascular/diagnóstico por imagen , Neuroimagen , Primates , Profilinas
7.
Nat Commun ; 15(1): 2497, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509062

RESUMEN

Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited evidence of lipid dysmetabolism, autophagy dysregulation and deficient phagocytosis, a canonical microglia function. Mutant PFN1 also displayed enhanced binding affinity for PI3P, a critical signaling molecule involved in autophagic and endocytic processing. Our cumulative data implicate a gain-of-toxic function for mutant PFN1 within the autophagic and endo-lysosomal pathways, as administration of rapamycin rescued phagocytic dysfunction in ALS-PFN1 iMGs. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and implicate microglial vesicular degradation pathways in the pathogenesis of these disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Microglía/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Profilinas/metabolismo , Mutación
8.
Chembiochem ; 25(9): e202400007, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38457348

RESUMEN

The actin cytoskeleton is a biosensor of cellular stress and a potential prognosticator of human disease. In particular, aberrant cytoskeletal structures such as stress granules formed in response to energetic and oxidative stress are closely linked to ageing, cancer, cardiovascular disease, and viral infection. Whether these cytoskeletal phenomena can be harnessed for the development of biosensors for cytoskeletal dysfunction and, by extension, disease progression, remains an open question. In this work, we describe the design and development of an optogenetic iteration of profilin, an actin monomer binding protein with critical functions in cytoskeletal dynamics. We demonstrate that this optically activated profilin ('OptoProfilin') can act as an optically triggered biosensor of applied cellular stress in select immortalized cell lines. Notably, OptoProfilin is a single component biosensor, likely increasing its utility for experimentalists. While a large body of preexisting work closely links profilin activity with cellular stress and neurodegenerative disease, this, to our knowledge, is the first example of profilin as an optogenetic biosensor of stress-induced changes in the cytoskeleton.


Asunto(s)
Técnicas Biosensibles , Profilinas , Profilinas/metabolismo , Humanos , Optogenética/métodos , Estrés Fisiológico
9.
Cell Mol Biol Lett ; 29(1): 43, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539084

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are single-stranded RNAs with covalently closed structures that have been implicated in cancer progression. However, the regulatory mechanisms remain largely unclear. So, the aim of this study was to reveal the role and regulatory mechanisms of circ-SLC16A1. METHODS: In this study, next-generation sequencing was used to identify abnormally expressed circRNAs between cancerous and para-carcinoma tissues. Fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction were performed to assess the expression patterns of circ-solute carrier family 16 member 1 (SLC16A1) in non-small cell lung cancer (NSCLC) cells and tissue specimens. The dual-luciferase reporter assay was utilized to identify downstream targets of circ-SLC16A1. Transwell migration, wound healing, 5-ethynyl-2'-deoxyuridine incorporation, cell counting, and colony formation assays were conducted to assess the proliferation and migration of NSCLC cells. A mouse tumor xenograft model was employed to determine the roles of circ-SLC16A1 in NSCLC progression and metastasis in vivo. RESULTS: The results found that circ-SLC16A1 was upregulated in NSCLC cells and tissues. Downregulation of circ-SLC16A1 inhibited tumor growth by reducing proliferation, lung metastasis, and lymphatic metastasis of NSCLC cells, and arrested the cell cycle in the G1 phase. Also, silencing of circ-SLC16A1 promoted apoptosis of NSCLC cells. The results of bioinformatics analysis and the dual-luciferase reporter assay confirmed that microRNA (miR)-1287-5p and profilin 2 (PFN2) are downstream targets of circ-SLC16A1. PFN2 overexpression or circ-SLC16A1 inhibition restored proliferation and migration of NSCLC cells after silencing of circ-SLC16A1. PFN2 overexpression restored migration and proliferation of NSCLC cells post miR-1287-5p overexpression. CONCLUSIONS: Collectively, these findings show that miR-1287-5p/PFN2 signaling was associated with downregulation of circ-SLC16A1 and reduced invasion and proliferation of NSCLC cells. So, circ-SLC16A1 is identified as a mediator of multiple pro-oncogenic signaling pathways in NSCLC and can be targeted to suppress tumor progression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular/genética , Modelos Animales de Enfermedad , Hibridación Fluorescente in Situ , Luciferasas , Neoplasias Pulmonares/genética , MicroARNs/genética , Profilinas , ARN Circular/genética
10.
Front Cell Infect Microbiol ; 14: 1351737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500508

RESUMEN

Monkeypox (now Mpox), a zoonotic disease caused by the monkeypox virus (MPXV) is an emerging threat to global health. In the time span of only six months, from May to October 2022, the number of MPXV cases breached 80,000 and many of the outbreaks occurred in locations that had never previously reported MPXV. Currently there are no FDA-approved MPXV-specific vaccines or treatments, therefore, finding drugs to combat MPXV is of utmost importance. The A42R profilin-like protein of the MPXV is involved in cell development and motility making it a critical drug target. A42R protein is highly conserved across orthopoxviruses, thus A42R inhibitors may work for other family members. This study sought to identify potential A42R inhibitors for MPXV treatment using computational approaches. The energy minimized 3D structure of the A42R profilin-like protein (PDB ID: 4QWO) underwent virtual screening using a library of 36,366 compounds from Traditional Chinese Medicine (TCM), AfroDb, and PubChem databases as well as known inhibitor tecovirimat via AutoDock Vina. A total of seven compounds comprising PubChem CID: 11371962, ZINC000000899909, ZINC000001632866, ZINC000015151344, ZINC000013378519, ZINC000000086470, and ZINC000095486204, predicted to have favorable binding were shortlisted. Molecular docking suggested that all seven proposed compounds have higher binding affinities to A42R (-7.2 to -8.3 kcal/mol) than tecovirimat (-6.7 kcal/mol). This was corroborated by MM/PBSA calculations, with tecovirimat demonstrating the highest binding free energy of -68.694 kJ/mol (lowest binding affinity) compared to the seven shortlisted compounds that ranged from -73.252 to -97.140 kJ/mol. Furthermore, the 7 compounds in complex with A42R demonstrated higher stability than the A42R-tecovirimat complex when subjected to 100 ns molecular dynamics simulations. The protein-ligand interaction maps generated using LigPlot+ suggested that residues Met1, Glu3, Trp4, Ile7, Arg127, Val128, Thr131, and Asn133 are important for binding. These seven compounds were adequately profiled to be potential antivirals via PASS predictions and structural similarity searches. All seven potential lead compounds were scored Pa > Pi for antiviral activity while ZINC000001632866 and ZINC000015151344 were predicted as poxvirus inhibitors with Pa values of 0.315 and 0.215, and Pi values of 0.052 and 0.136, respectively. Further experimental validations of the identified lead compounds are required to corroborate their predicted activity. These seven identified compounds represent solid footing for development of antivirals against MPXV and other orthopoxviruses.


Asunto(s)
Monkeypox virus , Profilinas , Simulación del Acoplamiento Molecular , Benzamidas , Antivirales/farmacología
11.
J Cell Mol Med ; 28(7): e18266, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501838

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC), a very aggressive tumour, is currently the third leading cause of cancer-related deaths. Unfortunately, many patients face the issue of inoperability at the diagnostic phase leading to a quite dismal prognosis. The onset of metastatic processes has a crucial role in the elevated mortality rates linked to PDAC. Individuals with metastatic advances receive only palliative therapy and have a grim prognosis. It is essential to carefully analyse the intricacies of the metastatic process to enhance the prognosis for individuals with PDAC. Malignancy development is greatly impacted by the process of macrophage efferocytosis. Our current knowledge about the complete range of macrophage efferocytosis activities in PDAC and their intricate interactions with tumour cells is still restricted. This work aims to resolve communication gaps and pinpoint the essential transcription factor that is vital in the immunological response of macrophage populations. We analysed eight PDAC tissue samples sourced from the gene expression omnibus. We utilized several software packages such as Seurat, DoubletFinder, Harmony, Pi, GSVA, CellChat and Monocle from R software together with pySCENIC from Python, to analyse the single-cell RNA sequencing (scRNA-seq) data collected from the PDAC samples. This study involved the analysis of a comprehensive sample of 22,124 cells, which were classified into distinct cell types. These cell types encompassed endothelial and epithelial cells, PDAC cells, as well as various immune cells, including CD4+ T cells, CD8+ T cells, NK cells, B cells, plasma cells, mast cells, monocytes, DC cells and different subtypes of macrophages, namely C0 macrophage TGM2+, C1 macrophage PFN1+, C2 macrophage GAS6+ and C3 macrophage APOC3+. The differentiation between tumour cells and epithelial cells was achieved by the implementation of CopyKat analysis, resulting in the detection and categorization of 1941 PDAC cells. The amplification/deletion patterns observed in PDAC cells on many chromosomes differ significantly from those observed in epithelial cells. The study of Pseudotime Trajectories demonstrated that the C0 macrophage subtype expressing TGM2+ had the lowest level of differentiation. Additionally, the examination of gene set scores related to efferocytosis suggested that this subtype displayed higher activity during the efferocytosis process compared to other subtypes. The most active transcription factors for each macrophage subtype were identified as BACH1, NFE2, TEAD4 and ARID3A. In conclusion, the examination of human PDAC tissue samples using immunofluorescence analysis demonstrated the co-localization of CD68 and CD11b within regions exhibiting the presence of keratin (KRT) and alpha-smooth muscle actin (α-SMA). This observation implies a spatial association between macrophages, fibroblasts, and epithelial cells. There is variation in the expression of efferocytosis-associated genes between C0 macrophage TGM2+ and other macrophage cell types. This observation implies that the diversity of macrophage cells might potentially influence the metastatic advancement of PDAC. Moreover, the central transcription factor of different macrophage subtypes offers a promising opportunity for targeted immunotherapy in the treatment of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Eferocitosis , Análisis de Expresión Génica de una Sola Célula , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Macrófagos/metabolismo , Factores de Transcripción/metabolismo , Microambiente Tumoral , Proteínas de Unión al ADN/genética , Factores de Transcripción de Dominio TEA , Profilinas/genética
12.
Biochem Biophys Res Commun ; 705: 149736, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38447392

RESUMEN

BACKGROUND: Orosomucoid (ORM) has been reported as a biomarker of carotid atherosclerosis, but the role of ORM 2, a subtype of ORM, in carotid atherosclerotic plaque formation and the underlying mechanism have not been established. METHODS: Plasma was collected from patients with carotid artery stenosis (CAS) and healthy participants and assessed using mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) technology to identify differentially expressed proteins. The key proteins and related pathways were identified via western blotting, immunohistochemistry, and polymerase chain reaction of carotid artery plaque tissues and in vitro experiments involving vascular smooth muscle cells (VSMCs). RESULTS: We screened 33 differentially expressed proteins out of 535 proteins in the plasma. Seventeen proteins showed increased expressions in the CAS groups relative to the healthy groups, while 16 proteins showed decreased expressions during iTRAQ and bioinformatic analysis. The reactive oxygen species metabolic process was the most common enrichment pathway identified by Gene Ontology analysis, while ORM2, PRDX2, GPX3, HP, HBB, ANXA5, PFN1, CFL1, and S100A11 were key proteins identified by STRING and MCODE analysis. ORM2 showed increased expression in patients with CAS plaques, and ORM2 was accumulated in smooth muscle cells. Oleic acid increased the lipid accumulation and ORM2 and PRDX6 expressions in the VSMCs. The recombinant-ORM2 also increased the lipid accumulation and reactive oxygen species (ROS) in the VSMCs. The expressions of ORM2 and PRDX-6 were correlated, and MJ33 (an inhibitor of PRDX6-PLA2) decreased ROS production and lipid accumulation in VSMCs. CONCLUSION: ORM2 may be a biomarker for CAS; it induced lipid accumulation and ROS production in VSMCs during atherosclerosis plaque formation. However, the relationships between ORM2 and PRDX-6 underlying lipid accumulation-induced plaque vulnerability require further research.


Asunto(s)
Aterosclerosis , Estenosis Carotídea , Placa Aterosclerótica , Humanos , Estenosis Carotídea/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Orosomucoide/metabolismo , Músculo Liso Vascular/metabolismo , Aterosclerosis/metabolismo , Placa Aterosclerótica/metabolismo , Biomarcadores/metabolismo , Arterias Carótidas/metabolismo , Miocitos del Músculo Liso/metabolismo , Lípidos , Profilinas/metabolismo
13.
J Biol Chem ; 300(3): 105740, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340794

RESUMEN

Diseases caused by Leishmania and Trypanosoma parasites are a major health problem in tropical countries. Because of their complex life cycle involving both vertebrate and insect hosts, and >1 billion years of evolutionarily distance, the cell biology of trypanosomatid parasites exhibits pronounced differences to animal cells. For example, the actin cytoskeleton of trypanosomatids is divergent when compared with other eukaryotes. To understand how actin dynamics are regulated in trypanosomatid parasites, we focused on a central actin-binding protein profilin. Co-crystal structure of Leishmania major actin in complex with L. major profilin revealed that, although the overall folds of actin and profilin are conserved in eukaryotes, Leishmania profilin contains a unique α-helical insertion, which interacts with the target binding cleft of actin monomer. This insertion is conserved across the Trypanosomatidae family and is similar to the structure of WASP homology-2 (WH2) domain, a small actin-binding motif found in many other cytoskeletal regulators. The WH2-like motif contributes to actin monomer binding and enhances the actin nucleotide exchange activity of Leishmania profilin. Moreover, Leishmania profilin inhibited formin-catalyzed actin filament assembly in a mechanism that is dependent on the presence of the WH2-like motif. By generating profilin knockout and knockin Leishmania mexicana strains, we show that profilin is important for efficient endocytic sorting in parasites, and that the ability to bind actin monomers and proline-rich proteins, and the presence of a functional WH2-like motif, are important for the in vivo function of Leishmania profilin. Collectively, this study uncovers molecular principles by which profilin regulates actin dynamics in trypanosomatids.


Asunto(s)
Citoesqueleto de Actina , Actinas , Leishmania major , Parásitos , Profilinas , Animales , Humanos , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalización , Cristalografía por Rayos X , Leishmania major/citología , Leishmania major/metabolismo , Parásitos/citología , Parásitos/metabolismo , Profilinas/química , Profilinas/metabolismo , Unión Proteica , Dominios Proteicos
14.
Sci Rep ; 14(1): 4479, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396092

RESUMEN

The COVID-19 pandemic, triggered by severe acute respiratory syndrome coronavirus 2, has affected millions of people worldwide. Much research has been dedicated to our understanding of COVID-19 disease heterogeneity and severity, but less is known about recovery associated changes. To address this gap in knowledge, we quantified the proteome from serum samples from 29 COVID-19 convalescents and 29 age-, race-, and sex-matched healthy controls. Samples were acquired within the first months of the pandemic. Many proteins from pathways known to change during acute COVID-19 illness, such as from the complement cascade, coagulation system, inflammation and adaptive immune system, had returned to levels seen in healthy controls. In comparison, we identified 22 and 15 proteins with significantly elevated and lowered levels, respectively, amongst COVID-19 convalescents compared to healthy controls. Some of the changes were similar to those observed for the acute phase of the disease, i.e. elevated levels of proteins from hemolysis, the adaptive immune systems, and inflammation. In contrast, some alterations opposed those in the acute phase, e.g. elevated levels of CETP and APOA1 which function in lipid/cholesterol metabolism, and decreased levels of proteins from the complement cascade (e.g. C1R, C1S, and VWF), the coagulation system (e.g. THBS1 and VWF), and the regulation of the actin cytoskeleton (e.g. PFN1 and CFL1) amongst COVID-19 convalescents. We speculate that some of these shifts might originate from a transient decrease in platelet counts upon recovery from the disease. Finally, we observed race-specific changes, e.g. with respect to immunoglobulins and proteins related to cholesterol metabolism.


Asunto(s)
COVID-19 , Humanos , Pandemias , Factor de von Willebrand , Proteínas Sanguíneas , Inflamación , Colesterol , Profilinas
15.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338682

RESUMEN

Pseudoexfoliation syndrome (PEX) is characterized by the accumulation of abnormal extracellular matrix material in ocular and non-ocular tissues, including blood vessel walls. Clot-forming dysfunction might be responsible for venous thrombosis in PEX. We investigated global coagulation, the proteome, and functions of platelets in PEX patients and aimed to determine prognostic biomarkers for thrombosis risk in PEX. Peripheral blood was collected from PEX and retinal vein occlusion (RVO) patients, and age-sex matched controls. Viscoelastic hemostasis was evaluated by rotational thromboelastometry (ROTEM). Platelet markers (CD41, CD42, CD61, and CD62p) and endothelial markers (P-selectin, E-selectin, and von Willebrand factor) were investigated by flow cytometry and ELISA, respectively. The platelet proteome was analyzed by 2D fluorescence difference gel electrophoresis followed by mass spectrometry. Clot formation time (CFT) is significantly reduced in PEX patients compared to the controls (p < 0.05). P-selectin levels were higher in PEX patients than in controls (p < 0.05); E-selectin and von Willebrand factor remained unchanged. The monitorization of CFT by ROTEM, and soluble P-selectin, may help assess thrombotic risk in PEX patients. Proteomic analysis revealed differential expression of Profilin-1 in platelets. Profilin-1 regulates the stability of actin-cytoskeleton and may contribute to impaired platelet hemostatic functions. Increased P-selectin levels together with impaired coagulation dynamics might be responsible for the thrombotic events in PEX disease.


Asunto(s)
Síndrome de Exfoliación , Trombofilia , Humanos , Selectina-P , Profilinas , Proteoma , Factor de von Willebrand/metabolismo , Proteómica
16.
Theranostics ; 14(4): 1561-1582, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389837

RESUMEN

Rationale: The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) promotes pathological mitochondrial fission during septic acute kidney injury. The mitochondrial open reading frame of the 12S rRNA type-c (MOTS-c) is a mitochondria-derived peptide that exhibits anti-inflammatory properties during cardiovascular illnesses. We explored whether endotoxemia-induced myocardial microvascular injury involved DNA-PKcs and MOTS-c dysregulation. Methods: To induce endotoxemia in vivo, endothelial cell-specific DNA-PKcs-knockout mice were injected intraperitoneally with a single dose of lipopolysaccharide (10 mg/kg) and evaluated after 72 h. Results: Lipopolysaccharide exposure increased DNA-PKcs activity in cardiac microvascular endothelial cells, while pharmacological inhibition or endothelial cell-specific genetic ablation of DNA-PKcs reduced lipopolysaccharide-induced myocardial microvascular dysfunction. Proteomic analyses showed that endothelial DNA-PKcs ablation primarily altered mitochondrial protein expression. Verification assays confirmed that DNA-PKcs drastically repressed MOTS-c transcription by inducing mtDNA breaks via pathological mitochondrial fission. Inhibiting MOTS-c neutralized the endothelial protective effects of DNA-PKcs ablation, whereas MOTS-c supplementation enhanced endothelial barrier function and myocardial microvascular homeostasis under lipopolysaccharide stress. In molecular studies, MOTS-c downregulation disinhibited c-Jun N-terminal kinase (JNK), allowing JNK to phosphorylate profilin-S173. Inhibiting JNK or transfecting cells with a profilin phosphorylation-defective mutant improved endothelial barrier function by preventing F-actin depolymerization and lamellipodial degradation following lipopolysaccharide treatment. Conclusions: DNA-PKcs inactivation during endotoxemia could be a worthwhile therapeutic strategy to restore MOTS-c expression, prevent JNK-induced profilin phosphorylation, improve F-actin polymerization, and enhance lamellipodial integrity, ultimately ameliorating endothelial barrier function and reducing myocardial microvascular injury.


Asunto(s)
Endotoxemia , Lesiones Cardíacas , Animales , Ratones , Actinas , Dominio Catalítico , ADN , Proteína Quinasa Activada por ADN , Células Endoteliales , Lipopolisacáridos , Sistema de Señalización de MAP Quinasas , Profilinas , Proteómica , Seudópodos
17.
J Allergy Clin Immunol Pract ; 12(3): 599-604, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280450

RESUMEN

Oral allergy syndrome or pollen food allergy syndrome (PFAS) represents a common clinical conundrum when the reported trigger food is a tree nut (usually almond or hazelnut) or peanut. The PFAS may give rise to uncertainty about the potential severity of the future reactions, indications for prescribing epinephrine, and the extent of the necessary dietary avoidance. As a food allergy, secondary to cross-reactivity with airborne pollen, PFAS usually manifests toward the end of the first decade of life as contact urticaria of the oropharyngeal mucous membranes. Molecular allergology facilitates diagnosis and risk stratification by establishing the profile of sensitization. Exclusive sensitization to pathogenesis-related proteins family 10 (PR10) and profilins indicates that signs and symptoms are due to PFAS, whereas sensitization to seed storage proteins with or without sensitization to PR10 and profilins may indicate a more severe primary nut allergy phenotype. Management relies on avoidance of the specific nut trigger, advice on the likelihood of more severe local or systemic symptoms, and treatment of reactions according to the severity. Future studies are needed to better delineate the risk of systemic reactions in individuals with nut PFAS and to establish the role of food or pollen allergen immunotherapy for the prevention or moderation of this condition.


Asunto(s)
Fluorocarburos , Hipersensibilidad a los Alimentos , Hipersensibilidad a la Nuez , Humanos , Nueces , Profilinas , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/terapia , Hipersensibilidad a la Nuez/diagnóstico , Hipersensibilidad a la Nuez/terapia , Alérgenos , Polen , Desensibilización Inmunológica , Síndrome
18.
Clin Transl Gastroenterol ; 15(1): e00651, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37787436

RESUMEN

INTRODUCTION: Currently, the diagnosis of achalasia mainly relies on invasive or radioactive examinations. This study aimed to develop a noninvasive diagnostic method for achalasia based on specific serum markers. METHODS: Serum levels of profilin-1, galectin-10, immunoglobulin heavy variable 3-9, vasodilator-stimulated phosphoprotein, and transgelin-2 were measured in patients with achalasia and controls by enzyme-linked immunosorbent assay. The diagnostic values and thresholds were determined by the receiver operating characteristic curve analysis. Then, patients with dysphagia were prospectively enrolled to validate the ability of these molecules for achalasia diagnosing. RESULTS: A total of 142 patients with achalasia and 50 nonachalasia controls (healthy volunteers and patients with reflux esophagitis) were retrospectively included. The serum levels of profilin-1, galectin-10, and transgelin-2 in patients with achalasia were significantly higher than those in healthy volunteers and patients with reflux esophagitis ( P all < 0.001). Profilin-1, galectin-10, and transgelin-2 were of good performance in diagnosing achalasia, with optimal thresholds of 2,171.2, 33.9, and 1,630.6 pg/mL, respectively. Second, 40 patients with dysphagia were prospectively enrolled to the validation of achalasia. For profilin-1, the positive predictive value, negative predictive value, sensitivity, and specificity were 100.0%, 64.5%, 45.0%, and 100.0%, respectively. The figures for transgelin-2 were 65.5%, 90.9%, 95.0%, and 50.0%. When both increased, the positive predictive value reached to 100.0%. When both indexes were normal, the negative predictive value was 100.0%. DISCUSSION: Profilin-1 and transgelin-2 were promising biomarkers for achalasia diagnosis and performed better in combination. Further multicenter studies are necessary to verify their application as preliminary screening tools for achalasia.


Asunto(s)
Trastornos de Deglución , Acalasia del Esófago , Esofagitis Péptica , Humanos , Acalasia del Esófago/diagnóstico , Profilinas , Estudios Retrospectivos , Biomarcadores , Galectinas
19.
Biochem Cell Biol ; 102(2): 206-212, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048555

RESUMEN

Profilin is a small protein that controls actin polymerization in yeast and higher eukaryotes. In addition, profilin has emerged as a multifunctional protein that contributes to other processes in multicellular organisms. This study focuses on profilin (Pfy1) in the budding yeast Saccharomyces cerevisiae. The primary sequences of yeast Pfy1 and its metazoan orthologs diverge vastly. However, structural elements of profilin are conserved among different species. To date, the full spectrum of Pfy1 functions has yet to be defined. The current work explores the possible involvement of yeast profilin in nuclear protein import. To this end, a panel of well-characterized yeast profilin mutants was evaluated. The experiments demonstrate that yeast profilin (i) regulates nuclear protein import, (ii) determines the subcellular localization of essential nuclear transport factors, and (iii) controls the relative abundance of actin and tubulin. Together, these results define yeast profilin as a moonlighting protein that engages in multiple essential cellular activities.


Asunto(s)
Actinas , Profilinas , Animales , Actinas/genética , Actinas/metabolismo , Profilinas/genética , Profilinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Nucleares/metabolismo
20.
Arch Gerontol Geriatr ; 117: 105260, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37979338

RESUMEN

OBJECTIVES: Exercise training plays a significant role in preventing the destruction of central nerve neurons and muscle atrophy. The purpose of the present study was to investigate the effect of a period of swimming training on the expression of Neural cell adhesion molecule (NCAM), Semaphorin 3A (SEMA3A), and Profilin-1 (PFN1) proteins in the gastrocnemius muscle of Alzheimer-like phenotype rats. METHODS & MATERIALS: 32 Wistar males were (6 weeks of age) divided into four groups: Healthy Control (HC), Alzheimer-like phenotype's Control (AC), Healthy Training (HT), and Alzheimer-like phenotype's Training (AT). Alzheimer-like phenotypes were induced by beta-amyloid injection in the hippocampus. The training program consisted of 20 swimming sessions. Gastrocnemius muscle was removed after the intervention, and NCAM, SEMA3A, and PFN1 proteins were measured by the immunohistoflorescent method. RESULTS: The results showed that SEMA3A was increased (p = 0.001), and NCAM (p = 0.001), and PFN1 (p = 0.001) were decreased in AC compared to the HC group. Also, the results showed that NCAM (p = 0.001) and Pfn1 (p = 0.002) increased in the HT group compared to HC, and the NCAM (p = 0.001) and Pfn1 (p = 0.002) in AT group compared to AC (p = 0.001) increased significantly, while SEMA3A was reduced in the HT group compared to HC (p = 0.001) and AT group compared to AC (p = 0.001) CONCLUSION: Swimming effectively improves axon regeneration and neuronal formation in motor neurons and, therefore, can be an effective intervention to prevent and control the complications of Alzheimer-like phenotype.


Asunto(s)
Enfermedad de Alzheimer , Natación , Masculino , Humanos , Ratas , Animales , Ratas Wistar , Natación/fisiología , Semaforina-3A/genética , Semaforina-3A/metabolismo , Semaforina-3A/farmacología , Axones/metabolismo , Regeneración Nerviosa , Músculo Esquelético/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Moléculas de Adhesión de Célula Nerviosa/farmacología , Profilinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...