Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36076983

RESUMEN

Acute kidney injury (AKI) is commonly associated with severe human diseases, and often worsens the outcome in hospitalized patients. The mammalian kidney has the ability to recover spontaneously from AKI; however, little progress has been made in the development of supportive treatments. Increasing evidence suggest that histone deacetylases (HDAC) and NF-κB promote the pathogenesis of AKI, and inhibition of Hdac activity has a protective effect in murine models of AKI. However, the role of HDAC at the early stages of recovery is unknown. We used the zebrafish pronephros model to study the role of epigenetic modifiers in the immediate repair response after injury to the tubular epithelium. Using specific inhibitors, we found that the histone deacetylase Hdac2, Hdac6, and Hdac8 activities are required for the repair via collective cell migration. We found that hdac6, hdac8, and nfkbiaa expression levels were upregulated in the repairing epithelial cells shortly after injury. Depletion of hdac6, hdac8, or nfkbiaa with morpholino oligonucleotides impaired the repair process, whereas the combined depletion of all three genes synergistically suppressed the recovery process. Furthermore, time-lapse video microscopy revealed that the lamellipodia and filopodia formation in the flanking cells was strongly reduced in hdac6-depleted embryos. Our findings suggest that Hdac activity and NF-κB are synergistically required for the immediate repair response in the zebrafish pronephros model of AKI, and the timing of HDAC inhibition might be important in developing supportive protocols in the human disease.


Asunto(s)
Lesión Renal Aguda , Histona Desacetilasa 6/metabolismo , Histona Desacetilasas/metabolismo , Pronefro , Proteínas de Pez Cebra/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Animales , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ratones , FN-kappa B , Pronefro/metabolismo , Pronefro/patología , Proteínas Represoras , Pez Cebra/metabolismo
2.
Dis Model Mech ; 13(5)2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32152089

RESUMEN

A critical barrier in the treatment of endosomal and lysosomal diseases is the lack of understanding of the in vivo functions of the putative causative genes. We addressed this by investigating a key pair of endocytic adaptor proteins, PH domain-containing endocytic trafficking adaptor 1 and 2 (PHETA1/2; also known as FAM109A/B, Ses1/2, IPIP27A/B), which interact with the protein product of OCRL, the causative gene for Lowe syndrome. Here, we conducted the first study of PHETA1/2 in vivo, utilizing the zebrafish system. We found that impairment of both zebrafish orthologs, pheta1 and pheta2, disrupted endocytosis and ciliogenesis in renal tissues. In addition, pheta1/2 mutant animals exhibited reduced jaw size and delayed chondrocyte differentiation, indicating a role in craniofacial development. Deficiency of pheta1/2 resulted in dysregulation of cathepsin K, which led to an increased abundance of type II collagen in craniofacial cartilages, a marker of immature cartilage extracellular matrix. Cathepsin K inhibition rescued the craniofacial phenotypes in the pheta1/2 double mutants. The abnormal renal and craniofacial phenotypes in the pheta1/2 mutant animals were consistent with the clinical presentation of a patient with a de novo arginine (R) to cysteine (C) variant (R6C) of PHETA1. Expressing the patient-specific variant in zebrafish exacerbated craniofacial deficits, suggesting that the R6C allele acts in a dominant-negative manner. Together, these results provide insights into the in vivo roles of PHETA1/2 and suggest that the R6C variant is contributory to the pathogenesis of disease in the patient.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Endocitosis , Cara/embriología , Riñón/embriología , Cráneo/embriología , Proteínas de Pez Cebra/deficiencia , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Sistemas CRISPR-Cas/genética , Catepsina K/metabolismo , Diferenciación Celular , Condrocitos/patología , Cilios/patología , Colágeno Tipo II/metabolismo , Genes Dominantes , Células HeLa , Humanos , Morfogénesis , Actividad Motora , Mutación/genética , Pronefro/patología , Enfermedades no Diagnosticadas/diagnóstico por imagen , Enfermedades no Diagnosticadas/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
3.
Methods Mol Biol ; 2067: 25-39, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31701443

RESUMEN

With the advances in next-generation sequencing and rapid filtering of candidate variants in diseased patients, it has been increasingly important to develop translatable in vivo models to study genetic changes. This allows for functional validation of pathogenic mutations and establishes a system to understand the etiology of disease. Due to the ease of genetic manipulation and rapid ex utero development, the zebrafish has become a valuable resource to study important biological processes, including nephrogenesis. The development and function of the zebrafish pronephros are akin to that of mammals. As such, they offer a tractable model to study kidney disease, especially diabetic nephropathy. However, in order to study kidney dysfunction in zebrafish it is imperative that an appropriate readout is available. The appearance of macro-proteins in patient's urine is indicative of defective kidney function. In this technical chapter, we describe the in vivo use of fluorescently tagged dextrans of different molecular weights to reveal the integrity of the zebrafish glomerular filtration barrier.


Asunto(s)
Barrera de Filtración Glomerular/patología , Pronefro/patología , Animales , Animales Modificados Genéticamente , Dextranos/química , Dextranos/metabolismo , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/orina , Modelos Animales de Enfermedad , Embrión no Mamífero/fisiología , Femenino , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Genes Reporteros/genética , Barrera de Filtración Glomerular/fisiología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Masculino , Pronefro/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Clin Sci (Lond) ; 132(23): 2469-2481, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518571

RESUMEN

The renin-angiotensin system (RAS) is highly conserved, and components of the RAS are present in all vertebrates to some degree. Although the RAS has been studied since the discovery of renin, its biological role continues to broaden with the identification and characterization of new peptides. The evolutionarily distant zebrafish is a remarkable model for studying the kidney due to its genetic tractability and accessibility for in vivo imaging. The zebrafish pronephros is an especially useful kidney model due to its structural simplicity yet complex functionality, including capacity for glomerular and tubular filtration. Both the pronephros and mesonephros contain renin-expressing perivascular cells, which respond to RAS inhibition, making the zebrafish an excellent model for studying the RAS. This review summarizes the physiological and genetic tools currently available for studying the zebrafish kidney with regards to functionality of the RAS, using novel imaging techniques such as SPIM microscopy coupled with targeted single cell ablation and synthesis of vasoactive RAS peptides.


Asunto(s)
Pronefro/metabolismo , Sistema Renina-Angiotensina , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Enfermedades Renales/inducido químicamente , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Pronefro/efectos de los fármacos , Pronefro/patología , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/genética , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
Clin Nephrol ; 86 (2016)(13): 114-118, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27509583

RESUMEN

BACKGROUND: Risk variant Apolipoprotein L1 (G1/G2) are strongly associated with a spectrum of kidney disease in people of recent African descent. The mechanism of ApoL1 nephropathy is unknown. Podocytes and/or endothelial cells are the presumed target kidney cells. Given the close homology in structure and function of zebrafish (ZF) pronephros and human nephron, we studied the effect of podocyte-specific or endothelium-specific expression of ApoL1 (G0, G1, or G2) on the structure and function of ZF pronephros. METHODS: Wild type (G0) or risk variant ApoL1 (G1/G2) were expressed in podocyte-specific or endothelium-specific under podocin/Flk promoters, respectively, using Gal4-UAS system. Structural pronephric changes were studied with light and electron microscopy (EM). Proteinuria was assayed by measuring renal excretion of GFP-vitamin D binding protein. Puromycin aminonucleoside (PAN) was used as inducer of podocyte injury. RESULTS: Endothelial-specific transgenic expression of G1/G2 is associated with endothelial injury indicated by endothelial cell swelling, segmental early double contours, and loss of endothelium fenestrae. Podocyte specific expression of G1 is associated with segmental podocyte foot process effacement and irregularities relative to G0. Despite the histological changes, the expression of G1/G2 alone in podocyte or endothelium compartment is not associated with edema, proteinuria, or gross whole fish phenotype. Moreover, PAN produced equal pericardial edema in all transgenic fish as well as nontransgenic controls. CONCLUSIONS: Transgenic expression human ApoL1 (G1/G2) is associated with histologic abnormalities in ZF glomeruli but is insufficient to cause quantifiable renal dysfunction. This finding supports the necessity of a "second hit" in the pathogenesis/progression of ApoL1-associated nephropathy.


Asunto(s)
Apolipoproteínas/genética , Enfermedades Renales/genética , Lipoproteínas HDL/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Variación Genética/genética , Genotipo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Glomérulos Renales/metabolismo , Proteínas de la Membrana/genética , Podocitos/metabolismo , Podocitos/patología , Regiones Promotoras Genéticas/genética , Pronefro/metabolismo , Pronefro/patología , Proteinuria/orina , Factores de Transcripción/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Proteína de Unión a Vitamina D/orina , Pez Cebra
6.
Dis Model Mech ; 9(8): 873-84, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27491085

RESUMEN

Patients with von Hippel-Lindau (VHL) disease harbor a germline mutation in the VHL gene leading to the development of several tumor types including clear cell renal cell carcinoma (ccRCC). In addition, the VHL gene is inactivated in over 90% of sporadic ccRCC cases. 'Clear cell' tumors contain large, proliferating cells with 'clear cytoplasm', and a reduced number of cilia. VHL inactivation leads to the stabilization of hypoxia inducible factors 1a and 2a [HIF1a and HIF2a (HIF2a is also known as EPAS1)] with consequent up-regulation of specific target genes involved in cell proliferation, angiogenesis and erythropoiesis. A zebrafish model with a homozygous inactivation in the VHL gene (vhl(-/-)) recapitulates several aspects of the human disease, including development of highly vascular lesions in the brain and the retina and erythrocytosis. Here, we characterize for the first time the epithelial abnormalities present in the kidney of the vhl(-/-) zebrafish larvae as a first step in building a model of ccRCC in zebrafish. Our data show that the vhl(-/-) zebrafish kidney is characterized by an increased tubule diameter, disorganized cilia, the dramatic formation of cytoplasmic lipid vesicles, glycogen accumulation, aberrant cell proliferation and abnormal apoptosis. This phenotype of the vhl(-/-) pronephros is reminiscent of clear cell histology, indicating that the vhl(-/-) mutant zebrafish might serve as a model of early stage RCC. Treatment of vhl(-/-) zebrafish embryos with a small-molecule HIF2a inhibitor rescued the pronephric abnormalities, underscoring the value of the zebrafish model in drug discovery for treatment of VHL disease and ccRCC.


Asunto(s)
Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Pronefro/metabolismo , Pronefro/patología , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma de Células Renales/metabolismo , Proliferación Celular , Vesículas Citoplasmáticas/metabolismo , Desarrollo Embrionario , Glucógeno/metabolismo , Humanos , Neoplasias Renales/metabolismo , Túbulos Renales/embriología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Túbulos Renales/ultraestructura , Larva/metabolismo , Estadificación de Neoplasias , Fenotipo , Pronefro/embriología , Pronefro/ultraestructura
7.
Mol Med Rep ; 9(2): 457-65, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24337247

RESUMEN

The slit diaphragm (SD) is a highly specialized intercellular junction between podocyte foot processes and is crucial in the formation of the filtration barrier in the renal glomeruli. Zebrafish Nephrin and Podocin are important in the formation of the podocyte SD and mutations in NEPHRIN and PODOCIN genes cause human nephrotic syndrome. In the present study, the zebrafish Podocin protein was observed to be predominantly localized in the pronephric glomerular podocytes, as previously reported for Nephrin. To understand the function of Podocin and Nephrin in zebrafish, splice­blocking morpholino antisense oligonucleotides were used. Knockdown of Podocin or Nephrin by this method induced pronephric glomerular hypoplasia with pericardial edema. Human Nephrin and Podocin mRNA rescued this glomerular phenotype, however, the efficacy of the rescues was greatly reduced when mRNA­encoding human disease­causing NEPHRIN­R1109X and PODOCIN­R138Q were used. Furthermore, an association between zebrafish Nephrin and Podocin proteins was observed. Notably, Podocin­R150Q, corresponding to human PODOCIN­R138Q, markedly interacted with Nephrin compared with wild­type Podocin, suggesting that this strong binding capacity of mutated Podocin impairs the transport of Nephrin and Podocin out of the endoplasmic reticulum. The results suggest that the functions of Nephrin and Podocin are highly conserved between the zebrafish pronephros and mammalian metanephros. Accordingly, the zebrafish pronephros may provide a useful tool for analyzing disease­causing gene mutations in human kidney disorders.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Enfermedades Renales/genética , Proteínas de la Membrana/metabolismo , Pronefro/metabolismo , Animales , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Glomérulos Renales/metabolismo , Mamíferos , Proteínas de la Membrana/genética , Mutación , Podocitos/metabolismo , Pronefro/patología , Unión Proteica , Pez Cebra
8.
PLoS One ; 8(5): e63123, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23650548

RESUMEN

DYX1C1, a susceptibility gene for dyslexia, encodes a tetratricopeptide repeat domain containing protein that has been implicated in neuronal migration in rodent models. The developmental role of this gene remains unexplored. To understand the biological function(s) of zebrafish dyx1c1 during embryonic development, we cloned the zebrafish dyx1c1 and used morpholino-based knockdown strategy. Quantitative real-time PCR analysis revealed the presence of dyx1c1 transcripts in embryos, early larval stages and in a wide range of adult tissues. Using mRNA in situ hybridization, we show here that dyx1c1 is expressed in many ciliated tissues in zebrafish. Inhibition of dyx1c1 produced pleiotropic phenotypes characteristically associated with cilia defects such as body curvature, hydrocephalus, situs inversus and kidney cysts. We also demonstrate that in dyx1c1 morphants, cilia length is reduced in several organs including Kupffer's vesicle, pronephros, spinal canal and olfactory placode. Furthermore, electron microscopic analysis of cilia in dyx1c1 morphants revealed loss of both outer (ODA) and inner dynein arms (IDA) that have been shown to be required for cilia motility. Considering all these results, we propose an essential role for dyx1c1 in cilia growth and function.


Asunto(s)
Cilios/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cilios/patología , Clonación Molecular , Dineínas/metabolismo , Embrión no Mamífero/anomalías , Embrión no Mamífero/patología , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Macrófagos del Hígado/patología , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Morfolinos/genética , Especificidad de Órganos , Pronefro/metabolismo , Pronefro/patología , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Canal Medular/patología , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
9.
Methods Cell Biol ; 105: 191-222, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21951531

RESUMEN

Basement membranes (BMs) are a complex, sheet-like network of specialized extracellular matrix that underlies epithelial cells and surrounds muscle cells. They provide adherence between neighboring tissues, permit some flexibility of these adherent structures, and can act as a store for growth factors and as a guide for cell migration. The BM is not just a static structure; its deposition and remodeling are important for many processes including embryonic development, immune response, and wound healing. To date, dysfunction in BM deposition or remodeling has been linked to many human congenital disorders and diseases, affecting many different tissues in the body, including malformations, dystrophies, and cancer. However, many questions remain to be answered on the role BM proteins, and their mutations, play in the pathogenesis of human disease. In recent years, the zebrafish (Danio rerio) has emerged as a powerful animal model for human development and disease. In the first part of this chapter, we provide an overview of described defects caused by BM dysfunction in zebrafish, including development and function of notochord, muscle, central nervous system, skin, cardiovascular system, and kidney. In the second part, we will describe details of methods used to visualize and assess the structure of the BM in zebrafish, and to functionally analyze its different components.


Asunto(s)
Membrana Basal , Matriz Extracelular , Microscopía Electrónica de Transmisión/métodos , Microtomía/métodos , Genética Inversa/métodos , Adhesión del Tejido/métodos , Pez Cebra , Aletas de Animales/patología , Animales , Membrana Basal/patología , Membrana Basal/fisiopatología , Vasos Sanguíneos/patología , Modelos Animales de Enfermedad , Desarrollo Embrionario/fisiología , Matriz Extracelular/patología , Matriz Extracelular/ultraestructura , Técnicas de Transferencia de Gen , Humanos , Músculos/patología , Mutación , Tubo Neural/patología , Notocorda/patología , Pronefro/patología , Piel/patología , Somitos/patología , Pez Cebra/anomalías , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA