Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Kidney Int ; 105(1): 177-188, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923132

RESUMEN

Activation of the alternative pathway (AP) of complement is involved in the pathogenesis of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), although the underlying molecular mechanisms are unclear. To gain insight into the role of the AP, common gene variants in CFH/CFHR1-5, CFB, C3 and MCP, and longitudinal determinations of plasma C3, C4, FH, FHR-1, FHR-2, FHR-5, FB, properdin and sC5b-9 levels were analyzed in a Spanish AAV cohort consisting of 102 patients; 54 with active AAV (active cohort) and 48 in remission not receiving immunosuppressants or dialysis therapy (remission cohort). The validation cohort consisted of 100 patients with ANCA-associated glomerulonephritis. Here, we demonstrated that common genetic variants in complement components of the AP are associated with disease susceptibility (CFB32Q/W) or severity of kidney damage in AAV (CFH-H1, CFH1H2 and ΔCFHR3/1). Plasma levels of complement components were significantly different between active and remission cohorts. In longitudinal observations, a high degree of AP activation at diagnosis was associated with worse disease outcome, while high basal FHR-1 levels and lower FH/FHR-1 ratios determined severe forms of kidney associated AAV. These genetic and plasmatic findings were confirmed in the validation cohort. Additionally, autoantibodies against FH and C3 convertase were identified in one and five active patients, respectively. Thus, our study identified key genetic and plasma components of the AP that determine disease susceptibility, prognosis, and severity in AAV. Our data also suggests that balance between FH and FHR-1 is critical and supports FHR-1 as a novel AP-specific therapeutic target in AAV.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Anticuerpos Anticitoplasma de Neutrófilos , Humanos , Susceptibilidad a Enfermedades , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/diagnóstico , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/genética , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/complicaciones , Factores Inmunológicos , Properdina/genética
2.
Front Immunol ; 14: 1183768, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37207230

RESUMEN

Phagocytosis plays vital roles in injury and repair, while its regulation by properdin and innate repair receptor, a heterodimer receptor of erythropoietin receptor (EPOR)/ß common receptor (ßcR), in renal ischaemia-reperfusion (IR) remains unclear. Properdin, a pattern recognition molecule, facilitates phagocytosis by opsonizing damaged cells. Our previous study showed that the phagocytic function of tubular epithelial cells isolated from properdin knockout (PKO) mouse kidneys was compromised, with upregulated EPOR in IR kidneys that was further raised by PKO at repair phase. Here, helix B surface peptide (HBSP), derived from EPO only recognizing EPOR/ßcR, ameliorated IR-induced functional and structural damage in both PKO and wild-type (WT) mice. In particular, HBSP treatment led to less cell apoptosis and F4/80+ macrophage infiltration in the interstitium of PKO IR kidneys compared to the WT control. In addition, the expression of EPOR/ßcR was increased by IR in WT kidneys, and furthered increased in IR PKO kidneys, but greatly reduced by HBSP in the IR kidneys of PKO mice. HBSP also increased PCNA expression in IR kidneys of both genotypes. Moreover, iridium-labelled HBSP (HBSP-Ir) was localized mainly in the tubular epithelia after 17-h renal IR in WT mice. HBSP-Ir also anchored to mouse kidney epithelial (TCMK-1) cells treated by H2O2. Both EPOR and EPOR/ßcR were significantly increased by H2O2 treatment, while further increased EPOR was showed in cells transfected with small interfering RNA (siRNA) targeting properdin, but a lower level of EPOR was seen in EPOR siRNA and HBSP-treated cells. The number of early apoptotic cells was increased by EPOR siRNA in H2O2-treated TCMK-1, but markedly reversed by HBSP. The phagocytic function of TCMK-1 cells assessed by uptake fluorescence-labelled E.coli was enhanced by HBSP dose-dependently. Our data demonstrate for the first time that HBSP improves the phagocytic function of tubular epithelial cells and kidney repair post IR injury, via upregulated EPOR/ßcR triggered by both IR and properdin deficiency.


Asunto(s)
Properdina , Daño por Reperfusión , Ratones , Animales , Properdina/genética , Peróxido de Hidrógeno , Riñón , Daño por Reperfusión/genética , Isquemia , Células Epiteliales , Fagocitosis/genética , ARN Interferente Pequeño
3.
Immunol Rev ; 313(1): 46-59, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36097870

RESUMEN

Structures of alternative pathway proteins have offered a comprehensive structural basis for understanding the molecular mechanisms governing activation and regulation of the amplification pathway of the complement cascade. Although properdin (FP) is required in vivo to sustain a functional alternative pathway, structural studies have been lagging behind due to the extended structure and polydisperse nature of FP. We review recent progress with respect to structure determination of FP and its proconvertase/convertase complexes. These structures identify in detail regions in C3b, factor B and FP involved in their mutual interactions. Structures of FP oligomers obtained by integrative studies have shed light on how FP activity depends on its oligomerization state. The accumulated structural knowledge allows us to rationalize the effect of point mutations causing FP deficiency. The structural basis for FP inhibition by the tick CirpA proteins is reviewed and the potential of alphafold2 predictions for understanding the interaction of FP with other tick proteins and the NKp46 receptor on host immune cells is discussed. The accumulated structural knowledge forms a comprehensive basis for understanding molecular interactions involving FP, pathological conditions arising from low levels of FP, and the molecular strategies used by ticks to suppress the alternative pathway.


Asunto(s)
Activación de Complemento , Properdina , Humanos , Properdina/genética , Properdina/metabolismo , Vía Alternativa del Complemento
4.
Immunobiology ; 227(4): 152246, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35843030

RESUMEN

The complement system does not only play an important role in the defence against microorganism and pathogens, but also contributes to the regulation of innate and adaptive immunity. Especially activation fragments C3a and C5a and complement activation at the interface of antigen presenting cell (APC) and T cell, were shown to have a role in T cell activation and proliferation. Whereas most complement factors are produced by the liver, properdin, a positive regulator of the C3 convertase, is mainly produced by myeloid cells. Here we show that properdin can be detected in myeloid cell infiltrate during human renal allograft rejection. In vitro, properdin is produced and secreted by human immature dendritic cells (iDCs), which is further increased by CD40-L-matured DCs (mDCs). Transfection with a specific properdin siRNA reduced properdin secretion by iDCs and mDCs, without affecting the expression of co-stimulatory markers CD80 and CD86. Co-culture of properdin siRNA-transfected iDCs and mDCs with human allogeneic T cells resulted in reduced T cell proliferation, especially under lower DC-T cell ratio's (1:30 and 1:90 ratio). In addition, T cell cytokines were altered, including a reduced TNF-α and IL-17 secretion by T cells co-cultured with properdin siRNA-transfected iDCs. Taken together, these results indicate a local role for properdin during the interaction of DCs and allogeneic T cells, contributing to the shaping of T cell proliferation and activation.


Asunto(s)
Trasplante de Riñón , Properdina , Células Cultivadas , Células Dendríticas , Humanos , Properdina/genética , Properdina/metabolismo , ARN Interferente Pequeño , Linfocitos T
5.
Adv Immunol ; 153: 1-90, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35469595

RESUMEN

The complement system consists of three pathways (alternative, classical, and lectin) that play a fundamental role in immunity and homeostasis. The multifunctional role of the complement system includes direct lysis of pathogens, tagging pathogens for phagocytosis, promotion of inflammatory responses to control infection, regulation of adaptive cellular immune responses, and removal of apoptotic/dead cells and immune complexes from circulation. A tight regulation of the complement system is essential to avoid unwanted complement-mediated damage to the host. This regulation is ensured by a set of proteins called complement regulatory proteins. Deficiencies or malfunction of these regulatory proteins may lead to pro-thrombotic hematological diseases, renal and ocular diseases, and autoimmune diseases, among others. This review focuses on the importance of two complement regulatory proteins of the alternative pathway, Factor H and properdin, and their role in human diseases with an emphasis on: (a) characterizing the main mechanism of action of Factor H and properdin in regulating the complement system and protecting the host from complement-mediated attack, (b) describing the dysregulation of the alternative pathway as a result of deficiencies, or mutations, in Factor H and properdin, (c) outlining the clinical findings, management and treatment of diseases associated with mutations and deficiencies in Factor H, and (d) defining the unwanted and inadequate functioning of properdin in disease, through a discussion of various experimental research findings utilizing in vitro, mouse and human models.


Asunto(s)
Enfermedades Autoinmunes , Properdina , Animales , Enfermedades Autoinmunes/genética , Factor H de Complemento/genética , Humanos , Ratones , Fagocitosis , Properdina/genética , Properdina/metabolismo
6.
Nat Commun ; 13(1): 317, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35031611

RESUMEN

Activation of the serum-resident complement system begins a cascade that leads to activation of membrane-resident complement receptors on immune cells, thus coordinating serum and cellular immune responses. Whilst many molecules act to control inappropriate activation, Properdin is the only known positive regulator of the human complement system. By stabilising the alternative pathway C3 convertase it promotes complement self-amplification and persistent activation boosting the magnitude of the serum complement response by all triggers. In this work, we identify a family of tick-derived alternative pathway complement inhibitors, hereafter termed CirpA. Functional and structural characterisation reveals that members of the CirpA family directly bind to properdin, inhibiting its ability to promote complement activation, and leading to potent inhibition of the complement response in a species specific manner. We provide a full functional and structural characterisation of a properdin inhibitor, opening avenues for future therapeutic approaches.


Asunto(s)
Proteínas de Artrópodos/química , Proteínas de Artrópodos/inmunología , Inactivadores del Complemento/química , Inactivadores del Complemento/inmunología , Properdina/inmunología , Rhipicephalus/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/genética , Activación de Complemento , Complemento C3/química , Complemento C3/inmunología , Vía Alternativa del Complemento , Humanos , Cinética , Properdina/química , Properdina/genética , Rhipicephalus/química , Rhipicephalus/genética , Alineación de Secuencia
7.
J Allergy Clin Immunol ; 149(2): 550-556.e2, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34800432

RESUMEN

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) is characterized by impaired type I interferon activity and a state of hyperinflammation leading to acute respiratory distress syndrome. The complement system has recently emerged as a key player in triggering and maintaining the inflammatory state, but the role of this molecular cascade in severe COVID-19 is still poorly characterized. OBJECTIVE: We aimed at assessing the contribution of complement pathways at both the protein and transcriptomic levels. METHODS: To this end, we systematically assessed the RNA levels of 28 complement genes in the circulating whole blood of patients with COVID-19 and healthy controls, including genes of the alternative pathway, for which data remain scarce. RESULTS: We found differential expression of genes involved in the complement system, yet with various expression patterns: whereas patients displaying moderate disease had elevated expression of classical pathway genes, severe disease was associated with increased lectin and alternative pathway activation, which correlated with inflammation and coagulopathy markers. Additionally, properdin, a pivotal positive regulator of the alternative pathway, showed high RNA expression but was found at low protein concentrations in patients with a severe and critical disease, suggesting its deposition at the sites of complement activation. Notably, low properdin levels were significantly associated with the use of mechanical ventilation (area under the curve = 0.82; P = .002). CONCLUSION: This study sheds light on the role of the alternative pathway in severe COVID-19 and provides additional rationale for the testing of drugs inhibiting the alternative pathway of the complement system.


Asunto(s)
COVID-19/inmunología , Activación de Complemento/genética , Vía Alternativa del Complemento/genética , Proteínas del Sistema Complemento/genética , Coagulación Intravascular Diseminada/inmunología , SARS-CoV-2/patogenicidad , COVID-19/genética , COVID-19/terapia , COVID-19/virología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/virología , Estudios de Casos y Controles , Comorbilidad , Proteínas del Sistema Complemento/inmunología , Diabetes Mellitus/genética , Diabetes Mellitus/inmunología , Diabetes Mellitus/terapia , Diabetes Mellitus/virología , Coagulación Intravascular Diseminada/genética , Coagulación Intravascular Diseminada/terapia , Coagulación Intravascular Diseminada/virología , Femenino , Regulación de la Expresión Génica , Humanos , Hipertensión/genética , Hipertensión/inmunología , Hipertensión/terapia , Hipertensión/virología , Lectinas/genética , Lectinas/inmunología , Masculino , Persona de Mediana Edad , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/virología , Properdina/genética , Properdina/inmunología , Respiración Artificial , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad
8.
Front Immunol ; 13: 1073802, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36846022

RESUMEN

Introduction: C3 glomerulopathies (C3G) are ultra-rare complement-mediated diseases that lead to end-stage renal disease (ESRD) within 10 years of diagnosis in ~50% of patients. Overactivation of the alternative pathway (AP) of complement in the fluid phase and on the surface of the glomerular endothelial glycomatrix is the underlying cause of C3G. Although there are animal models for C3G that focus on genetic drivers of disease, in vivo studies of the impact of acquired drivers are not yet possible. Methods: Here we present an in vitro model of AP activation and regulation on a glycomatrix surface. We use an extracellular matrix substitute (MaxGel) as a base upon which we reconstitute AP C3 convertase. We validated this method using properdin and Factor H (FH) and then assessed the effects of genetic and acquired drivers of C3G on C3 convertase. Results: We show that C3 convertase readily forms on MaxGel and that this formation was positively regulated by properdin and negatively regulated by FH. Additionally, Factor B (FB) and FH mutants impaired complement regulation when compared to wild type counterparts. We also show the effects of C3 nephritic factors (C3Nefs) on convertase stability over time and provide evidence for a novel mechanism of C3Nef-mediated C3G pathogenesis. Discussion: We conclude that this ECM-based model of C3G offers a replicable method by which to evaluate the variable activity of the complement system in C3G, thereby offering an improved understanding of the different factors driving this disease process.


Asunto(s)
Complemento C3 , Enfermedades Renales , Animales , Complemento C3/genética , Complemento C3/metabolismo , Vía Alternativa del Complemento/genética , Properdina/genética , Properdina/metabolismo , Convertasas de Complemento C3-C5/metabolismo , Factor Nefrítico del Complemento 3/metabolismo , Matriz Extracelular/metabolismo
9.
Front Immunol ; 12: 697760, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552582

RESUMEN

Properdin, a positive regulator of complement alternative pathway, participates in renal ischemia-reperfusion (IR) injury and also acts as a pattern-recognition molecule affecting apoptotic T-cell clearance. However, the role of properdin in tubular epithelial cells (TECs) at the repair phase post IR injury is not well defined. This study revealed that properdin knockout (PKO) mice exhibited greater injury in renal function and histology than wild-type (WT) mice post 72-h IR, with more apoptotic cells and macrophages in tubular lumina, increased active caspase-3 and HMGB1, but better histological structure at 24 h. Raised erythropoietin receptor by IR was furthered by PKO and positively correlated with injury and repair markers. Properdin in WT kidneys was also upregulated by IR, while H2O2-increased properdin in TECs was reduced by its small-interfering RNA (siRNA), with raised HMGB1 and apoptosis. Moreover, the phagocytic ability of WT TECs, analyzed by pHrodo Escherichia coli bioparticles, was promoted by H2O2 but inhibited by PKO. These results were confirmed by counting phagocytosed H2O2-induced apoptotic TECs by in situ end labeling fragmented DNAs but not affected by additional serum with/without properdin. Taken together, PKO results in impaired phagocytosis at the repair phase post renal IR injury. Properdin locally produced by TECs plays crucial roles in optimizing damaged cells and regulating phagocytic ability of TECs to effectively clear apoptotic cells and reduce inflammation.


Asunto(s)
Riñón/lesiones , Riñón/patología , Fagocitosis/fisiología , Properdina/deficiencia , Daño por Reperfusión/patología , Animales , Apoptosis/inmunología , Apoptosis/fisiología , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/patología , Células Epiteliales/fisiología , Riñón/irrigación sanguínea , Macrófagos/inmunología , Macrófagos/patología , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Fagocitosis/inmunología , Properdina/genética , Properdina/inmunología , Daño por Reperfusión/inmunología , Daño por Reperfusión/fisiopatología
10.
Front Immunol ; 12: 649882, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868287

RESUMEN

Intestinal ischemia reperfusion (IR)-induced tissue injury represents an acute inflammatory response with significant morbidity and mortality. The mechanism of IR-induced injury is not fully elucidated, but recent studies suggest a critical role for complement activation and for differences between sexes. To test the hypothesis that complement initiation differs by sex in intestinal IR, we performed intestinal IR on male and female WT C57B6L/, C1q-/-, MBL-/-, or properdin (P)-/- mice. Intestinal injury, C3b and C5a production and ex vivo secretions were analyzed. Initial studies demonstrated a difference in complement mRNA and protein in male and female WT mice. In response to IR, male C1q-, MBL- and P-deficient mice sustained less injury than male WT mice. In contrast, only female MBL-/- mice sustained significantly less injury than female wildtype mice. Importantly, wildtype, C1q-/- and P-/- female mice sustained significant less injury than the corresponding male mice. In addition, both C1q and MBL expression and deposition increased in WT male mice, while only elevated MBL expression and deposition occurred in WT female mice. These data suggested that males use both C1q and MBL pathways, while females tend to depend on lectin pathway during intestinal IR. Females produced significantly less serum C5a in MBL-/- and P-/- mice. Our findings suggested that complement activation plays a critical role in intestinal IR in a sex-dependent manner.


Asunto(s)
Complemento C1q/metabolismo , Vía Clásica del Complemento/fisiología , Lectina de Unión a Manosa de la Vía del Complemento/fisiología , Lectina de Unión a Manosa/metabolismo , Daño por Reperfusión/inmunología , Animales , Complemento C1q/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Intestinos/irrigación sanguínea , Intestinos/inmunología , Intestinos/patología , Masculino , Lectina de Unión a Manosa/genética , Ratones , Ratones Noqueados , Properdina/genética , Properdina/metabolismo , Daño por Reperfusión/patología , Factores Sexuales
11.
Medicina (Kaunas) ; 57(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494138

RESUMEN

Background and Objectives: Tumours are often low immunogenic. The role of complement, an innate immune defence system, in tumour control has begun to be elucidated, but findings are conflicting. A role for properdin, an amplifier of complement activation, in tumour control has recently been implicated. Materials and Methods: Properdin-deficient and congenic wildtype mice were injected subcutaneously with B16F10 melanoma cells. Tumour mass and chemokine profile were assessed. The frequencies of CD45+CD11b+ Gr-1+ cells were determined from tumours and spleens, and CD206+ F4/80+ cells were evaluated in spleens. Sera were analysed for C5a, sC5b-9, and CCL2. Results: Whilst there was no difference in tumour growth at study endpoint, properdin-deficient mice had significantly fewer myeloid-derived suppressor cells (MDSCs) in their tumours and spleens. Splenic M2 type macrophages and serum levels of C5a, sC5b-9, and CCL2 were decreased in properdin-deficient compared to wildtype mice. Conclusions: The presence of intact complement amplification sustains an environment that lessens potential anti-tumour responses.


Asunto(s)
Modelos Animales de Enfermedad , Melanoma , Properdina , Neoplasias Cutáneas , Animales , Macrófagos , Melanoma/genética , Ratones , Ratones Endogámicos C57BL , Properdina/genética , Neoplasias Cutáneas/genética
12.
Kidney Int ; 99(2): 396-404, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33129896

RESUMEN

C3 glomerulopathy is characterized by accumulation of complement C3 within glomeruli. Causes include, but are not limited to, abnormalities in factor H, the major negative regulator of the complement alternative pathway. Factor H-deficient (Cfh-/-) mice develop C3 glomerulopathy together with a reduction in plasma C3 levels. Using this model, we assessed the efficacy of two fusion proteins containing the factor H alternative pathway regulatory domains (FH1-5) linked to either a non-targeting mouse immunoglobulin (IgG-FH1-5) or to an anti-mouse properdin antibody (Anti-P-FH1-5). Both proteins increased plasma C3 and reduced glomerular C3 deposition to an equivalent extent, suggesting that properdin-targeting was not required for FH1-5 to alter C3 activation in either plasma or glomeruli. Following IgG-FH1-5 administration, plasma C3 levels temporally correlated with changes in factor B levels whereas plasma C5 levels correlated with changes in plasma properdin levels. Notably, the increases in plasma C5 and properdin levels persisted for longer than the increases in C3 and factor B. In Cfh-/- mice IgG-FH1-5 reduced kidney injury during accelerated serum nephrotoxic nephritis. Thus, our data demonstrate that IgG-FH1-5 restored circulating alternative pathway activity and reduced glomerular C3 deposition in Cfh-/- mice and that plasma properdin levels are a sensitive marker of C5 convertase activity in factor H deficiency. The immunoglobulin conjugated FH1-5 protein, through its comparatively long plasma half-life, may be a potential therapy for C3 glomerulopathy.


Asunto(s)
Complemento C3 , Properdina , Animales , Complemento C3/genética , Convertasas de Complemento C3-C5 , Complemento C5 , Factor H de Complemento/genética , Vía Alternativa del Complemento , Inmunoglobulina G , Ratones , Properdina/genética
13.
J Biol Chem ; 296: 100083, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33199367

RESUMEN

Inhibition of the alternative pathway (AP) of complement by saliva from Anopheles mosquitoes facilitates feeding by blocking production of the anaphylatoxins C3a and C5a, which activate mast cells leading to plasma extravasation, pain, and itching. We have previously shown that albicin, a member of the SG7 protein family from An. Albimanus, blocks the AP by binding to and inhibiting the function of the C3 convertase, C3bBb. Here we show that SG7.AF, the albicin homolog from An. freeborni, has a similar potency to albicin but is more active in the presence of properdin, a plasma protein that acts to stabilize C3bBb. Conversely, albicin is highly active in the absence or presence of properdin. Albicin and SG7.AF stabilize the C3bBb complex in a form that accumulates on surface plasmon resonance (SPR) surfaces coated with properdin, but SG7.AF binds with lower affinity than albicin. Albicin induces oligomerization of the complex in solution, suggesting that it is oligomerization that leads to stabilization on SPR surfaces. Anophensin, the albicin ortholog from An. stephensi, is only weakly active as an inhibitor of the AP, suggesting that the SG7 family may play a different functional role in this species and other species of the subgenus Cellia, containing the major malaria vectors in Africa and Asia. Crystal structures of albicin and SG7.AF reveal a novel four-helix bundle arrangement that is stabilized by an N-terminal hydrogen bonding network. These structures provide insight into the SG7 family and related mosquito salivary proteins including the platelet-inhibitory 30 kDa family.


Asunto(s)
Inactivadores del Complemento/química , Inactivadores del Complemento/metabolismo , Properdina/metabolismo , Saliva/química , Animales , Anopheles , Convertasas de Complemento C3-C5/genética , Convertasas de Complemento C3-C5/metabolismo , Vía Alternativa del Complemento/genética , Vía Alternativa del Complemento/fisiología , Cristalografía por Rayos X , Culicidae , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Properdina/genética , Resonancia por Plasmón de Superficie
14.
Medicina (Kaunas) ; 56(9)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971872

RESUMEN

Background and objectives: Overnutrition leads to a metabolic and inflammatory response that includes the activation of Complement. Properdin is the only amplifier of complement activation and increases the provision of complement activation products. Its absence has previously been shown to lead to increased obesity in mice on a high fat diet. The aim of this study was to determine ways in which properdin contributes to a less pronounced obese phenotype. Materials and Methods: Wild type (WT) and properdin deficient mice (KO) were fed a high-fat diet (HFD) for up to 12 weeks. Results: There was a significant increase in liver triglyceride content in the KO HFD group compared to WT on HFD. WT developed steatosis. KO had an additional inflammatory component (steatohepatitis). Analysis of AKT signalling by phosphorylation array supported a decrease in insulin sensitivity which was greater for KO than WT in liver and kidney. There was a significant decrease of C5L2 in the fat membranes of the KO HFD group compared to the WT HFD group. Circulating microparticles in KO HFD group showed lower presence of C5L2. Expression of the fatty acid transporter CD36 in adipose tissue was increased in KO on HFD and was also significantly increased in plasma of KO HFD mice compared to WT on HFD. CD36 was elevated on microparticles from KO on HFD. Ultrastructural changes consistent with obesity-associated glomerulopathy were observed for both HFD fed genotypes, but tubular strain was greater in KO. Conclusion: Our work demonstrates that complement properdin is a dominant factor in limiting the severity of obesity-associated conditions that impact on liver and kidney. The two receptors, C5L2 and CD36, are downstream of the activity exerted by properdin.


Asunto(s)
Dieta Alta en Grasa , Resistencia a la Insulina , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Ratones Noqueados , Obesidad , Properdina/genética
15.
J Neuroimmune Pharmacol ; 15(3): 501-519, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31065972

RESUMEN

Abuse of alcohol and tobacco could exacerbate HIV pathogenesis by transferring materials through exosomes (small nanovesicles). Exosomes present a stable and accessible source of information concerning the health and/or disease status of patients, which can provide diagnostic and prognostic biomarkers for myriad conditions. Therefore, we aimed to study the specific exosomal proteins that are altered in both HIV-infected subjects and alcohol/tobacco users. Exosomes were isolated from plasma of the following subjects: a) HIV-negative subjects (healthy), b) HIV-positive subjects (HIV), c) HIV-negative alcohol drinkers (drinkers), d) HIV-negative tobacco smokers (smokers), e) HIV-positive drinkers (HIV + drinkers), and f) HIV-positive smokers (HIV + smokers). Quantitative proteomic profiling was then performed from these exosomes. Sixteen proteins were significantly altered in the HIV group, ten in drinkers, four in HIV + drinkers, and fifteen in smokers compared to healthy subjects. Only one protein, fibulin-1 (FBLN1), was significantly altered in HIV + smokers. Interestingly, hemopexin was not significantly altered in drinkers or HIV patients but was significantly altered in HIV + drinkers. Further, our study is the first to show properdin expression in plasma exosomes, which was decreased in HIV + smokers and HIV + drinkers compared to HIV patients. The present findings suggest that hemopexin and properdin show potential as markers for physiological effects that may arise in HIV-infected individuals who abuse alcohol and tobacco. Graphical abstract This study presents a proteomic analysis of plasma-derived exosomes from HIV-infected alcohol drinkers and smokers. Among the proteins altered due to drug-abuse, hemopexin and properdin were of highest significance. These proteins can be potential biomarkers for co-morbid conditions associated with drug abuse in HIV-patients.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Exosomas/genética , Perfilación de la Expresión Génica/métodos , Infecciones por VIH/genética , Proteómica/métodos , Fumadores , Fumar/genética , Adulto , Proteínas de Unión al Calcio/genética , Exosomas/química , Femenino , Regulación de la Expresión Génica , Productos del Gen gag/genética , Infecciones por VIH/complicaciones , Hemopexina/genética , Humanos , Masculino , Persona de Mediana Edad , Properdina/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
16.
Front Immunol ; 10: 2097, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552043

RESUMEN

Properdin enhances complement-mediated opsonization of targeted cells and particles for immune clearance. Properdin occurs as dimers, trimers and tetramers in human plasma, which recognize C3b-deposited surfaces, promote formation, and prolong the lifetime of C3bBb-enzyme complexes that convert C3 into C3b, thereby enhancing the complement-amplification loop. Here, we report crystal structures of monomerized properdin, which was produced by co-expression of separate N- and C-terminal constructs that yielded monomer-sized properdin complexes that stabilized C3bBb. Consistent with previous low-resolution X-ray and EM data, the crystal structures revealed ring-shaped arrangements that are formed by interactions between thrombospondin type-I repeat (TSR) domains 4 and 6 of one protomer interacting with the N-terminal domain (which adopts a short transforming-growth factor B binding protein-like fold) and domain TSR1 of a second protomer, respectively. Next, a structure of monomerized properdin in complex with the C-terminal domain of C3b showed that properdin-domain TSR5 binds along the C-terminal α-helix of C3b, while two loops, one from domain TSR5 and one from TSR6, extend and fold around the C3b C-terminus like stirrups. This suggests a mechanistic model in which these TSR5 and TSR6 "stirrups" bridge interactions between C3b and factor B or its fragment Bb, and thereby enhance formation of C3bB pro-convertases and stabilize C3bBb convertases. In addition, properdin TSR6 would sterically block binding of the protease factor I to C3b, thus limiting C3b proteolytic degradation. The presence of a valine instead of a third tryptophan in the canonical Trp-ladder of TSR domains in TSR4 allows a remarkable ca. 60°-domain bending motion of TSR4. Together with variable positioning of TSR2 and, putatively, TSR3, this explains the conformational flexibility required for properdin to form dimers, trimers, and tetramers. In conclusion, the results indicate that binding avidity of oligomeric properdin is needed to distinguish surface-deposited C3b molecules from soluble C3b or C3 and suggest that properdin-mediated interactions bridging C3b-B and C3b-Bb enhance affinity, thus promoting convertase formation and stabilization. These mechanisms explain the enhancement of complement-mediated opsonization of targeted cells and particle for immune clearance.


Asunto(s)
Activación de Complemento , Complemento C3b/química , Factores Inmunológicos/química , Properdina/química , Complemento C3b/genética , Complemento C3b/inmunología , Glicosilación , Células HEK293 , Humanos , Factores Inmunológicos/inmunología , Properdina/genética , Properdina/inmunología , Dominios Proteicos , Proteínas Recombinantes/química
17.
Iran J Immunol ; 15(4): 309-320, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30593745

RESUMEN

BACKGROUND: Primary complement deficiencies are rare diseases. OBJECTIVE: To retrospectively evaluate the clinical and laboratory findings and complications of patients to increase awareness of pediatricians about complement deficiencies, which are rarely encountered. METHODS: In this study, the clinical and immunological characteristics of 21 patients who consulted the Immunology Department of our hospital between 2003 and 2017 and were diagnosed with classical or alternative pathway complement deficiency were obtained from the file records. RESULTS: Ten patients with C1 inhibitor deficiency, four patients with factor I deficiency, three patients with properdin deficiency, two patients with C8 deficiency, one patient with C1q deficiency, and one patient with C4B deficiency were assessed. The mean age of the patients at diagnosis was 11.4±4.7 years, the age of onset of symptoms was 7.9±3.9 years, and the follow-up period was 6.7±3.9 years. Fourteen cases had a similar medical history in the family. All patients with C1q, factor I, properdin, C8, and C4B deficiencies presented with an infection, and vasculitic rash was present in two patients with factor I deficiency. In addition, immune complex glomerulonephritis was present in one patient with factor I deficiency. Meningococcal, Haemophilus influenzae type B, and pneumococcal vaccines were administered and prophylactic antibiotic treatment was initiated in all patients except patients with C1 inhibitor deficiency. CONCLUSIONS: Early diagnosis of complement deficiencies can facilitate prevention of life-threatening complications such as severe bacterial infections by considering prophylactic antibiotics and vaccines. In patients with C1 inhibitor deficiency, achieving an acurate early diagnosis will assist in the management and timely treatment of life-threatening attacks such as upper airway obstruction and improve outcomes.


Asunto(s)
Infecciones Bacterianas/genética , Vía Alternativa del Complemento/genética , Vía Clásica del Complemento/genética , Síndromes de Inmunodeficiencia/genética , Adolescente , Profilaxis Antibiótica , Infecciones Bacterianas/diagnóstico , Niño , Proteína Inhibidora del Complemento C1/genética , Complemento C1q/genética , Complemento C8/genética , Diagnóstico Precoz , Femenino , Fibrinógeno/genética , Estudios de Seguimiento , Humanos , Síndromes de Inmunodeficiencia/diagnóstico , Masculino , Properdina/genética , Estudios Retrospectivos
18.
Kidney Int ; 94(6): 1141-1150, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30322716

RESUMEN

Properdin is the only known positive regulator of complement activation by stabilizing the alternative pathway convertase through C3 binding, thus prolonging its half-life. Recent in vitro studies suggest that properdin may act as a specific pattern recognition molecule. To better understand the role of properdin in vivo, we used an experimental model of acute anti-glomerular basement membrane disease with wild-type, C3- and properdin knockout mice. The model exhibited severe proteinuria, acute neutrophil infiltration and activation, classical and alternative pathway activation, and progressive glomerular deposition of properdin, C3 and C9. Although the acute renal injury was likely due to acute neutrophil activation, we found properdin deposition in C3-knockout mice that was not associated with IgG. Thus, properdin may deposit in injured tissues in vivo independent of its main ligand C3.


Asunto(s)
Enfermedad por Anticuerpos Antimembrana Basal Glomerular/inmunología , Activación de Complemento/inmunología , Complemento C3/inmunología , Properdina/inmunología , Animales , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/patología , Complemento C3/genética , Complemento C3/metabolismo , Modelos Animales de Enfermedad , Femenino , Membrana Basal Glomerular/citología , Membrana Basal Glomerular/inmunología , Membrana Basal Glomerular/patología , Humanos , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Properdina/genética , Properdina/metabolismo , Unión Proteica/inmunología
19.
Eur J Gastroenterol Hepatol ; 30(12): 1491-1496, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30199474

RESUMEN

OBJECTIVES: Inflammatory bowel diseases (IBDs) are chronic and multifactorial diseases resulting from a complex interaction of host genetic factors and environmental stimuli. Although many genome-wide association studies have identified host genetic factors associated with IBD, rare Mendelian forms of IBD have been reported in patients with very early onset forms. Therefore, this study aimed to identify genetic variants associated with infantile-onset IBD. PARTICIPANTS AND METHODS: We obtained genomic DNA from whole blood samples of a male patient with infantile-onset IBD and nonconsanguineous Korean parents. Whole-exome sequencing was performed using trio samples. Then, we analyzed the data using susceptibility genes for monogenic forms of IBD and various immunodeficiencies and protein structural analysis. RESULTS: The patient who presented with oral aphthous ulcers at the age of 14 days suffered from severe colitis and was refractory to medical treatment. Compound heterozygous mutations in IL10RA (p.R101W; p.T179T) were found in the patient. In addition, a hemizygous mutation in complement factor properdin (CFP) (p.L456V) located on the X-chromosome was detected, inherited from the patient's mother. Protein structural modeling suggested impaired properdin subunit interactions by p.L456V that may hamper protein oligomerization required for complement activation. CONCLUSION: This study identified compound heterozygous mutations in IL10RA combined with a hemizygous CFP mutation in infantile-onset IBD by using whole-exome sequencing. CFP p.L456V may exacerbate symptoms of infantile-onset IBD by disturbing oligomerization of properdin.


Asunto(s)
Enfermedades Inflamatorias del Intestino/genética , Subunidad alfa del Receptor de Interleucina-10/genética , Mutación , Properdina/genética , Colectomía , Colonoscopía , Femenino , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Recién Nacido , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/cirugía , Masculino , Linaje , Secuenciación del Exoma/métodos
20.
J Am Soc Nephrol ; 29(7): 1928-1937, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29858280

RESUMEN

Background Properdin (P) is a positive regulator of the alternative pathway of complement activation. Although P inhibition is expected and has been shown to ameliorate the alternative pathway of complement-mediated tissue injury in several disease models, it unexpectedly exacerbated renal injury in a murine model of C3 glomerulopathy. The role of P in atypical hemolytic uremic syndrome (aHUS) is uncertain.Methods We blocked P function by genetic deletion or mAb-mediated inhibition in mice carrying a factor H (FH) point mutation, W1206R (FHR/R), that causes aHUS and systemic thrombophilia with high mortality.Results P deficiency completely rescued FHR/R mice from premature death and prevented thrombocytopenia, hemolytic anemia, and renal disease. It also eliminated macrovessel thrombi that were prevalent in FHR/R mice. All mice that received a function-blocking anti-P mAb for 8 weeks survived the experimental period and appeared grossly healthy. Platelet counts and hemoglobin levels were significantly improved in FHR/R mice after 4 weeks of anti-P mAb treatment. One half of the FHR/R mice treated with an isotype control mAb but none of the anti-P mAb-treated mice developed stroke-related neurologic disease. Anti-P mAb-treated FHR/R mice showed largely normal renal histology, and residual liver thrombi were detected in only three of 15 treated mice.Conclusions These results contrast with the detrimental effect of P inhibition observed in a murine model of C3 glomerulopathy and suggest that P contributes critically to aHUS pathogenesis. Inhibition of P in aHUS may be of therapeutic benefit.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/genética , Complemento C3/metabolismo , Complemento C9/metabolismo , Properdina/genética , Trombofilia/genética , Animales , Anticuerpos Monoclonales/uso terapéutico , Síndrome Hemolítico Urémico Atípico/tratamiento farmacológico , Síndrome Hemolítico Urémico Atípico/prevención & control , Factor H de Complemento/genética , Vía Alternativa del Complemento , Femenino , Fibrina/metabolismo , Hemoglobinas/metabolismo , Riñón/metabolismo , Riñón/patología , Masculino , Ratones , Ratones Noqueados , Recuento de Plaquetas , Properdina/deficiencia , Properdina/inmunología , Trombofilia/prevención & control , Trombosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...