Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
1.
Nature ; 622(7982): 359-366, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758944

RESUMEN

The assembly of cortical circuits involves the generation and migration of interneurons from the ventral to the dorsal forebrain1-3, which has been challenging to study at inaccessible stages of late gestation and early postnatal human development4. Autism spectrum disorder and other neurodevelopmental disorders (NDDs) have been associated with abnormal cortical interneuron development5, but which of these NDD genes affect interneuron generation and migration, and how they mediate these effects remains unknown. We previously developed a platform to study interneuron development and migration in subpallial organoids and forebrain assembloids6. Here we integrate assembloids with CRISPR screening to investigate the involvement of 425 NDD genes in human interneuron development. The first screen aimed at interneuron generation revealed 13 candidate genes, including CSDE1 and SMAD4. We subsequently conducted an interneuron migration screen in more than 1,000 forebrain assembloids that identified 33 candidate genes, including cytoskeleton-related genes and the endoplasmic reticulum-related gene LNPK. We discovered that, during interneuron migration, the endoplasmic reticulum is displaced along the leading neuronal branch before nuclear translocation. LNPK deletion interfered with this endoplasmic reticulum displacement and resulted in abnormal migration. These results highlight the power of this CRISPR-assembloid platform to systematically map NDD genes onto human development and reveal disease mechanisms.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Trastornos del Neurodesarrollo , Femenino , Humanos , Recién Nacido , Embarazo , Movimiento Celular/genética , Sistemas CRISPR-Cas/genética , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Organoides/citología , Organoides/embriología , Organoides/crecimiento & desarrollo , Organoides/metabolismo , Organoides/patología , Retículo Endoplásmico/metabolismo , Prosencéfalo/citología , Prosencéfalo/embriología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Prosencéfalo/patología , Transporte Activo de Núcleo Celular
2.
Sci Data ; 9(1): 175, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440585

RESUMEN

The dopaminergic system undergoes major reorganization during development, a period especially vulnerable to mental disorders. Forebrain neurons expressing dopamine 1 and 2 receptors (D1R and D2R, respectively) play a key role in this system. However, neuroanatomical information about the typical development of these neurons is sparse and scattered across publications investigating one or a few brain regions. We here present a public online collection of microscopic images of immunohistochemically stained serial sections from male and female mice at five stages of development (postnatal day 17 (P17), P25, P35, P49, and adult), showing the distribution of D1R and D2R expressing neurons across the forebrain. All images from adult brains are registered to the Allen Mouse brain Common Coordinate Framework, while images from P17-P35 age groups are registered to spatially modified atlas versions matching the morphology of young brains. This online resource provides microscopic visualization of the developing dopaminergic system in mice, which is suitable as a benchmark reference for performing new experiments and building computational models of the brain.


Asunto(s)
Dopamina , Prosencéfalo , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Animales , Dopamina/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/fisiología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
3.
PLoS Biol ; 20(2): e3001502, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35113852

RESUMEN

Mounting epidemiologic and scientific evidence indicates that many psychiatric disorders originate from a complex interplay between genetics and early life experiences, particularly in the womb. Despite decades of research, our understanding of the precise prenatal and perinatal experiences that increase susceptibility to neurodevelopmental disorders remains incomplete. Sleep apnea (SA) is increasingly common during pregnancy and is characterized by recurrent partial or complete cessations in breathing during sleep. SA causes pathological drops in blood oxygen levels (intermittent hypoxia, IH), often hundreds of times each night. Although SA is known to cause adverse pregnancy and neonatal outcomes, the long-term consequences of maternal SA during pregnancy on brain-based behavioral outcomes and associated neuronal functioning in the offspring remain unknown. We developed a rat model of maternal SA during pregnancy by exposing dams to IH, a hallmark feature of SA, during gestational days 10 to 21 and investigated the consequences on the offspring's forebrain synaptic structure, synaptic function, and behavioral phenotypes across multiples stages of development. Our findings represent a rare example of prenatal factors causing sexually dimorphic behavioral phenotypes associated with excessive (rather than reduced) synapse numbers and implicate hyperactivity of the mammalian target of rapamycin (mTOR) pathway in contributing to the behavioral aberrations. These findings have implications for neuropsychiatric disorders typified by superfluous synapse maintenance that are believed to result, at least in part, from largely unknown insults to the maternal environment.


Asunto(s)
Conducta Animal , Hipoxia/fisiopatología , Efectos Tardíos de la Exposición Prenatal/etiología , Sinapsis/patología , Animales , Trastorno Autístico/etiología , Modelos Animales de Enfermedad , Femenino , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/fisiopatología , Ratas Sprague-Dawley , Caracteres Sexuales , Síndromes de la Apnea del Sueño , Serina-Treonina Quinasas TOR
4.
Science ; 375(6579): eabk2346, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35084970

RESUMEN

The human cortex contains inhibitory interneurons derived from the medial ganglionic eminence (MGE), a germinal zone in the embryonic ventral forebrain. How this germinal zone generates sufficient interneurons for the human brain remains unclear. We found that the human MGE (hMGE) contains nests of proliferative neuroblasts with ultrastructural and transcriptomic features that distinguish them from other progenitors in the hMGE. When dissociated hMGE cells are transplanted into the neonatal mouse brain, they reform into nests containing proliferating neuroblasts that generate young neurons that migrate extensively into the mouse forebrain and mature into different subtypes of functional interneurons. Together, these results indicate that the nest organization and sustained proliferation of neuroblasts in the hMGE provide a mechanism for the extended production of interneurons for the human forebrain.


Asunto(s)
Interneuronas/fisiología , Eminencia Media/embriología , Células-Madre Neurales/fisiología , Neurogénesis , Prosencéfalo/citología , Animales , Animales Recién Nacidos , Movimiento Celular , Proliferación Celular , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/fisiología , Perfilación de la Expresión Génica , Edad Gestacional , Humanos , Interneuronas/citología , Eminencia Media/citología , Eminencia Media/crecimiento & desarrollo , Ratones , Células-Madre Neurales/trasplante , Prosencéfalo/embriología , Prosencéfalo/crecimiento & desarrollo , Trasplante Heterólogo
5.
Mol Brain ; 14(1): 154, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615523

RESUMEN

Studies on the development of central nervous system (CNS) primarily rely on the use of specific molecular markers for different types of neural cells. S100B is widely being used as a specific marker for astrocytes in the CNS. However, the specificity of its expression in astrocyte lineage has not been systematically investigated and thus has remained a lingering issue. In this study, we provide several lines of molecular and genetic evidences that S100B is expressed in both protoplasmic astrocytes and myelinating oligodendrocytes. In the developing spinal cord, S100B is first expressed in the ventral neuroepithelial cells, and later in ALDH1L1+/GS+ astrocytes in the gray matter. Meanwhile, nearly all the S100B+ cells in the white matter are SOX10+/MYRF+ oligodendrocytes. Consistent with this observation, S100B expression is selectively lost in the white matter in Olig2-null mutants in which oligodendrocyte progenitor cells (OPCs) are not produced, and dramatically reduced in Myrf-conditional knockout mutants in which OPCs fail to differentiate. Similar expression patterns of S100B are observed in the developing forebrain. Based on these molecular and genetic studies, we conclude that S100B is not a specific marker for astrocyte lineage; instead, it marks protoplasmic astrocytes in the gray matter and differentiating oligodendrocytes.


Asunto(s)
Astrocitos/metabolismo , Sustancia Gris/citología , Oligodendroglía/metabolismo , Prosencéfalo/crecimiento & desarrollo , Subunidad beta de la Proteína de Unión al Calcio S100/biosíntesis , Médula Espinal/crecimiento & desarrollo , Animales , Biomarcadores , Encéfalo/crecimiento & desarrollo , Linaje de la Célula , Citoplasma/metabolismo , Proteína Ácida Fibrilar de la Glía/análisis , Glutamato-Amoníaco Ligasa/análisis , Ratones , Vaina de Mielina/fisiología , Neuronas/metabolismo , Especificidad de Órganos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/análisis , Prosencéfalo/citología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Subunidad beta de la Proteína de Unión al Calcio S100/genética , Factores de Transcripción SOXE/análisis , Médula Espinal/citología
6.
PLoS One ; 16(8): e0256207, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34403440

RESUMEN

Thyroid hormones are messengers that bind to specific nuclear receptors and regulate a wide range of physiological processes in the early stages of vertebrate embryonic development, including neurodevelopment and myelogenesis. We here tested the effects of reduced T3 availability upon the myelination process by treating zebrafish embryos with low concentrations of iopanoic acid (IOP) to block T4 to T3 conversion. Black Gold II staining showed that T3 deficiency reduced the myelin density in the forebrain, midbrain, hindbrain and the spinal cord at 3 and 7 dpf. These observations were confirmed in 3 dpf mbp:egfp transgenic zebrafish, showing that the administration of IOP reduced the fluorescent signal in the brain. T3 rescue treatment restored brain myelination and reversed the changes in myelin-related gene expression induced by IOP exposure. NG2 immunostaining revealed that T3 deficiency reduced the amount of oligodendrocyte precursor cells in 3 dpf IOP-treated larvae. Altogether, the present results show that inhibition of T4 to T3 conversion results in hypomyelination, suggesting that THs are part of the key signaling molecules that control the timing of oligodendrocyte differentiation and myelin synthesis from very early stages of brain development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Larva/genética , Vaina de Mielina/genética , Tiroxina/deficiencia , Triyodotironina/deficiencia , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Antígenos/genética , Antígenos/metabolismo , Embrión no Mamífero , Desarrollo Embrionario , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ácido Yopanoico/farmacología , Larva/citología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Mesencéfalo/citología , Mesencéfalo/efectos de los fármacos , Mesencéfalo/crecimiento & desarrollo , Mesencéfalo/metabolismo , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Factor de Transcripción 2 de los Oligodendrocitos/genética , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Prosencéfalo/citología , Prosencéfalo/efectos de los fármacos , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo , Rombencéfalo/citología , Rombencéfalo/efectos de los fármacos , Rombencéfalo/crecimiento & desarrollo , Rombencéfalo/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Triyodotironina/farmacología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Int J Mol Sci ; 22(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066025

RESUMEN

A prolonged developmental timeline for GABA (γ-aminobutyric acid)-expressing inhibitory neurons (GABAergic interneurons) is an amplified trait in larger, gyrencephalic animals. In several species, the generation, migration, and maturation of interneurons take place over several months, in some cases persisting after birth. The late integration of GABAergic interneurons occurs in a region-specific pattern, especially during the early postnatal period. These changes can contribute to the formation of functional connectivity and plasticity, especially in the cortical regions responsible for higher cognitive tasks. In this review, we discuss GABAergic interneuron development in the late gestational and postnatal forebrain. We propose the protracted development of interneurons at each stage (neurogenesis, neuronal migration, and network integration), as a mechanism for increased complexity and cognitive flexibility in larger, gyrencephalic brains. This developmental feature of interneurons also provides an avenue for environmental influences to shape neural circuit formation.


Asunto(s)
Interneuronas/metabolismo , Prosencéfalo/crecimiento & desarrollo , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Femenino , Edad Gestacional , Embarazo , Prosencéfalo/metabolismo
8.
Neurochem Int ; 145: 104990, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33592203

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are important for synaptogenesis, synaptic maturation and refinement during the early postnatal weeks after birth. Defective synapse formation or refinement underlie cognitive and emotional abnormalities in various neurodevelopmental disorders (NDDs), including schizophrenia (Sz) and autism spectrum disorder (ASD). Serine racemase (SR) is a neuronal enzyme that produces D-serine, a co-agonist required for full NMDAR activation. NMDAR hypofunction as a result of genetic SR elimination and reduced synaptic availability of D-serine reduces neuronal dendritic arborization and spine density. In adult mouse brain, the expression of SR parallels that of NMDARs across forebrain regions including the striatum, amygdala, hippocampus, and medial prefrontal cortex (mPFC). However, there have yet to be studies providing a detailed characterization of the spatial and temporal expression of SR during early periods of synaptogenesis. Here, we examined the postnatal expression of SR in cortical and subcortical brain regions important for learning, memory and emotional regulation, during the first four weeks after birth. Using dual-antigen immunofluorescence, we demonstrate that the number of SR+ neurons steadily increases with postnatal age across the mPFC, amygdala, hippocampus and striatum. We also identified differences in the rate of SR protein induction both across and within brain regions. Analyzing existing human post-mortem brain in situ data, there was a similar developmental mRNA expression profile of SRR and GRIN1 (GluN1 subunit) from infancy through the first decade of life. Our findings further support a developmental role for D-serine mediated NMDAR activation regulating synaptogenesis and neural circuit refinement, which has important implications for the pathophysiology of Sz and other NDDs.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Prosencéfalo/enzimología , Prosencéfalo/crecimiento & desarrollo , Racemasas y Epimerasas/biosíntesis , Animales , Masculino , Ratones Endogámicos C57BL , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Racemasas y Epimerasas/genética , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/genética
9.
Elife ; 102021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522480

RESUMEN

The ubiquitous presence of inhibitory interneurons in the thalamus of primates contrasts with the sparsity of interneurons reported in mice. Here, we identify a larger than expected complexity and distribution of interneurons across the mouse thalamus, where all thalamic interneurons can be traced back to two developmental programmes: one specified in the midbrain and the other in the forebrain. Interneurons migrate to functionally distinct thalamocortical nuclei depending on their origin: the abundant, midbrain-derived class populates the first and higher order sensory thalamus while the rarer, forebrain-generated class is restricted to some higher order associative regions. We also observe that markers for the midbrain-born class are abundantly expressed throughout the thalamus of the New World monkey marmoset. These data therefore reveal that, despite the broad variability in interneuron density across mammalian species, the blueprint of the ontogenetic organisation of thalamic interneurons of larger-brained mammals exists and can be studied in mice.


Asunto(s)
Linaje de la Célula , Interneuronas , Tálamo/crecimiento & desarrollo , Animales , Callithrix , Movimiento Celular , Femenino , Neuronas GABAérgicas , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Masculino , Mesencéfalo/crecimiento & desarrollo , Ratones , Ratones Transgénicos , Prosencéfalo/crecimiento & desarrollo , Tálamo/citología
10.
Development ; 148(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33462115

RESUMEN

Fine-tuned gene expression is crucial for neurodevelopment. The gene expression program is tightly controlled at different levels, including RNA decay. N6-methyladenosine (m6A) methylation-mediated degradation of RNA is essential for brain development. However, m6A methylation impacts not only RNA stability, but also other RNA metabolism processes. How RNA decay contributes to brain development is largely unknown. Here, we show that Exosc10, a RNA exonuclease subunit of the RNA exosome complex, is indispensable for forebrain development. We report that cortical cells undergo overt apoptosis, culminating in cortical agenesis upon conditional deletion of Exosc10 in mouse cortex. Mechanistically, Exosc10 directly binds and degrades transcripts of the P53 signaling-related genes, such as Aen and Bbc3. Overall, our findings suggest a crucial role for Exosc10 in suppressing the P53 pathway, in which the rapid turnover of the apoptosis effectors Aen and Bbc3 mRNAs is essential for cell survival and normal cortical histogenesis.


Asunto(s)
Supervivencia Celular/fisiología , Exosomas/genética , Exosomas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Prosencéfalo/crecimiento & desarrollo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis , Biología Computacional , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Prosencéfalo/patología , ARN/metabolismo , Estabilidad del ARN , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor
11.
Cereb Cortex ; 31(4): 1914-1926, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33290502

RESUMEN

GluN3A subunits endow N-Methyl-D-Aspartate receptors (NMDARs) with unique biophysical, trafficking, and signaling properties. GluN3A-NMDARs are typically expressed during postnatal development, when they are thought to gate the refinement of neural circuits by inhibiting synapse maturation, and stabilization. Recent work suggests that GluN3A also operates in adult brains to control a variety of behaviors, yet a full spatiotemporal characterization of GluN3A expression is lacking. Here, we conducted a systematic analysis of Grin3a (gene encoding mouse GluN3A) mRNA expression in the mouse brain by combining high-sensitivity colorimetric and fluorescence in situ hybridization with labeling for neuronal subtypes. We find that, while Grin3a mRNA expression peaks postnatally, significant levels are retained into adulthood in specific brain regions such as the amygdala, medial habenula, association cortices, and high-order thalamic nuclei. The time-course of emergence and down-regulation of Grin3a expression varies across brain region, cortical layer of residence, and sensory modality, in a pattern that correlates with previously reported hierarchical gradients of brain maturation and functional specialization. Grin3a is expressed in both excitatory and inhibitory neurons, with strong mRNA levels being a distinguishing feature of somatostatin interneurons. Our study provides a comprehensive map of Grin3a distribution across the murine lifespan and paves the way for dissecting the diverse functions of GluN3A in health and disease.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/metabolismo , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/biosíntesis , Factores de Edad , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de N-Metil-D-Aspartato/genética
12.
Genes Brain Behav ; 19(1): e12624, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31721416

RESUMEN

Social affiliative behavior is an important component of everyday life in many species and is likely to be disrupted in disabling ways in various neurodevelopmental and neuropsychiatric disorders. Therefore, determining the mechanisms involved in these processes is crucial. A link between N-methyl-d-aspartate (NMDA) receptor function and social behaviors has been clearly established. The cell types in which NMDA receptors are critical for social affiliative behavior, however, remain unclear. Here, we use mice carrying a conditional allele of the NMDA R1 subunit to address this question. Mice bearing a floxed NMDAR1 (NR1) allele were crossed with transgenic calcium/calmodulin-dependent kinase IIα (CaMKIIα)-Cre mice or parvalbumin (PV)-Cre mice targeting postnatal excitatory forebrain or PV-expressing interneurons, respectively, and assessed using the three-chambered Social Approach Test. We found that deletion of NR1 in PV-positive interneurons had no effect on social sniffing, but deletion of NR1 in glutamatergic pyramidal cells resulted in a significant increase in social approach behavior, regardless of age or sex. Therefore, forebrain excitatory neurons expressing NR1 play an important role in regulating social affiliative behavior.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Prosencéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Interacción Social , Animales , Femenino , Eliminación de Gen , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Parvalbúminas/genética , Parvalbúminas/metabolismo , Prosencéfalo/citología , Prosencéfalo/crecimiento & desarrollo , Células Piramidales/metabolismo
13.
Sci Rep ; 9(1): 17730, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776378

RESUMEN

Since the original isolation of neural stem cells (NSCs) in the adult mammalian brain, further work has revealed a heterogeneity in the NSC pool. Our previous work characterized a distinct, Oct4 expressing, NSC population in the periventricular region, through development and into adulthood. We hypothesized that this population is upstream in lineage to the more abundant, well documented, GFAP expressing NSC. Herein, we show that Oct4 expressing NSCs give rise to neurons, astrocytes and oligodendrocytes throughout the developing brain. Further, transgenic inducible mouse models demonstrate that the rare Oct4 expressing NSCs undergo asymmetric divisions to give rise to GFAP expressing NSCs in naïve and injured brains. This lineage relationship between distinct NSC pools contributes significantly to an understanding of neural development, the NSC lineage in vivo and has implications for neural repair.


Asunto(s)
Linaje de la Célula , Células-Madre Neurales/citología , Neurogénesis , Prosencéfalo/citología , Animales , División Celular Asimétrica , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Prosencéfalo/crecimiento & desarrollo
14.
PLoS Genet ; 15(11): e1008467, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31730647

RESUMEN

The primary cilium is a signaling center critical for proper embryonic development. Previous studies have demonstrated that mice lacking Ttc21b have impaired retrograde trafficking within the cilium and multiple organogenesis phenotypes, including microcephaly. Interestingly, the severity of the microcephaly in Ttc21baln/aln homozygous null mutants is considerably affected by the genetic background and mutants on an FVB/NJ (FVB) background develop a forebrain significantly smaller than mutants on a C57BL/6J (B6) background. We performed a Quantitative Trait Locus (QTL) analysis to identify potential genetic modifiers and identified two regions linked to differential forebrain size: modifier of alien QTL1 (Moaq1) on chromosome 4 at 27.8 Mb and Moaq2 on chromosome 6 at 93.6 Mb. These QTLs were validated by constructing congenic strains. Further analysis of Moaq1 identified an orphan G-protein coupled receptor (GPCR), Gpr63, as a candidate gene. We identified a SNP that is polymorphic between the FVB and B6 strains in Gpr63 and creates a missense mutation predicted to be deleterious in the FVB protein. We used CRISPR-Cas9 genome editing to create two lines of FVB congenic mice: one with the B6 sequence of Gpr63 and the other with a deletion allele leading to a truncation of the GPR63 C-terminal tail. We then demonstrated that Gpr63 can localize to the cilium in vitro. These alleles affect ciliary localization of GPR63 in vitro and genetically interact with Ttc21baln/aln as Gpr63;Ttc21b double mutants show unique phenotypes including spina bifida aperta and earlier embryonic lethality. This validated Gpr63 as a modifier of multiple Ttc21b neural phenotypes and strongly supports Gpr63 as a causal gene (i.e., a quantitative trait gene, QTG) within the Moaq1 QTL.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Desarrollo Embrionario/genética , Microcefalia/genética , Sitios de Carácter Cuantitativo/genética , Receptores Acoplados a Proteínas G/genética , Alelos , Animales , Sistemas CRISPR-Cas/genética , Mapeo Cromosómico , Cilios/genética , Embrión de Mamíferos , Genotipo , Humanos , Ratones , Ratones Endogámicos C57BL , Microcefalia/fisiopatología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Espina Bífida Quística/genética , Espina Bífida Quística/fisiopatología , Mutaciones Letales Sintéticas/genética
15.
Cell Death Dis ; 10(11): 812, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31649239

RESUMEN

Head dysgenesis is a major cause of fetal demise and craniofacial malformation. Although mutations in genes of the head ontogenetic program have been reported, many cases remain unexplained. Head dysgenesis has also been related to trisomy or amplification of the chromosomal region overlapping the CDX2 homeobox gene, a master element of the trunk ontogenetic program. Hence, we investigated the repercussion on head morphogenesis of the imbalance between the head and trunk ontogenetic programs, by means of ectopic rostral expression of CDX2 at gastrulation. This caused severe malformations affecting the forebrain and optic structures, and also the frontonasal process associated with defects in neural crest cells colonization. These malformations are the result of the downregulation of genes of the head program together with the abnormal induction of trunk program genes. Together, these data indicate that the imbalance between the anterior and posterior ontogenetic programs in embryos is a new possible cause of head dysgenesis during human development, linked to defects in setting up anterior neuroectodermal structures.


Asunto(s)
Factor de Transcripción CDX2/genética , Anomalías Craneofaciales/genética , Cabeza/fisiopatología , Morfogénesis/genética , Animales , Anomalías Craneofaciales/fisiopatología , Desarrollo Embrionario/genética , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Cabeza/crecimiento & desarrollo , Humanos , Ratones , Cresta Neural/crecimiento & desarrollo , Cresta Neural/fisiopatología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/patología
16.
Environ Health Perspect ; 127(10): 107006, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31642701

RESUMEN

BACKGROUND: Piperonyl butoxide (PBO) is a pesticide synergist used in residential, commercial, and agricultural settings. PBO was recently found to inhibit Sonic hedgehog (Shh) signaling, a key developmental regulatory pathway. Disruption of Shh signaling is linked to birth defects, including holoprosencephaly (HPE), a malformation of the forebrain and face thought to result from complex gene-environment interactions. OBJECTIVES: The impact of PBO on Shh signaling in vitro and forebrain and face development in vivo was examined. METHODS: The influence of PBO on Shh pathway transduction was assayed in mouse and human cell lines. To examine its teratogenic potential, a single dose of PBO (22-1,800mg/kg) was administered by oral gavage to C57BL/6J mice at gestational day 7.75, targeting the critical period for HPE. Gene-environment interactions were investigated using Shh+/- mice, which model human HPE-associated genetic mutations. RESULTS: PBO attenuated Shh signaling in vitro through a mechanism similar to that of the known teratogen cyclopamine. In utero PBO exposure caused characteristic HPE facial dysmorphology including dose-dependent midface hypoplasia and hypotelorism, with a lowest observable effect level of 67mg/kg. Median forebrain deficiency characteristic of HPE was observed in severely affected animals, whereas all effective doses disrupted development of Shh-dependent transient forebrain structures that generate cortical interneurons. Normally silent heterozygous Shh null mutations exacerbated PBO teratogenicity at all doses tested, including 33mg/kg. DISCUSSION: These findings demonstrate that prenatal PBO exposure can cause overt forebrain and face malformations or neurodevelopmental disruptions with subtle or no craniofacial dysmorphology in mice. By targeting Shh signaling as a sensitive mechanism of action and examining gene-environment interactions, this study defined a lowest observable effect level for PBO developmental toxicity in mice more than 30-fold lower than previously recognized. Human exposure to PBO and its potential contribution to etiologically complex birth defects should be rigorously examined. https://doi.org/10.1289/EHP5260.


Asunto(s)
Sustancias Peligrosas/toxicidad , Proteínas Hedgehog/metabolismo , Morfogénesis/efectos de los fármacos , Butóxido de Piperonilo/toxicidad , Prosencéfalo/crecimiento & desarrollo , Animales , Cara/embriología , Ratones , Pruebas de Toxicidad
17.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340538

RESUMEN

WW domain-containing oxidoreductase (Wwox) is a putative tumor suppressor. Several germline mutations of Wwox have been associated with infant neurological disorders characterized by epilepsy, growth retardation, and early death. Less is known, however, about the pathological link between Wwox mutations and these disorders or the physiological role of Wwox in brain development. In this study, we examined age-related expression and histological localization of Wwox in forebrains as well as the effects of loss of function mutations in the Wwox gene in the immature cortex of a rat model of lethal dwarfism with epilepsy (lde/lde). Immunostaining revealed that Wwox is expressed in neurons, astrocytes, and oligodendrocytes. lde/lde cortices were characterized by a reduction in neurite growth without a reduced number of neurons, severe reduction in myelination with a reduced number of mature oligodendrocytes, and a reduction in cell populations of astrocytes and microglia. These results indicate that Wwox is essential for normal development of neurons and glial cells in the cerebral cortex.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Antiportadores/deficiencia , Corteza Cerebral/metabolismo , Enanismo/genética , Epilepsia/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Mitocondriales/genética , Neurogénesis/genética , Trastornos Psicomotores/genética , Proteínas Supresoras de Tumor/genética , Oxidorreductasa que Contiene Dominios WW/genética , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Antiportadores/genética , Antiportadores/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Recuento de Células , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Enanismo/metabolismo , Enanismo/patología , Epilepsia/metabolismo , Epilepsia/patología , Regulación del Desarrollo de la Expresión Génica , Mutación de Línea Germinal , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Masculino , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Prosencéfalo/patología , Trastornos Psicomotores/metabolismo , Trastornos Psicomotores/patología , Ratas , Ratas Transgénicas , Transducción de Señal , Proteínas Supresoras de Tumor/deficiencia , Oxidorreductasa que Contiene Dominios WW/deficiencia
18.
Cell Mol Life Sci ; 76(18): 3621-3640, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30953095

RESUMEN

α-Tubulin acetyltransferase 1 (ATAT1) catalyzes acetylation of α-tubulin at lysine 40 in various organisms ranging from Tetrahymena to humans. Despite the importance in mammals suggested by studies of cultured cells, the mouse Atat1 gene is non-essential for survival, raising an intriguing question about its real functions in vivo. To address this question, we systematically analyzed a mouse strain lacking the gene. The analyses revealed that starting at postnatal day 5, the mutant mice display enlarged lateral ventricles in the forebrain, resembling ventricular dilation in human patients with ventriculomegaly. In the mice, ventricular dilation is due to hypoplasia in the septum and striatum. Behavioral tests of the mice uncovered deficits in motor coordination. Birth-dating experiments revealed that neuronal migration to the mutant septum and striatum is impaired during brain development. In the mutant embryonic fibroblasts, we found mild defects in cell proliferation and primary cilium formation. Notably, in these cells, ATAT1 is indispensable for tubulin hyperacetylation in response to high salt, high glucose, and hydrogen peroxide-induced oxidative stress. We investigated the role of ATAT1 in the hematopoietic system using multicolor flow cytometry and found that this system remains normal in the mutant mice. Although tubulin acetylation was undetectable in a majority of mutant tissues, residual levels were detected in the heart, skeletal muscle, trachea, oviduct, thymus and spleen. This study thus not only establishes the importance of ATAT1 in regulating mouse forebrain development and governing tubulin hyperacetylation during stress responses, but also suggests the existence of an additional α-tubulin acetyltransferase.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Microtúbulos/metabolismo , Estrés Oxidativo , Prosencéfalo/metabolismo , Tubulina (Proteína)/metabolismo , Acetilación/efectos de los fármacos , Acetiltransferasas/genética , Animales , Conducta Animal , Movimiento Celular , Proliferación Celular , Células Cultivadas , Cilios/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microtúbulos/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Estrés Oxidativo/efectos de los fármacos , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/patología
19.
Nat Biotechnol ; 37(4): 436-444, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30936566

RESUMEN

Human brain organoids generated with current technologies recapitulate histological features of the human brain, but they lack a reproducible topographic organization. During development, spatial topography is determined by gradients of signaling molecules released from discrete signaling centers. We hypothesized that introduction of a signaling center into forebrain organoids would specify the positional identity of neural tissue in a distance-dependent manner. Here, we present a system to trigger a Sonic Hedgehog (SHH) protein gradient in developing forebrain organoids that enables ordered self-organization along dorso-ventral and antero-posterior positional axes. SHH-patterned forebrain organoids establish major forebrain subdivisions that are positioned with in vivo-like topography. Consistent with its behavior in vivo, SHH exhibits long-range signaling activity in organoids. Finally, we use SHH-patterned cerebral organoids as a tool to study the role of cholesterol metabolism in SHH signaling. Together, this work identifies inductive signaling as an effective organizing strategy to recapitulate in vivo-like topography in human brain organoids.


Asunto(s)
Proteínas Hedgehog/metabolismo , Organoides/crecimiento & desarrollo , Organoides/metabolismo , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Animales , Biotecnología , Tipificación del Cuerpo , Diferenciación Celular , Colesterol/metabolismo , Humanos , Ratones , Modelos Neurológicos , Células-Madre Neurales/metabolismo , Neurogénesis , Organoides/citología , Células Madre Pluripotentes/metabolismo , Prosencéfalo/citología , Transducción de Señal
20.
Sci Adv ; 5(3): eaau7375, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30891496

RESUMEN

Brain pericytes play important roles in the formation and maintenance of the neurovascular unit (NVU), and their dysfunction has been implicated in central nervous system disorders. While human pluripotent stem cells (hPSCs) have been used to model other NVU cell types, including brain microvascular endothelial cells (BMECs), astrocytes, and neurons, hPSC-derived brain pericyte-like cells have not been integrated into these models. In this study, we generated neural crest stem cells (NCSCs), the embryonic precursor to forebrain pericytes, from hPSCs and subsequently differentiated NCSCs to brain pericyte-like cells. These cells closely resembled primary human brain pericytes and self-assembled with endothelial cells. The brain pericyte-like cells induced blood-brain barrier properties in BMECs, including barrier enhancement and reduced transcytosis. Last, brain pericyte-like cells were incorporated with iPSC-derived BMECs, astrocytes, and neurons to form an isogenic human model that should prove useful for the study of the NVU.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Cresta Neural/metabolismo , Pericitos/metabolismo , Transcitosis/genética , Animales , Antígenos/genética , Antígenos/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular , Técnicas de Cocultivo , Células Endoteliales/citología , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Cresta Neural/citología , Neuronas/citología , Neuronas/metabolismo , Pericitos/citología , Cultivo Primario de Células , Prosencéfalo/citología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...