Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 569
Filtrar
1.
Nat Commun ; 15(1): 4768, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849336

RESUMEN

Parvalbumin (PV)-expressing GABAergic neurons of the basal forebrain (BFPVNs) were proposed to serve as a rapid and transient arousal system, yet their exact role in awake behaviors remains unclear. We performed bulk calcium measurements and electrophysiology with optogenetic tagging from the horizontal limb of the diagonal band of Broca (HDB) while male mice were performing an associative learning task. BFPVNs responded with a distinctive, phasic activation to punishment, but showed slower and delayed responses to reward and outcome-predicting stimuli. Optogenetic inhibition during punishment impaired the formation of cue-outcome associations, suggesting a causal role of BFPVNs in associative learning. BFPVNs received strong inputs from the hypothalamus, the septal complex and the median raphe region, while they synapsed on diverse cell types in key limbic structures, where they broadcasted information about aversive stimuli. We propose that the arousing effect of BFPVNs is recruited by aversive stimuli to serve crucial associative learning functions.


Asunto(s)
Prosencéfalo Basal , Neuronas GABAérgicas , Optogenética , Parvalbúminas , Animales , Parvalbúminas/metabolismo , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiología , Masculino , Ratones , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Recompensa , Castigo , Ratones Endogámicos C57BL , Aprendizaje/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Aprendizaje por Asociación/fisiología
2.
Cells ; 13(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891027

RESUMEN

Sleep disruption is a frequent problem of advancing age, often accompanied by low-grade chronic central and peripheral inflammation. We examined whether chronic neuroinflammation in the preoptic and basal forebrain area (POA-BF), a critical sleep-wake regulatory structure, contributes to this disruption. We developed a targeted viral vector designed to overexpress tumor necrosis factor-alpha (TNFα), specifically in astrocytes (AAV5-GFAP-TNFα-mCherry), and injected it into the POA of young mice to induce heightened neuroinflammation within the POA-BF. Compared to the control (treated with AAV5-GFAP-mCherry), mice with astrocytic TNFα overproduction within the POA-BF exhibited signs of increased microglia activation, indicating a heightened local inflammatory milieu. These mice also exhibited aging-like changes in sleep-wake organization and physical performance, including (a) impaired sleep-wake functions characterized by disruptions in sleep and waking during light and dark phases, respectively, and a reduced ability to compensate for sleep loss; (b) dysfunctional VLPO sleep-active neurons, indicated by fewer neurons expressing c-fos after suvorexant-induced sleep; and (c) compromised physical performance as demonstrated by a decline in grip strength. These findings suggest that inflammation-induced dysfunction of sleep- and wake-regulatory mechanisms within the POA-BF may be a critical component of sleep-wake disturbances in aging.


Asunto(s)
Envejecimiento , Astrocitos , Prosencéfalo Basal , Área Preóptica , Sueño , Factor de Necrosis Tumoral alfa , Animales , Astrocitos/metabolismo , Astrocitos/patología , Envejecimiento/metabolismo , Área Preóptica/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Sueño/fisiología , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/patología , Vigilia , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Trastornos del Sueño-Vigilia/metabolismo , Trastornos del Sueño-Vigilia/patología
3.
Neurology ; 103(2): e209626, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38885444

RESUMEN

BACKGROUND AND OBJECTIVES: In early Alzheimer disease (AD), ß-amyloid (Aß) deposition is associated with volume loss in the basal forebrain (BF) and cognitive decline. However, the extent to which Aß-related BF atrophy manifests as cognitive decline is not understood. This study sought to characterize the relationship between BF atrophy and the decline in memory and attention in patients with early AD. METHODS: Participants from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study who completed Aß-PET imaging and repeated MRI and cognitive assessments were included. At baseline, participants were classified based on their clinical dementia stage and Aß status, yielding groups that were cognitively unimpaired (CU) Aß-, CU Aß+, and mild cognitive impairment (MCI) Aß+. Linear mixed-effects models were used to assess changes in volumetric measures of BF subregions and the hippocampus and changes in AIBL memory and attention composite scores for each group compared with CU Aß- participants. Associations between Aß burden, brain atrophy, and cognitive decline were evaluated and explored further using mediation analyses. RESULTS: The cohort included 476 participants (72.6 ± 5.9 years, 55.0% female) with longitudinal data from a median follow-up period of 6.1 years. Compared with the CU Aß- group (n = 308), both CU Aß+ (n = 107) and MCI Aß+ (n = 61) adults showed faster decline in BF and hippocampal volumes and in memory and attention (Cohen d = 0.73-1.74). Rates of atrophy in BF subregions and the hippocampus correlated with cognitive decline, and each individually mediated the impact of Aß burden on memory and attention decline. When all mediators were considered simultaneously, hippocampal atrophy primarily influenced the effect of Aß burden on memory decline (ß [SE] = -0.139 [0.032], proportion mediated [PM] = 28.0%) while the atrophy of the posterior nucleus basalis of Meynert in the BF (ß [SE] = -0.068 [0.029], PM = 13.1%) and hippocampus (ß [SE] = -0.121 [0.033], PM = 23.4%) distinctively influenced Aß-related attention decline. DISCUSSION: These findings highlight the significant role of BF atrophy in the complex pathway linking Aß to cognitive impairment in early stages of AD. Volumetric assessment of BF subregions could be essential in elucidating the relationships between the brain structure and behavior in AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Atrofia , Prosencéfalo Basal , Disfunción Cognitiva , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/complicaciones , Femenino , Masculino , Atrofia/patología , Anciano , Disfunción Cognitiva/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Péptidos beta-Amiloides/metabolismo , Prosencéfalo Basal/patología , Prosencéfalo Basal/diagnóstico por imagen , Anciano de 80 o más Años , Hipocampo/patología , Hipocampo/diagnóstico por imagen , Pruebas Neuropsicológicas
4.
Curr Opin Neurobiol ; 86: 102883, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38815544

RESUMEN

The ventral pallidum is a prominent structure within the basal ganglia, regulating reward and motivational processes. Positioned at the interface between motor and limbic structures, its function is crucial to the development and maintenance of substance use disorders. Chronic drug use induces neuroplastic events in this structure, leading to long-term changes in VP neuronal activity and synaptic communication. Moreover, different neuronal populations within the VP drive drug-seeking behavior in opposite directions. This review explores the role of the VP as a hub for reward, motivation, and aversion, establishing it as an important contributor to the pathophysiology of substance use disorders.


Asunto(s)
Prosencéfalo Basal , Trastornos Relacionados con Sustancias , Humanos , Trastornos Relacionados con Sustancias/fisiopatología , Trastornos Relacionados con Sustancias/patología , Animales , Prosencéfalo Basal/fisiología , Recompensa , Vías Nerviosas/fisiopatología , Vías Nerviosas/fisiología
5.
Horm Behav ; 163: 105563, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772158

RESUMEN

Vasopressin (AVP) regulates various social behaviors, often in sex-specific ways, including social play behavior, a rewarding behavior displayed primarily by juveniles. Here, we examined whether and how AVP acting in the brain's reward system regulates social play behavior in juvenile rats. Specifically, we focused on AVP signaling in the ventral pallidum (VP), a brain region that is a part of the reward system. First, we examined the organization of the VP-AVP system in juvenile rats and found sex differences, with higher density of both AVP-immunoreactive fibers and AVP V1a receptor (V1aR) binding in males compared to females while females show a greater number of V1aR-expressing cells compared to males. We further found that, in both sexes, V1aR-expressing cells co-express a GABA marker to a much greater extent (approx. 10 times) than a marker for glutamate. Next, we examined the functional involvement of V1aR-expressing VP cells in social play behavior. We found that exposure to social play enhanced the proportion of activated V1aR-expressing VP cells in males only. Finally, we showed that infusion of a specific V1aR antagonist into the VP increased social play behaviors in juvenile male rats while decreasing these behaviors in juvenile female rats. Overall, these findings reveal structural and functional sex differences in the AVP-V1aR system in the VP that are associated with the sex-specific regulation of social play behavior.


Asunto(s)
Prosencéfalo Basal , Receptores de Vasopresinas , Caracteres Sexuales , Conducta Social , Vasopresinas , Animales , Masculino , Femenino , Ratas , Receptores de Vasopresinas/metabolismo , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiología , Vasopresinas/metabolismo , Juego e Implementos de Juego , Arginina Vasopresina/metabolismo , Conducta Animal/fisiología , Ratas Long-Evans , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología
6.
eNeuro ; 11(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38755010

RESUMEN

Cholinergic neurons of the basal forebrain represent the main source of cholinergic innervation of large parts of the neocortex and are involved in adults in the modulation of attention, memory, and arousal. During the first postnatal days, they play a crucial role in the development of cortical neurons and cortical cytoarchitecture. However, their characteristics, during this period have not been studied. To understand how they can fulfill this role, we investigated the morphological and electrophysiological maturation of cholinergic neurons of the substantia innominata-nucleus basalis of Meynert (SI/NBM) complex in the perinatal period in mice. We show that cholinergic neurons, whether or not they express gamma-aminobutyric acid (GABA) as a cotransmitter, are already functional at Embryonic Day 18. Until the end of the first postnatal week, they constitute a single population of neurons with a well developed dendritic tree, a spontaneous activity including bursting periods, and a short-latency response to depolarizations (early-firing). They are excited by both their GABAergic and glutamatergic afferents. During the second postnatal week, a second, less excitable, neuronal population emerges, with a longer delay response to depolarizations (late-firing), together with the hyperpolarizing action of GABAA receptor-mediated currents. This classification into early-firing (40%) and late-firing (60%) neurons is again independent of the coexpression of GABAergic markers. These results strongly suggest that during the first postnatal week, the specific properties of developing SI/NBM cholinergic neurons allow them to spontaneously release acetylcholine (ACh), or ACh and GABA, into the developing cortex.


Asunto(s)
Prosencéfalo Basal , Neuronas Colinérgicas , Ácido gamma-Aminobutírico , Animales , Neuronas Colinérgicas/fisiología , Neuronas Colinérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Prosencéfalo Basal/fisiología , Prosencéfalo Basal/metabolismo , Animales Recién Nacidos , Ratones Endogámicos C57BL , Femenino , Núcleo Basal de Meynert/fisiología , Núcleo Basal de Meynert/metabolismo , Sustancia Innominada/fisiología , Sustancia Innominada/metabolismo , Ratones , Receptores de GABA-A/metabolismo , Potenciales de Acción/fisiología , Técnicas de Placa-Clamp , Ácido Glutámico/metabolismo
7.
Sci Rep ; 14(1): 12305, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811614

RESUMEN

Dysfunction of subcortical D2-like dopamine receptors (D2Rs) can lead to positive symptoms of schizophrenia, and their analog, the increased locomotor activity in schizophrenia model MAM-E17 rats. The ventral pallidum (VP) is a limbic structure containing D2Rs. The D2R antagonist sulpiride is a widespread antipsychotic drug, which can alleviate positive symptoms in human patients. However, it is still not known how sulpiride can influence positive symptoms via VP D2Rs. We hypothesize that the microinjection of sulpiride into the VP can normalize hyperactivity in MAM-E17 rats. In addition, recently, we showed that the microinjection of sulpirid into the VP induces place preference in neurotypical rats. Thus, we aimed to test whether intra-VP sulpiride can also have a rewarding effect in MAM-E17 rats. Therefore, open field-based conditioned place preference (CPP) test was applied in neurotypical (SAL-E17) and MAM-E17 schizophrenia model rats to test locomotor activity and the potential locomotor-reducing and rewarding effects of sulpiride. Sulpiride was microinjected bilaterally in three different doses into the VP, and the controls received only vehicle. The results of the present study demonstrated that the increased locomotor activity of the MAM-E17 rats was caused by habituation disturbance. Accordingly, larger doses of sulpiride in the VP reduce the positive symptom-analog habituation disturbance of the MAM-E17 animals. Furthermore, we showed that the largest dose of sulpiride administered into the VP induced CPP in the SAL-E17 animals but not in the MAM-E17 animals. These findings revealed that VP D2Rs play an important role in the formation of positive symptom-like habituation disturbances in MAM-E17 rats.


Asunto(s)
Antipsicóticos , Prosencéfalo Basal , Modelos Animales de Enfermedad , Habituación Psicofisiológica , Microinyecciones , Esquizofrenia , Sulpirida , Animales , Sulpirida/farmacología , Sulpirida/administración & dosificación , Esquizofrenia/tratamiento farmacológico , Antipsicóticos/administración & dosificación , Antipsicóticos/farmacología , Ratas , Prosencéfalo Basal/efectos de los fármacos , Masculino , Habituación Psicofisiológica/efectos de los fármacos , Locomoción/efectos de los fármacos , Receptores de Dopamina D2/metabolismo
8.
Nat Commun ; 15(1): 4233, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762463

RESUMEN

The ventral pallidum (VP) contains GABA and glutamate neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the mechanisms by which VP cell types shape VTA activity and drive behavior. Here, we found that both VP GABA and glutamate neurons were activated during approach to reward or by delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine and glutamate neurons. Remarkably, stimulation-evoked activation was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP glutamate neurons activated VTA GABA, as well as dopamine and glutamate neurons, despite driving aversion. However, VP glutamate neurons evoked dopamine in aversion-associated ventromedial nucleus accumbens (NAc), but reduced dopamine release in reward-associated dorsomedial NAc. These findings show how heterogeneous VP projections to VTA can be engaged to shape approach and avoidance behaviors.


Asunto(s)
Reacción de Prevención , Prosencéfalo Basal , Neuronas GABAérgicas , Ácido Glutámico , Recompensa , Área Tegmental Ventral , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/citología , Animales , Ácido Glutámico/metabolismo , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiología , Masculino , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Reacción de Prevención/fisiología , Ratones , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/citología , Núcleo Accumbens/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Ácido gamma-Aminobutírico/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Ratones Endogámicos C57BL , Conducta Animal/fisiología
10.
Nat Commun ; 15(1): 4013, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740778

RESUMEN

Elucidating the neural basis of fear allows for more effective treatments for maladaptive fear often observed in psychiatric disorders. Although the basal forebrain (BF) has an essential role in fear learning, its function in fear expression and the underlying neuronal and circuit substrates are much less understood. Here we report that BF glutamatergic neurons are robustly activated by social stimulus following social fear conditioning in male mice. And cell-type-specific inhibition of those excitatory neurons largely reduces social fear expression. At the circuit level, BF glutamatergic neurons make functional contacts with the lateral habenula (LHb) neurons and these connections are potentiated in conditioned mice. Moreover, optogenetic inhibition of BF-LHb glutamatergic pathway significantly reduces social fear responses. These data unravel an important function of the BF in fear expression via its glutamatergic projection onto the LHb, and suggest that selective targeting BF-LHb excitatory circuitry could alleviate maladaptive fear in relevant disorders.


Asunto(s)
Prosencéfalo Basal , Miedo , Habénula , Neuronas , Animales , Habénula/fisiología , Masculino , Miedo/fisiología , Prosencéfalo Basal/fisiología , Prosencéfalo Basal/metabolismo , Ratones , Neuronas/fisiología , Neuronas/metabolismo , Optogenética , Ratones Endogámicos C57BL , Conducta Social , Conducta Animal/fisiología , Vías Nerviosas/fisiología , Ácido Glutámico/metabolismo , Condicionamiento Clásico/fisiología
11.
Sci Rep ; 14(1): 11268, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760448

RESUMEN

We aimed to study atrophy and glucose metabolism of the cholinergic basal forebrain in non-demented mutation carriers for autosomal dominant Alzheimer's disease (ADAD). We determined the level of evidence for or against atrophy and impaired metabolism of the basal forebrain in 167 non-demented carriers of the Colombian PSEN1 E280A mutation and 75 age- and sex-matched non-mutation carriers of the same kindred using a Bayesian analysis framework. We analyzed baseline MRI, amyloid PET, and FDG-PET scans of the Alzheimer's Prevention Initiative ADAD Colombia Trial. We found moderate evidence against an association of carrier status with basal forebrain volume (Bayes factor (BF10) = 0.182). We found moderate evidence against a difference of basal forebrain metabolism (BF10 = 0.167). There was only inconclusive evidence for an association between basal forebrain volume and delayed memory and attention (BF10 = 0.884 and 0.184, respectively), and between basal forebrain volume and global amyloid load (BF10 = 2.1). Our results distinguish PSEN1 E280A mutation carriers from sporadic AD cases in which cholinergic involvement of the basal forebrain is already detectable in the preclinical and prodromal stages. This indicates an important difference between ADAD and sporadic AD in terms of pathogenesis and potential treatment targets.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Heterocigoto , Mutación , Tomografía de Emisión de Positrones , Presenilina-1 , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Femenino , Masculino , Presenilina-1/genética , Persona de Mediana Edad , Colombia , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/patología , Prosencéfalo Basal/diagnóstico por imagen , Imagen por Resonancia Magnética , Adulto , Atrofia , Anciano , Teorema de Bayes
12.
Hear Res ; 447: 109025, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733712

RESUMEN

Cortical acetylcholine (ACh) release has been linked to various cognitive functions, including perceptual learning. We have previously shown that cortical cholinergic innervation is necessary for accurate sound localization in ferrets, as well as for their ability to adapt with training to altered spatial cues. To explore whether these behavioral deficits are associated with changes in the response properties of cortical neurons, we recorded neural activity in the primary auditory cortex (A1) of anesthetized ferrets in which cholinergic inputs had been reduced by making bilateral injections of the immunotoxin ME20.4-SAP in the nucleus basalis (NB) prior to training the animals. The pattern of spontaneous activity of A1 units recorded in the ferrets with cholinergic lesions (NB ACh-) was similar to that in controls, although the proportion of burst-type units was significantly lower. Depletion of ACh also resulted in more synchronous activity in A1. No changes in thresholds, frequency tuning or in the distribution of characteristic frequencies were found in these animals. When tested with normal acoustic inputs, the spatial sensitivity of A1 neurons in the NB ACh- ferrets and the distribution of their preferred interaural level differences also closely resembled those found in control animals, indicating that these properties had not been altered by sound localization training with one ear occluded. Simulating the animals' previous experience with a virtual earplug in one ear reduced the contralateral preference of A1 units in both groups, but caused azimuth sensitivity to change in slightly different ways, which may reflect the modest adaptation observed in the NB ACh- group. These results show that while ACh is required for behavioral adaptation to altered spatial cues, it is not required for maintenance of the spectral and spatial response properties of A1 neurons.


Asunto(s)
Estimulación Acústica , Corteza Auditiva , Prosencéfalo Basal , Hurones , Animales , Corteza Auditiva/metabolismo , Corteza Auditiva/fisiopatología , Prosencéfalo Basal/metabolismo , Localización de Sonidos , Acetilcolina/metabolismo , Masculino , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Vías Auditivas/fisiopatología , Vías Auditivas/metabolismo , Femenino , Inmunotoxinas/toxicidad , Núcleo Basal de Meynert/metabolismo , Núcleo Basal de Meynert/fisiopatología , Núcleo Basal de Meynert/patología , Neuronas/metabolismo , Umbral Auditivo , Adaptación Fisiológica , Conducta Animal
13.
Proc Natl Acad Sci U S A ; 121(21): e2321410121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748575

RESUMEN

Here, we describe a group of basal forebrain (BF) neurons expressing neuronal Per-Arnt-Sim (PAS) domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. Immunohistochemical staining in Npas1-cre-2A-TdTomato mice revealed BF Npas1+ neurons are distinct from well-studied parvalbumin or cholinergic neurons. Npas1 staining in GAD67-GFP knock-in mice confirmed that the vast majority of Npas1+ neurons are GABAergic, with minimal colocalization with glutamatergic neurons in vGlut1-cre-tdTomato or vGlut2-cre-tdTomato mice. The density of Npas1+ neurons was high, five to six times that of neighboring cholinergic, parvalbumin, or glutamatergic neurons. Anterograde tracing identified prominent projections of BF Npas1+ neurons to brain regions involved in sleep-wake control, motivated behaviors, and olfaction such as the lateral hypothalamus, lateral habenula, nucleus accumbens shell, ventral tegmental area, and olfactory bulb. Chemogenetic activation of BF Npas1+ neurons in the light period increased the amount of wakefulness and the latency to sleep for 2 to 3 h, due to an increase in long wake bouts and short NREM sleep bouts. NREM slow-wave and sigma power, as well as sleep spindle density, amplitude, and duration, were reduced, reminiscent of findings in several neuropsychiatric disorders. Together with previous findings implicating BF Npas1+ neurons in stress responsiveness, the anatomical projections of BF Npas1+ neurons and the effect of activating them suggest a possible role for BF Npas1+ neurons in motivationally driven wakefulness and stress-induced insomnia. Identification of this major subpopulation of BF GABAergic neurons will facilitate studies of their role in sleep disorders, dementia, and other neuropsychiatric conditions involving BF.


Asunto(s)
Prosencéfalo Basal , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Neuronas GABAérgicas , Vigilia , Animales , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiología , Ratones , Vigilia/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones Transgénicos , Masculino , Sueño/fisiología
14.
J Neurosci ; 44(23)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38631914

RESUMEN

Foraging decisions involve assessing potential risks and prioritizing food sources, which can be challenging when confronted with changing and conflicting circumstances. A crucial aspect of this decision-making process is the ability to actively overcome defensive reactions to threats and focus on achieving specific goals. The ventral pallidum (VP) and basolateral amygdala (BLA) are two brain regions that play key roles in regulating behavior motivated by either rewards or threats. However, it is unclear whether these regions are necessary in decision-making processes involving competing motivational drives during conflict. Our aim was to investigate the requirements of the VP and BLA for foraging choices in conflicts involving overcoming defensive responses. Here, we used a novel foraging task and pharmacological techniques to inactivate either the VP or BLA or to disconnect these brain regions before conducting a conflict test in male rats. Our findings showed that BLA is necessary for making risky choices during conflicts, whereas VP is necessary for invigorating the drive to obtain food, regardless of the presence of conflict. Importantly, our research revealed that the connection between VP and BLA is critical in controlling risky food-seeking choices during conflict situations. This study provides a new perspective on the collaborative function of VP and BLA in driving behavior, aimed at achieving goals in the face of dangers.


Asunto(s)
Amígdala del Cerebelo , Prosencéfalo Basal , Recompensa , Animales , Masculino , Ratas , Prosencéfalo Basal/fisiología , Amígdala del Cerebelo/fisiología , Conflicto Psicológico , Complejo Nuclear Basolateral/fisiología , Asunción de Riesgos , Ratas Long-Evans , Conducta Alimentaria/fisiología , Miedo/fisiología
15.
J Alzheimers Dis ; 99(1): 145-159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38640150

RESUMEN

Background: Degeneration of cholinergic basal forebrain (BF) neurons characterizes Alzheimer's disease (AD). However, what role the BF plays in the dynamics of AD pathophysiology has not been investigated precisely. Objective: To investigate the baseline and longitudinal roles of BF along with core neuropathologies in AD. Methods: In this retrospective cohort study, we enrolled 113 subjects (38 amyloid [Aß]-negative cognitively unimpaired, 6 Aß-positive cognitively unimpaired, 39 with prodromal AD, and 30 with AD dementia) who performed brain MRI for BF volume and cortical thickness, 18F-florbetaben PET for Aß, 18F-flortaucipir PET for tau, and detailed cognitive testing longitudinally. We investigated the baseline and longitudinal association of BF volume with Aß and tau standardized uptake value ratio and cognition. Results: Cross-sectionally, lower BF volume was not independently associated with higher cortical Aß, but it was associated with tau burden. Tau burden in the orbitofrontal, insular, lateral temporal, inferior temporo-occipital, and anterior cingulate cortices were associated with progressive BF atrophy. Lower BF volume was associated with faster Aß accumulation, mainly in the prefrontal, anterior temporal, cingulate, and medial occipital cortices. BF volume was associated with progressive decline in language and memory functions regardless of baseline Aß and tau burden. Conclusions: Tau deposition affected progressive BF atrophy, which in turn accelerated amyloid deposition, leading to a vicious cycle. Also, lower baseline BF volume independently predicted deterioration in cognitive function.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Prosencéfalo Basal , Cognición , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Masculino , Femenino , Anciano , Proteínas tau/metabolismo , Prosencéfalo Basal/patología , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Estudios Retrospectivos , Cognición/fisiología , Estudios Transversales , Anciano de 80 o más Años , Estudios Longitudinales , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estudios de Cohortes
16.
J Neurosci ; 44(18)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38485256

RESUMEN

The ventral pallidum (VP) is a central hub in the reward circuitry with diverse projections that have different behavioral roles attributed mostly to the connectivity with the downstream target. However, different VP projections may represent, as in the striatum, separate neuronal populations that differ in more than just connectivity. In this study, we performed in mice of both sexes a multimodal dissection of four major projections of the VP-to the lateral hypothalamus (VP→LH), ventral tegmental area (VP→VTA), lateral habenula (VP→LHb), and mediodorsal thalamus (VP→MDT)-with physiological, anatomical, genetic, and behavioral tools. We also tested for physiological differences between VP neurons receiving input from nucleus accumbens medium spiny neurons (MSNs) that express either the D1 (D1-MSNs) or the D2 (D2-MSNs) dopamine receptor. We show that each VP projection (1) when inhibited during a cocaine conditioned place preference (CPP) test affects performance differently, (2) receives a different pattern of inputs using rabies retrograde labeling, (3) shows differentially expressed genes using RNA sequencing, and (4) has projection-specific characteristics in excitability and synaptic input characteristics using whole-cell patch clamp. VP→LH and VP→VTA projections have different effects on CPP and show low overlap in circuit tracing experiments, as VP→VTA neurons receive more striatal input, while VP→LH neurons receive more olfactory input. Additionally, VP→VTA neurons are less excitable, while VP→LH neurons are more excitable than the average VP neuron, a difference driven mainly by D2-MSN-responding neurons. Thus, VP→VTA and VP→LH neurons may represent largely distinct populations of VP neurons.


Asunto(s)
Prosencéfalo Basal , Cocaína , Vías Nerviosas , Recompensa , Animales , Ratones , Prosencéfalo Basal/fisiología , Masculino , Cocaína/farmacología , Cocaína/administración & dosificación , Femenino , Vías Nerviosas/fisiología , Ratones Endogámicos C57BL , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/citología
17.
J Neurosci Res ; 102(3): e25318, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38491847

RESUMEN

The projections of the basal forebrain (BF) to the hippocampus and neocortex have been extensively studied and shown to be important for higher cognitive functions, including attention, learning, and memory. Much less is known about the BF projections to the basolateral nuclear complex of the amygdala (BNC), although the cholinergic innervation of this region by the BF is actually far more robust than that of cortical areas. This review will focus on light and electron microscopic tract-tracing and immunohistochemical (IHC) studies, many of which were published in the last decade, that have analyzed the relationship of BF inputs and their receptors to specific neuronal subtypes in the BNC in order to better understand the anatomical substrates of BF-BNC circuitry. The results indicate that BF inputs to the BNC mainly target the basolateral nucleus of the BNC (BL) and arise from cholinergic, GABAergic, and perhaps glutamatergic BF neurons. Cholinergic inputs mainly target dendrites and spines of pyramidal neurons (PNs) that express muscarinic receptors (MRs). MRs are also expressed by cholinergic axons, as well as cortical and thalamic axons that synapse with PN dendrites and spines. BF GABAergic axons to the BL also express MRs and mainly target BL interneurons that contain parvalbumin. It is suggested that BF-BL circuitry could be very important for generating rhythmic oscillations known to be critical for emotional learning. BF cholinergic inputs to the BNC might also contribute to memory formation by activating M1 receptors located on PN dendritic shafts and spines that also express NMDA receptors.


Asunto(s)
Prosencéfalo Basal , Complejo Nuclear Basolateral , Neuroanatomía , Neuronas/ultraestructura , Colinérgicos
18.
Cell Rep ; 43(4): 114009, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38536818

RESUMEN

To better understand the function of cholinergic projection neurons in the ventral pallidum (VP), we examined behavioral responses to appetitive (APP) and aversive (AV) odors that elicited approach or avoidance, respectively. Exposure to each odor increased cFos expression and calcium signaling in VP cholinergic neurons. Activity and Cre-dependent viral vectors selectively labeled VP cholinergic neurons that were activated and reactivated in response to either APP or AV odors, but not both, identifying two non-overlapping populations of VP cholinergic neurons differentially activated by the valence of olfactory stimuli. These two subpopulations showed differences in electrophysiological properties, morphology, and projections to the basolateral amygdala. Although VP neurons are engaged in both approach and avoidance behavioral responses, cholinergic signaling is only required for approach behavior. Thus, two distinct subpopulations of VP cholinergic neurons differentially encode valence of olfactory stimuli and play distinct roles in approach and avoidance behaviors.


Asunto(s)
Prosencéfalo Basal , Neuronas Colinérgicas , Odorantes , Animales , Neuronas Colinérgicas/fisiología , Prosencéfalo Basal/fisiología , Ratones , Masculino , Olfato/fisiología , Ratones Endogámicos C57BL
19.
Acta Pharmacol Sin ; 45(5): 945-958, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38326624

RESUMEN

Glutamatergic neurons in ventral pallidum (VPGlu) were recently reported to mediate motivational and emotional behavior, but its role in opioid addiction still remains to be elucidated. In this study we investigated the function of VPGlu in the context-dependent heroin taking and seeking behavior in male rats under the ABA renewal paradigm. By use of cell-type-specific fiber photometry, we showed that the calcium activity of VPGlu were inhibited during heroin self-administration and context-induced relapse, but activated after extinction in a new context. The drug seeking behavior was accompanied by the decreased calcium signal of VPGlu. Chemogenetic manipulation of VPGlu bidirectionally regulated heroin taking and seeking behavior. Anterograde tracing showed that the lateral habenula, one of the epithalamic structures, was the major output region of VPGlu, and its neuronal activity was consistent with VPGlu in different phases of heroin addiction and contributed to the motivation for heroin. VPGlu axon terminals in LHb exhibited dynamic activity in different phases of heroin addiction. Activation of VPGlu-LHb circuit reduced heroin seeking behavior during context-induced relapse. Furthermore, the balance of excitation/inhibition from VP to LHb was shifted to enhanced glutamate transmission after extinction of heroin seeking motivation. Overall, the present study demonstrated that the activity of VPGlu was involved in the regulation of heroin addiction and identified the VPGlu-LHb pathway as a potential intervention to reduce heroin seeking motivation.


Asunto(s)
Prosencéfalo Basal , Ácido Glutámico , Dependencia de Heroína , Neuronas , Ratas Sprague-Dawley , Animales , Masculino , Dependencia de Heroína/metabolismo , Dependencia de Heroína/psicología , Prosencéfalo Basal/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Comportamiento de Búsqueda de Drogas , Heroína , Ratas , Autoadministración , Habénula/metabolismo
20.
Elife ; 132024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363713

RESUMEN

Neurons of the basal forebrain nucleus basalis and posterior substantia innominata (NBM/SIp) comprise the major source of cholinergic input to the basolateral amygdala (BLA). Using a genetically encoded acetylcholine (ACh) sensor in mice, we demonstrate that BLA-projecting cholinergic neurons can 'learn' the association between a naive tone and a foot shock (training) and release ACh in the BLA in response to the conditioned tone 24 hr later (recall). In the NBM/SIp cholinergic neurons express the immediate early gene, Fos following both training and memory recall. Cholinergic neurons that express Fos following memory recall display increased intrinsic excitability. Chemogenetic silencing of these learning-activated cholinergic neurons prevents expression of the defensive behavior to the tone. In contrast, we show that NBM/SIp cholinergic neurons are not activated by an innately threatening stimulus (predator odor). Instead, VP/SIa cholinergic neurons are activated and contribute to defensive behaviors in response to predator odor, an innately threatening stimulus. Taken together, we find that distinct populations of cholinergic neurons are recruited to signal distinct aversive stimuli, demonstrating functionally refined organization of specific types of memory within the cholinergic basal forebrain of mice.


Asunto(s)
Prosencéfalo Basal , Ratones , Animales , Prosencéfalo Basal/fisiología , Neuronas Colinérgicas/fisiología , Memoria/fisiología , Aprendizaje/fisiología , Acetilcolina/metabolismo , Colinérgicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...