Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 52: 102316, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35489241

RESUMEN

Mycobacterium tuberculosis (Mtb) senses and responds to host-derived gasotransmitters NO and CO via heme-containing sensor kinases DosS and DosT and the response regulator DosR. Hydrogen sulfide (H2S) is an important signaling molecule in mammals, but its role in Mtb physiology is unclear. We have previously shown that exogenous H2S can modulate expression of genes in the Dos dormancy regulon via an unknown mechanism(s). Here, we test the hypothesis that Mtb senses and responds to H2S via the DosS/T/R system. Using UV-Vis and EPR spectroscopy, we show that H2S binds directly to the ferric (Fe3+) heme of DosS (KDapp = 5.30 µM) but not the ferrous (Fe2+) form. No interaction with DosT(Fe2+-O2) was detected. We found that the binding of sulfide can slowly reduce the DosS heme iron to the ferrous form. Steered Molecular Dynamics simulations show that H2S, and not the charged HS- species, can enter the DosS heme pocket. We also show that H2S increases DosS autokinase activity and subsequent phosphorylation of DosR, and H2S-mediated increases in Dos regulon gene expression is lost in Mtb lacking DosS. Finally, we demonstrate that physiological levels of H2S in macrophages can induce DosR regulon genes via DosS. Overall, these data reveal a novel mechanism whereby Mtb senses and responds to a third host gasotransmitter, H2S, via DosS(Fe3+). These findings highlight the remarkable plasticity of DosS and establish a new paradigm for how bacteria can sense multiple gasotransmitters through a single heme sensor kinase.


Asunto(s)
Gasotransmisores , Mycobacterium tuberculosis , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ácido Dioctil Sulfosuccínico/metabolismo , Gasotransmisores/metabolismo , Regulación Bacteriana de la Expresión Génica , Hemo/metabolismo , Hierro/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Protamina Quinasa/química , Protamina Quinasa/genética , Protamina Quinasa/metabolismo , Regulón
2.
Development ; 147(23)2020 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-33168584

RESUMEN

DNA endoreplication has been implicated as a cell strategy for cell growth and in tissue injury. Here, we demonstrate that barrier-to-autointegration factor (BAF) represses endoreplication in Drosophila myofibers. We show that BAF localization at the nuclear envelope is eliminated in flies with mutations of the linker of nucleoskeleton and cytoskeleton (LINC) complex in which the LEM-domain protein Otefin is excluded, or after disruption of the nucleus-sarcomere connections. Furthermore, BAF localization at the nuclear envelope requires the activity of the BAF kinase VRK1/Ball, and, consistently, non-phosphorylatable BAF-GFP is excluded from the nuclear envelope. Importantly, removal of BAF from the nuclear envelope correlates with increased DNA content in the myonuclei. E2F1, a key regulator of endoreplication, overlaps BAF localization at the myonuclear envelope, and BAF removal from the nuclear envelope results in increased E2F1 levels in the nucleoplasm and subsequent elevated DNA content. We suggest that LINC-dependent and phosphosensitive attachment of BAF to the nuclear envelope, through its binding to Otefin, tethers E2F1 to the nuclear envelope thus inhibiting its accumulation in the nucleoplasm.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Endorreduplicación/genética , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Citoesqueleto/genética , Replicación del ADN/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica/genética , Mutación/genética , Miofibrillas/genética , Membrana Nuclear/genética , Matriz Nuclear/genética , Protamina Quinasa/genética
3.
Biochem J ; 477(9): 1669-1682, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32309848

RESUMEN

The DevR-DevS/DosR-DosS two-component system of Mycobacterium tuberculosis, that comprises of DevS sensor kinase and DevR response regulator, is essential for bacterial adaptation to hypoxia by inducing dormancy regulon expression. The dominant phosphatase activity of DevS under aerobic conditions enables tight negative control, whereas its kinase function activates DevR under hypoxia to induce the dormancy regulon. A net balance in these opposing kinase and phosphatase activities of DevS calibrates the response output of DevR. To gain mechanistic insights into the kinase-phosphatase balance of DevS, we generated alanine substitution mutants of five residues located in DHp α1 helix of DevS, namely Phe-403, Gly-406, Leu-407, Gly-411 and His-415. For the first time, we have identified kinase positive phosphatase negative (K+P-) mutants in DevS by a single-site mutation in either Gly-406 or Leu-407. M. tuberculosis Gly-406A and Leu-407A mutant strains constitutively expressed the DevR regulon under aerobic conditions despite the presence of negative signal, oxygen. These mutant proteins exhibited ∼2-fold interaction defect with DevR. We conclude that Gly-406 and Leu-407 residues are individually essential for the phosphatase function of DevS. Our study provides new insights into the negative control mechanism of DevS by demonstrating the importance of an optimal interaction between DevR and DevS, and local changes associated with individual residues, Gly-406 and Leu-407, which mimic ligand-free DevS. These K+P- mutant strains are expected to facilitate the rapid aerobic screening of DevR antagonists in M. tuberculosis, thereby eliminating the requirement for hypoxic culture conditions.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Mycobacterium tuberculosis , Monoéster Fosfórico Hidrolasas/metabolismo , Protamina Quinasa/genética , Regulación Bacteriana de la Expresión Génica , Hipoxia , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxígeno/metabolismo , Fosforilación , Protamina Quinasa/metabolismo , Proteínas Quinasas/metabolismo
4.
Cell ; 180(6): 1212-1227.e14, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32169215

RESUMEN

The paternal genome undergoes a massive exchange of histone with protamine for compaction into sperm during spermiogenesis. Upon fertilization, this process is potently reversed, which is essential for parental genome reprogramming and subsequent activation; however, it remains poorly understood how this fundamental process is initiated and regulated. Here, we report that the previously characterized splicing kinase SRPK1 initiates this life-beginning event by catalyzing site-specific phosphorylation of protamine, thereby triggering protamine-to-histone exchange in the fertilized oocyte. Interestingly, protamine undergoes a DNA-dependent phase transition to gel-like condensates and SRPK1-mediated phosphorylation likely helps open up such structures to enhance protamine dismissal by nucleoplasmin (NPM2) and enable the recruitment of HIRA for H3.3 deposition. Remarkably, genome-wide assay for transposase-accessible chromatin sequencing (ATAC-seq) analysis reveals that selective chromatin accessibility in both sperm and MII oocytes is largely erased in early pronuclei in a protamine phosphorylation-dependent manner, suggesting that SRPK1-catalyzed phosphorylation initiates a highly synchronized reorganization program in both parental genomes.


Asunto(s)
Cromatina/metabolismo , Protaminas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromatina/fisiología , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Fertilización/genética , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/metabolismo , Oocitos/fisiología , Fosforilación , Protamina Quinasa/genética , Protamina Quinasa/metabolismo , Protaminas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Empalme del ARN/genética , Empalme del ARN/fisiología , Espermatozoides/metabolismo , Factores de Transcripción/metabolismo , Cigoto/metabolismo
5.
Nucleic Acids Res ; 47(19): 10086-10103, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31529049

RESUMEN

The metabolic sensor Per-Arnt-Sim (Pas) domain-containing serine/threonine kinase (PASK) is expressed predominantly in the cytoplasm of different cell types, although a small percentage is also expressed in the nucleus. Herein, we show that the nuclear PASK associates with the mammalian H3K4 MLL2 methyltransferase complex and enhances H3K4 di- and tri-methylation. We also show that PASK is a histone kinase that phosphorylates H3 at T3, T6, S10 and T11. Taken together, these results suggest that PASK regulates two different H3 tail modifications involving H3K4 methylation and H3 phosphorylation. Using muscle satellite cell differentiation and functional analysis after loss or gain of Pask expression using the CRISPR/Cas9 system, we provide evidence that some of the regulatory functions of PASK during development and differentiation may occur through the regulation of these histone modifications.


Asunto(s)
Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Histonas/genética , Proteínas de Neoplasias/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Diferenciación Celular/genética , Línea Celular , Proteínas de Unión al ADN/química , Células HEK293 , Código de Histonas/genética , Histonas/química , Humanos , Metiltransferasas/genética , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Proteínas de Neoplasias/química , Fosforilación/genética , Protamina Quinasa/química , Protamina Quinasa/genética , Proteínas Serina-Treonina Quinasas/química , Células Satélite del Músculo Esquelético/metabolismo , Análisis de Secuencia de ARN
6.
Commun Biol ; 2: 349, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552302

RESUMEN

Dormancy is a key characteristic of the intracellular life-cycle of Mtb. The importance of sensor kinase DosS in mycobacteria are attributed in part to our current findings that DosS is required for both persistence and full virulence of Mtb. Here we show that DosS is also required for optimal replication in macrophages and involved in the suppression of TNF-α and autophagy pathways. Silencing of these pathways during the infection process restored full virulence in MtbΔdosS mutant. Notably, a mutant of the response regulator DosR did not exhibit the attenuation in macrophages, suggesting that DosS can function independently of DosR. We identified four DosS targets in Mtb genome; Rv0440, Rv2859c, Rv0994, and Rv0260c. These genes encode functions related to hypoxia adaptation, which are not directly controlled by DosR, e.g., protein recycling and chaperoning, biosynthesis of molybdenum cofactor and nitrogen metabolism. Our results strongly suggest a DosR-independent role for DosS in Mtb.


Asunto(s)
Autofagosomas/metabolismo , Autofagosomas/microbiología , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/fisiología , Protamina Quinasa/metabolismo , Proteínas Quinasas/metabolismo , Tuberculosis/metabolismo , Tuberculosis/microbiología , Autofagosomas/inmunología , Autofagia , Proteínas Bacterianas/genética , Proteínas de Unión al ADN , Perfilación de la Expresión Génica , Silenciador del Gen , Interacciones Huésped-Patógeno/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Mutación , Mycobacterium tuberculosis/enzimología , Fagocitos/inmunología , Fagocitos/metabolismo , Fagocitos/microbiología , Fosforilación , Protamina Quinasa/genética , Proteínas Quinasas/genética , Tuberculosis/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Virulencia
7.
FEBS J ; 286(21): 4278-4293, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31254441

RESUMEN

Tuberculosis is one of the oldest known infectious diseases, responsible for millions of deaths annually around the world. The ability of Mycobacterium tuberculosis (Mtb) to enter into a dormant state has been considered integral to the success of this bacterium as a human pathogen. One of the key systems involved in regulating the entrance into dormancy is the differentially expressed in virulent strain sensor protein (DevS) [(dormancy survival sensor protein (DosS)]. However, the physiological signal for DevS has remained unclear since it was first shown to be a heme-based sensor with conflicting reports on whether it is a redox or an oxygen sensor. To address this question and provide a better understanding of the electronic properties of this protein, we present here, for the first time, a series of spectroelectrochemistry measurements of the full-length holo DevS in anaerobic conditions as well as bound to CO, NO, imidazole (Imz), cyanide, and O2 . An interesting feature of this protein is its ability to bind Imz even in the ferrous state, implying small-molecule analogues could be designed as potential regulators. Nonetheless, a midpoint potential (Em ) value of +10 mV [vs normal hydrogen electrode (NHE)] for DevS as measured under anaerobic conditions is much higher than the expected cytosolic potential for Mtb or even within stimulated macrophages (~ -270 mV vs NHE), indicating this sensor works in a reduced ferrous state. These data, along with the high oxygen affinity and very slow auto-oxidation rate of DevS, provides evidence that it is not a redox sensor. Overall, this study validates the biological function of DevS as an oxygen sensor directly involved in the dormancy/latency of Mtb.


Asunto(s)
Proteínas Bacterianas/genética , Técnicas Biosensibles , Mycobacterium tuberculosis/metabolismo , Protamina Quinasa/genética , Tuberculosis/metabolismo , Proteínas Bacterianas/química , Monóxido de Carbono/química , Cianuros/química , Hemo , Humanos , Imidazoles/química , Mycobacterium tuberculosis/patogenicidad , Óxido Nítrico/química , Oxidación-Reducción , Oxígeno/química , Protamina Quinasa/química , Tuberculosis/microbiología , Tuberculosis/patología
8.
FEBS J ; 286(3): 479-494, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30570222

RESUMEN

A major challenge to the control and eventual eradication of Mycobacterium tuberculosis infection is this pathogen's prolonged dormancy. The heme-based oxygen sensor protein DevS (DosS) plays a key role in this phenomenon, because it is a major activator of the transcription factor DevR. When DevS is active, its histidine protein kinase region is ON and it phosphorylates and activates DevR, which can induce the transcription of the dormancy regulon genes. Here, we have investigated the mechanism by which the ligation of molecular oxygen to a heme-binding domain in DevS switches OFF its histidine protein kinase region. To shed light on the oligomerization states of this protein and possible protein-surfaces of interaction, we used analytical gel filtration, together with dynamic light scattering, fluorescence spectroscopy and chemical crosslinking. We found that DevS exists as three major species: an octamer, a tetramer and a dimer. These three states were observed for the concentration range between 0.5 and 20 µm DevS, but not below 0.1 µm. Levels of DevS in M. tuberculosis are expected to range from 5 to 26 µm. When this histidine protein kinase was OFF, the DevS was mainly tetrameric and dimeric; by contrast, when the kinase was ON, the protein was predominantly octameric. The changes in quaternary structure were rapid upon binding to the physiological signal. This finding represents a novel strategy for switching the activity of a two-component heme-based sensor. An enhanced understanding of this process might potentially lead to the design of novel regulatory agents that target the multimer interfaces for treatment of latent tuberculosis.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Hemo/química , Mycobacterium tuberculosis/efectos de los fármacos , Oxígeno/farmacología , Protamina Quinasa/química , Proteínas Quinasas/genética , Proteínas Bacterianas/metabolismo , Cromatografía en Gel , Clonación Molecular , Proteínas de Unión al ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hemo/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Tuberculosis Latente/microbiología , Tuberculosis Latente/patología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Mycobacterium tuberculosis/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Fosforilación , Protamina Quinasa/genética , Protamina Quinasa/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regulón , Transducción de Señal , Espectrometría de Fluorescencia , Transcripción Genética/efectos de los fármacos
9.
Mol Cells ; 40(9): 632-642, 2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-28843272

RESUMEN

The DevSR (DosSR) two-component system, which is a major regulatory system involved in oxygen sensing in mycobacteria, plays an important role in hypoxic induction of many genes in mycobacteria. We demonstrated that overexpression of the kinase domain of Mycobacterium tuberculosis (Mtb) PknB inhibited transcriptional activity of the DevR response regulator in Mycobacterium smegmatis and that this inhibitory effect was exerted through phosphorylation of DevR on Thr180 within its DNA-binding domain. Moreover, the purified kinase domain of Mtb PknB significantly phosphorylated RegX3, NarL, KdpE, TrcR, DosR, and MtrA response regulators of Mtb that contain the Thr residues corresponding to Thr180 of DevR in their DNA-binding domains, implying that transcriptional activities of these response regulators might also be inhibited when the kinase domain of PknB is overexpressed.


Asunto(s)
Hipoxia de la Célula/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Oxígeno/química , Oxígeno/metabolismo , Fosforilación , Protamina Quinasa/genética , Protamina Quinasa/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Tuberculosis/genética , Tuberculosis/microbiología
10.
Mol Cell ; 64(1): 176-188, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716482

RESUMEN

How deregulation of chromatin modifiers causes malignancies is of general interest. Here, we show that histone H2A T120 is phosphorylated in human cancer cell lines and demonstrate that this phosphorylation is catalyzed by hVRK1. Cyclin D1 was one of ten genes downregulated upon VRK1 knockdown in two different cell lines and showed loss of H2A T120 phosphorylation and increased H2A K119 ubiquitylation of its promoter region, resulting in impaired cell growth. In vitro, H2A T120 phosphorylation and H2A K119 ubiquitylation are mutually inhibitory, suggesting that histone phosphorylation indirectly activates chromatin. Furthermore, expression of a phosphomimetic H2A T120D increased H3 K4 methylation. Finally, both VRK1 and the H2A T120D mutant histone transformed NIH/3T3 cells. These results suggest that histone H2A T120 phosphorylation by hVRK1 causes inappropriate gene expression, including upregulated cyclin D1, which promotes oncogenic transformation.


Asunto(s)
Transformación Celular Neoplásica/genética , Ciclina D1/genética , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Cromatina/química , Cromatina/metabolismo , Ciclina D1/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metilación , Ratones , Oligopéptidos/genética , Oligopéptidos/metabolismo , Fosforilación , Protamina Quinasa/genética , Protamina Quinasa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Treonina/metabolismo , Ubiquitinación
11.
FEBS J ; 283(15): 2949-62, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27327040

RESUMEN

Two-component systems, comprising histidine kinases and response regulators, empower bacteria to sense and adapt to diverse environmental stresses. Some histidine kinases are bifunctional; their phosphorylation (kinase) and dephosphorylation (phosphatase) activities toward their cognate response regulators permit the rapid reversal of genetic responses to an environmental stimulus. DevR-DevS/DosR-DosS is one of the best-characterized two-component systems of Mycobacterium tuberculosis. The kinase function of DevS is activated by gaseous stress signals, including hypoxia, resulting in the induction of ~ 48-genes DevR dormancy regulon. Regulon expression is tightly controlled and lack of expression in aerobic Mtb cultures is ascribed to the absence of phosphorylated DevR. Here we show that DevS is a bifunctional sensor and possesses a robust phosphatase activity toward DevR. We used site-specific mutagenesis to generate substitutions in conserved residues in the dimerization and histidine phosphotransfer domain of DevS and determined their role in kinase/phosphatase functions. In vitro and in vivo experiments, including a novel in vivo phosphatase assay, collectively establish that these conserved residues are critical for regulating kinase/phosphatase functions. Our findings establish DevS phosphatase function as an effective control mechanism to block aerobic expression of the DevR dormancy regulon. Asp-396 is essential for both kinase and phosphatase functions, whereas Gln-400 is critical for phosphatase function. The positive and negative functions perform opposing roles in DevS: the kinase function triggers regulon induction under hypoxia, whereas its phosphatase function prevents expression under aerobic conditions. A finely tuned balance in these opposing activities calibrates the dormancy regulon response output.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Protamina Quinasa/química , Protamina Quinasa/metabolismo , Proteínas Quinasas/metabolismo , Aerobiosis , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia Conservada , ADN/metabolismo , Proteínas de Unión al ADN , Regulación Bacteriana de la Expresión Génica , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fosfoproteínas Fosfatasas/genética , Protamina Quinasa/genética , Unión Proteica , Dominios Proteicos , Regulón
12.
J Biol Chem ; 291(31): 16100-11, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27235395

RESUMEN

Mycobacterium tuberculosis DosS is critical for the induction of M. tuberculosis dormancy genes in response to nitric oxide (NO), carbon monoxide (CO), or hypoxia. These environmental stimuli, which are sensed by the DosS heme group, result in autophosphorylation of a DosS His residue, followed by phosphotransfer to an Asp residue of the response regulator DosR. To clarify the mechanism of gaseous ligand recognition and signaling, we investigated the hydrogen-bonding interactions of the iron-bound CO and NO ligands by site-directed mutagenesis of Glu-87 and His-89. Autophosphorylation assays and molecular dynamics simulations suggest that Glu-87 has an important role in ligand recognition, whereas His-89 is essential for signal transduction to the kinase domain, a process for which Arg-204 is important. Mutation of Glu-87 to Ala or Gly rendered the protein constitutively active as a kinase, but with lower autophosphorylation activity than the wild-type in the Fe(II) and the Fe(II)-CO states, whereas the E87D mutant had little kinase activity except for the Fe(II)-NO complex. The H89R mutant exhibited attenuated autophosphorylation activity, although the H89A and R204A mutants were inactive as kinases, emphasizing the importance of these residues in communication to the kinase core. Resonance Raman spectroscopy of the wild-type and H89A mutant indicates the mutation does not alter the heme coordination number, spin state, or porphyrin deformation state, but it suggests that interdomain interactions are disrupted by the mutation. Overall, these results confirm the importance of the distal hydrogen-bonding network in ligand recognition and communication to the kinase domain and reveal the sensitivity of the system to subtle differences in the binding of gaseous ligands.


Asunto(s)
Proteínas Bacterianas , Monóxido de Carbono , Mycobacterium tuberculosis , Óxido Nítrico , Protamina Quinasa , Transducción de Señal/fisiología , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Enlace de Hidrógeno , Mutación Missense , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Fosforilación , Protamina Quinasa/química , Protamina Quinasa/genética , Protamina Quinasa/metabolismo
13.
PLoS One ; 10(8): e0135208, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26270051

RESUMEN

Despite considerable progress in understanding the pathogenesis of Mycobacterium tuberculosis (Mtb), development of new therapeutics and vaccines against it has proven difficult. This is at least in part due to the use of less than optimal models of in-vivo Mtb infection, which has precluded a study of the physiology of the pathogen in niches where it actually persists. C3HeB/FeJ (Kramnik) mice develop human-like lesions when experimentally infected with Mtb and thus make available, a faithful and highly tractable system to study the physiology of the pathogen in-vivo. We compared the transcriptomics of Mtb and various mutants in the DosR (DevR) regulon derived from Kramnik mouse granulomas to those cultured in-vitro. We recently showed that mutant ΔdosS is attenuated in C3HeB/FeJ mice. Aerosol exposure of mice with the mutant mycobacteria resulted in a substantially different and a relatively weaker transcriptional response (< = 20 genes were induced) for the functional category 'Information Pathways' in Mtb:ΔdosR; 'Lipid Metabolism' in Mtb:ΔdosT; 'Virulence, Detoxification, Adaptation' in both Mtb:ΔdosR and Mtb:ΔdosT; and 'PE/PPE' family in all mutant strains compare to wild-type Mtb H37Rv, suggesting that the inability to induce DosR functions to different levels can modulate the interaction of the pathogen with the host. The Mtb genes expressed during growth in C3HeB/FeJ mice appear to reflect adaptation to differential nutrient utilization for survival in mouse lungs. The genes such as glnB, Rv0744c, Rv3281, sdhD/B, mce4A, dctA etc. downregulated in mutant ΔdosS indicate their requirement for bacterial growth and flow of carbon/energy source from host cells. We conclude that genes expressed in Mtb during in-vivo chronic phase of infection in Kramnik mice mainly contribute to growth, cell wall processes, lipid metabolism, and virulence.


Asunto(s)
Proteínas Bacterianas/genética , Mycobacterium tuberculosis/genética , Protamina Quinasa/genética , Proteínas Quinasas/genética , Tuberculosis/genética , Tuberculosis/microbiología , Animales , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Humanos , Ratones , Mutación , Transcriptoma
14.
Am J Respir Cell Mol Biol ; 52(6): 708-16, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25322074

RESUMEN

Mycobacterium tuberculosis (Mtb) must counter hypoxia within granulomas to persist. DosR, in concert with sensor kinases DosS and DosT, regulates the response to hypoxia. Yet Mtb lacking functional DosR colonize the lungs of C57Bl/6 mice, presumably owing to the lack of organized lesions with sufficient hypoxia in that model. We compared the phenotype of the Δ-dosR, Δ-dosS, and Δ-dosT mutants to Mtb using C3HeB/FeJ mice, an alternate mouse model where lesions develop hypoxia. C3HeB/FeJ mice were infected via aerosol. The progression of infection was analyzed by tissue bacterial burden and histopathology. A measure of the comparative global immune responses was also analyzed. Although Δ-dosR and Δ-dosT grew comparably to wild-type Mtb, Δ-dosS exhibited a significant defect in bacterial burden and pathology in vivo, accompanied by ablated proinflammatory response. Δ-dosS retained the ability to induce DosR. The Δ-dosS mutant was also attenuated in murine macrophages ex vivo, with evidence of reduced expression of the proinflammatory signature. Our results show that DosS, but not DosR and DosT, is required by Mtb to survive in C3HeB/FeJ mice. The attenuation of Δ-dosS is not due to its inability to induce the DosR regulon, nor is it a result of the accumulation of hypoxia. That the in vivo growth restriction of Δ-dosS could be mimicked ex vivo suggested sensitivity to macrophage oxidative burst. Anoxic caseous centers within tuberculosis lesions eventually progress to cavities. Our results provide greater insight into the molecular mechanisms of Mtb persistence within host lungs.


Asunto(s)
Proteínas Bacterianas/genética , Granuloma del Sistema Respiratorio/microbiología , Mycobacterium tuberculosis/patogenicidad , Protamina Quinasa/genética , Tuberculosis Pulmonar/microbiología , Animales , Proteínas Bacterianas/metabolismo , Hipoxia de la Célula , Células Cultivadas , Regulación Bacteriana de la Expresión Génica , Macrófagos/microbiología , Masculino , Ratones Endogámicos C3H , Viabilidad Microbiana , Mycobacterium tuberculosis/genética , Protamina Quinasa/metabolismo , Regulón , Virulencia
15.
J Cell Sci ; 128(3): 566-75, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25501812

RESUMEN

Chromosome condensation during cell division is one of the most dramatic events in the cell cycle. Condensin and topoisomerase II are the most studied factors in chromosome condensation. However, their inactivation leads to only mild defects and little is known about the roles of other factors. Here, we took advantage of Drosophilaoocytes to elucidate the roles of potential condensation factors by performing RNA interference (RNAi). Consistent with previous studies, depletion of condensin I subunits or topoisomerase II in oocytes only mildly affected chromosome condensation. In contrast, we found severe undercondensation of chromosomes after depletion of the Mi-2-containing NuRD nucleosome remodelling complex or the protein kinase NHK-1 (also known as Ballchen in Drosophila). The further phenotypic analysis suggests that Mi-2 and NHK-1 are involved in different pathways of chromosome condensation. We show that the main role of NHK-1 in chromosome condensation is to phosphorylate Barrier-to-autointegration factor (BAF) and suppress its activity in linking chromosomes to nuclear envelope proteins. We further show that NHK-1 is important for chromosome condensation during mitosis as well as in oocytes.


Asunto(s)
Cromosomas/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Mitosis/genética , Oocitos/citología , Protamina Quinasa/genética , Adenosina Trifosfatasas/genética , Animales , Proteínas de Ciclo Celular/metabolismo , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Complejos Multiproteicos/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/genética , Huso Acromático/genética , Huso Acromático/metabolismo
16.
J Cell Biochem ; 114(1): 1-6, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22833514

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), which claims approximately two million people annually, remains a global health concern. The non-replicating or dormancy like state of this pathogen which is impervious to anti-tuberculosis drugs is widely recognized as the culprit for this scenario. The dormancy survival regulator (DosR) regulon, composed of 48 co-regulated genes, is held as essential for Mtb persistence. The DosR regulon is regulated by a two-component regulatory system consisting of two sensor kinases-DosS (Rv3132c) and DosT (Rv2027c), and a response regulator DosR (Rv3133c). The underlying regulatory mechanism of DosR regulon expression is very complex. Many factors are involved, particularly the oxygen tension. The DosR regulon enables the pathogen to persist during lengthy hypoxia. Comparative genomic analysis demonstrated that the DosR regulon is widely distributed among the mycobacterial genomes, ranging from the pathogenic strains to the environmental strains. In-depth studies on the DosR response should provide insights into its role in TB latency in vivo and shape new measures to combat this exceeding recalcitrant pathogen.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/genética , Mycobacterium/genética , Proteínas Quinasas/genética , Regulón , Proteínas Bacterianas/química , Hibridación Genómica Comparativa , Proteínas de Unión al ADN , Variación Genética , Humanos , Hipoxia/metabolismo , Tuberculosis Latente/microbiología , Mycobacterium tuberculosis/patogenicidad , Oxígeno/metabolismo , Protamina Quinasa/genética , Proteínas Quinasas/química , Tuberculosis Pulmonar/microbiología
17.
Crit Rev Eukaryot Gene Expr ; 22(1): 37-52, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22339658

RESUMEN

Communication is vital for nearly all organisms to survive and thrive. For some particularly successful intracellular pathogens, a robust and precise signal transduction system is imperative for handling the complex, volatile, and harsh niche. The communication network of the etiology of tuberculosis, Mycobacterium tuberculosis (M.tb), namely two-component system (TCS), the eukaryotic-like Ser/Thr protein kinases(STPKs) system, the protein tyrosine kinase(PTK) system and the extracytoplasmic function σ(ECF-σ) system, determine how the pathogen responds to environmental fluctuations. At least 12 pair TCSs and four orphan proteins (three response regulators, Rv2884, Rv0260c, Rv0818, and one putative sensory transduction protein, Rv3143) can be found in the M.tb H37Rv genome. They regulate various aspects of M.tb, including virulence, dormancy, persistence, and drug resistance. This review focuses on the physiological roles of TCSs and the network of M.tb TCSs from a systems biology perspective. The implications of TCSs for better vaccine and new drug targets against tuberculosis are also examined.


Asunto(s)
Descubrimiento de Drogas , Mycobacterium tuberculosis/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN , Farmacorresistencia Bacteriana/genética , Cobayas , Hexoquinasa/genética , Hexoquinasa/metabolismo , Humanos , Hidrolasas/genética , Hidrolasas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Macaca mulatta , Ratones , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Protamina Quinasa/genética , Protamina Quinasa/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Ratas , Factor sigma/genética , Factor sigma/metabolismo , Transducción de Señal
18.
J Bacteriol ; 193(19): 5105-18, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21821774

RESUMEN

Mycobacterium tuberculosis, the etiological agent of tuberculosis, remains a significant cause of morbidity and mortality throughout the world despite a vaccine and cost-effective antibiotics. The success of this organism can be attributed, in part, to its ability to adapt to potentially harmful stress within the host and establish, maintain, and reactivate from long-term persistent infection within granulomatous structures. The DosRS-DosT/DevRS-Rv2027c, and MprAB two-component signal transduction systems have previously been implicated in aspects of persistent infection by M. tuberculosis and are known to be responsive to conditions likely to be found within the granuloma. Here, we describe initial characterization of a locus (Rv0081-Rv0088) encoding components of a predicted formate hydrogenylase enzyme complex that is directly regulated by DosR/DevR and MprA, and the product of the first gene in this operon, Rv0081. In particular, we demonstrate that Rv0081 negatively regulates its own expression and that of downstream genes by binding an inverted repeat element in its upstream region. In contrast, DosR/DevR and MprA positively regulate Rv0081 expression by binding to recognition sequences that either partially or completely overlap that recognized by Rv0081, respectively. Expression of Rv0081 initiates from two promoter elements; one promoter located downstream of the DosR/DevR binding site but overlapping the sequence recognized by both Rv0081 and MprA and another promoter downstream of the DosR/DevR, Rv0081, and MprA binding sites. Interestingly, Rv0081 represses Rv0081 and downstream determinants following activation of DosRS-DosT/DevRS-Rv2027c by nitric oxide, suggesting that expression of this locus is complex and subject to multiple levels of regulation. Based on this and other published information, a model is proposed detailing Rv0081-Rv0088 expression by these transcription factors within particular growth environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Formiato Deshidrogenasas/metabolismo , Complejos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/metabolismo , Protamina Quinasa/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión al ADN , Ensayo de Cambio de Movilidad Electroforética , Formiato Deshidrogenasas/genética , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Complejos Multienzimáticos/genética , Mutación , Mycobacterium tuberculosis/genética , Protamina Quinasa/genética , Proteínas Quinasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
PLoS Genet ; 6(10): e1001179, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21060809

RESUMEN

The meiotic recombination checkpoint is a signalling pathway that blocks meiotic progression when the repair of DNA breaks formed during recombination is delayed. In comparison to the signalling pathway itself, however, the molecular targets of the checkpoint that control meiotic progression are not well understood in metazoans. In Drosophila, activation of the meiotic checkpoint is known to prevent formation of the karyosome, a meiosis-specific organisation of chromosomes, but the molecular pathway by which this occurs remains to be identified. Here we show that the conserved kinase NHK-1 (Drosophila Vrk-1) is a crucial meiotic regulator controlled by the meiotic checkpoint. An nhk-1 mutation, whilst resulting in karyosome defects, does so independent of meiotic checkpoint activation. Rather, we find unrepaired DNA breaks formed during recombination suppress NHK-1 activity (inferred from the phosphorylation level of one of its substrates) through the meiotic checkpoint. Additionally DNA breaks induced by X-rays in cultured cells also suppress NHK-1 kinase activity. Unrepaired DNA breaks in oocytes also delay other NHK-1 dependent nuclear events, such as synaptonemal complex disassembly and condensin loading onto chromosomes. Therefore we propose that NHK-1 is a crucial regulator of meiosis and that the meiotic checkpoint suppresses NHK-1 activity to prevent oocyte nuclear reorganisation until DNA breaks are repaired.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Meiosis/genética , Protamina Quinasa/genética , Animales , Línea Celular , Polaridad Celular , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN , Reparación del ADN/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Immunoblotting , Masculino , Modelos Biológicos , Mutación , Oocitos/metabolismo , Fosforilación , Protamina Quinasa/metabolismo
20.
J Bacteriol ; 192(24): 6447-55, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20952575

RESUMEN

The DosR regulon in Mycobacterium tuberculosis is involved in respiration-limiting conditions, its induction is controlled by two histidine kinases, DosS and DosT, and recent experimental evidence indicates DosS senses either molecular oxygen or a redox change. Under aerobic conditions, induction of the DosR regulon by DosS, but not DosT, was observed after the addition of ascorbate, a powerful cytochrome c reductant, demonstrating that DosS responds to a redox signal even in the presence of high oxygen tension. During hypoxic conditions, regulon induction was attenuated by treatment with compounds that occluded electron flow into the menaquinone pool or decreased the size of the menaquinone pool itself. Increased regulon expression during hypoxia was observed when exogenous menaquinone was added, demonstrating that the menaquinone pool is a limiting factor in regulon induction. Taken together, these data demonstrate that a reduced menaquinone pool directly or indirectly triggers induction of the DosR regulon via DosS. Biochemical analysis of menaquinones upon entry into hypoxic/anaerobic conditions demonstrated the disappearance of the unsaturated species and low-level maintenance of the mono-saturated menaquinone. Relative to the unsaturated form, an analog of the saturated form is better able to induce signaling via DosS and rescue inhibition of menaquinone synthesis and is less toxic. The menaquinone pool is central to the electron transport system (ETS) and therefore provides a mechanistic link between the respiratory state of the bacilli and DosS signaling. Although this report demonstrates that DosS responds to a reduced ETS, it does not rule out a role for oxygen in silencing signaling.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Mycobacterium tuberculosis/metabolismo , Consumo de Oxígeno/fisiología , Protamina Quinasa/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión al ADN , Transporte de Electrón/fisiología , Biología Molecular , Mycobacterium tuberculosis/genética , Protamina Quinasa/genética , Proteínas Quinasas/genética , Transducción de Señal , Vitamina K 2/química , Vitamina K 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...