Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2310864121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38781213

RESUMEN

IL-22 plays a critical role in defending against mucosal infections, but how IL-22 production is regulated is incompletely understood. Here, we show that mice lacking IL-33 or its receptor ST2 (IL-1RL1) were more resistant to Streptococcus pneumoniae lung infection than wild-type animals and that single-nucleotide polymorphisms in IL33 and IL1RL1 were associated with pneumococcal pneumonia in humans. The effect of IL-33 on S. pneumoniae infection was mediated by negative regulation of IL-22 production in innate lymphoid cells (ILCs) but independent of ILC2s as well as IL-4 and IL-13 signaling. Moreover, IL-33's influence on IL-22-dependent antibacterial defense was dependent on housing conditions of the mice and mediated by IL-33's modulatory effect on the gut microbiota. Collectively, we provide insight into the bidirectional crosstalk between the innate immune system and the microbiota. We conclude that both genetic and environmental factors influence the gut microbiota, thereby impacting the efficacy of antibacterial immune defense and susceptibility to pneumonia.


Asunto(s)
Inmunidad Innata , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-22 , Interleucina-33 , Interleucinas , Streptococcus pneumoniae , Animales , Interleucina-33/inmunología , Interleucina-33/genética , Interleucina-33/metabolismo , Interleucinas/metabolismo , Interleucinas/inmunología , Interleucinas/genética , Ratones , Streptococcus pneumoniae/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Humanos , Ratones Noqueados , Microbiota/inmunología , Ratones Endogámicos C57BL , Neumonía Neumocócica/inmunología , Neumonía Neumocócica/microbiología , Microbioma Gastrointestinal/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Polimorfismo de Nucleótido Simple
2.
Front Immunol ; 14: 1130933, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063913

RESUMEN

The initiation of type 2 immune responses at mucosal barriers is regulated by rapidly secreted cytokines called alarmins. The alarmins IL-33, IL-25 and TSLP are mainly secreted by stromal and epithelial cells in tissues and were linked to chronic inflammatory diseases, such as allergic lung inflammation, or to resistance against worm infections. Receptors for alarmins are expressed by a variety of immune cells, including group 2 innate lymphoid cells (ILC2s), an early source of the type 2 cytokines, such as IL-5 and IL-13, which have been linked to atopic diseases and anti-worm immunity as well. However, the precise contribution of the IL-33 receptor signals for ILC2 activation still needs to be completed due to limitations in targeting genes in ILC2. Using the newly established Nmur1 iCre-eGFP mouse model, we obtained specific conditional genetic ablation of the IL-33 receptor subunit ST2 in ILC2s. ST2-deficient ILC2s were unresponsive to IL-33 but not to stimulation with the alarmin IL-25. As a result of defective ST2 signals, ILC2s produced limited amounts of IL-5 and IL-13 and failed to support eosinophil homeostasis. Further, ST2-deficient ILC2s were unable to expand and promote the recruitment of eosinophils during allergic lung inflammation provoked by papain administration. During infection with Nippostrongylus brasiliensis, ILC2-intrinsic ST2 signals were required to mount an effective type 2 immune response against the parasite leading to higher susceptibility against worm infection in conditional knockout mice. Therefore, this study argues for a non-redundant role of cell-intrinsic ST2 signals triggering proper activation of ILC2 for initiation of type 2 immunity.


Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1 , Eosinofilia Pulmonar , Infecciones por Strongylida , Animales , Ratones , Alarminas , Citocinas/inmunología , Inmunidad Innata , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-13 , Interleucina-33 , Interleucina-5 , Linfocitos , Eosinofilia Pulmonar/inmunología , Nippostrongylus , Infecciones por Strongylida/inmunología
3.
Nat Commun ; 13(1): 7468, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463230

RESUMEN

Treg cells acquire distinct transcriptional properties to suppress specific inflammatory responses. Transcription characteristics of Treg cells are regulated by epigenetic modifications, the mechanism of which remains obscure. Here, we report that Setd2, a histone H3K36 methyltransferase, is important for the survival and suppressive function of Treg cells, especially those from the intestine. Setd2 supports GATA3+ST2+ intestinal thymic-derived Treg (tTreg) cells by facilitating the expression and reciprocal relationship of GATA3 and ST2 in tTreg cells. IL-33 preferentially boosts Th2 cells rather than GATA3+ Treg cells in Foxp3Cre-YFPSetd2 flox/flox mice, corroborating the constraint of Th2 responses by Setd2 expression in Treg cells. SETD2 sustains GATA3 expression in human Treg cells, and SETD2 expression is increased in Treg cells from human colorectal cancer tissues. Epigenetically, Setd2 regulates the transcription of target genes (including Il1rl1) by modulating the activity of promoters and intragenic enhancers where H3K36me3 is typically deposited. Our findings provide mechanistic insights into the regulation of Treg cells and intestinal immunity by Setd2.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Proteína 1 Similar al Receptor de Interleucina-1 , Intestinos , Linfocitos T Reguladores , Animales , Humanos , Ratones , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/inmunología , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/inmunología , Inflamación/genética , Inflamación/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Linfocitos T Reguladores/inmunología , Timo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Intestinos/inmunología
4.
BMC Immunol ; 23(1): 23, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35578178

RESUMEN

BACKGROUND: Asthma is a common chronic airway disease in the world. The purpose of this study was to explore the expression of IL1-RL1 in sputum and its correlation with Th1 and Th2 cytokines in asthma. METHODS: We recruited 132 subjects, detected IL1-RL1 protein level in sputum supernatant by ELISA, and analyzed the correlation between the expression level of IL1-RL1 and fraction of exhaled nitric oxide (FeNO), IgE, peripheral blood eosinophil count (EOS#), and Th2 cytokines (IL-4, IL-5, IL-10, IL-13, IL-33 and TSLP) and Th1 cytokines (IFN-γ, IL-2, IL-8). The diagnostic value of IL1-RL1 was evaluated by ROC curve. The expression of IL1-RL1 was further confirmed by BEAS-2B cell in vitro. RESULTS: Compared with the healthy control group, the expression of IL1-RL1 in sputum supernatant, sputum cells and serum of patients with asthma increased. The AUC of ROC curve of IL1-RL1 in sputum supernatant and serum were 0.6840 (p = 0.0034), and 0.7009 (p = 0.0233), respectively. IL1-RL1 was positively correlated with FeNO, IgE, EOS#, Th2 cytokines (IL-4, IL-5, IL-10, IL-13, IL-33 and TSLP) and Th1 cytokines (IFN-γ, IL-2, IL-8) in induced sputum supernatant. Four weeks after inhaled glucocorticoids (ICS) treatment, the expression of IL1-RL1 in sputum supernatant and serum was increased. In vitro, the expression of IL1-RL1 in BEAS-2B was increased after stimulated by IL-4 or IL-13 for 24 h. CONCLUSION: The expression of IL1-RL1 in sputum supernatant, sputum cells and serum of patients with asthma was increased, and was positively correlated with some inflammatory markers in patients with asthma. IL1-RL1 may be used as a potential biomarker for the diagnosis and treatment of asthma.


Asunto(s)
Asma , Proteína 1 Similar al Receptor de Interleucina-1 , Asma/inmunología , Biomarcadores/metabolismo , Citocinas/metabolismo , Eosinófilos , Humanos , Inmunoglobulina E/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/biosíntesis , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucinas/inmunología , Óxido Nítrico/inmunología
5.
Life Sci ; 289: 120214, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34890591

RESUMEN

AIMS: Although separate blockage of either IL33/ST2 or PD-L/PD-1 axes has been shown to be beneficial in many tumors, co-blockage of IL33/ST2 and PD-L/PD-1 hasn't been studied yet. MAIN METHODS: 4T1 breast cancer and CT26 colon cancer were inducted in BALB/C wild type (WT) and BALB/C ST2 knockout mice, after which mice underwent anti PD-1 and anti IL-33 treatment. KEY FINDINGS: Co-blockage of IL33/ST2 and PD-L/PD-1 delayed tumor appearance and slowed tumor growth. Enhanced NK cell cytotoxicity against 4T1 tumor cells in ST2 knockout anti-PD-1 treated mice was associated with overexpression of miRNA-150 and miRNA-155, upregulation of NFκB and STAT3, increased expression of activation markers and decreased expression of immunosuppressive markers in splenic and primary tumor derived NK cells. NK cells from ST2 knockout anti-PD-1 treated mice tend to proliferate more and are less prone to apoptosis. Accumulation of immunosuppressive myeloid derived suppressor cells and regulatory T cells was significantly impaired in spleen and primary tumor of ST2 knockout anti-PD-1 treated mice. SIGNIFICANCE: Co-blockage of IL3/ST2 and PD-L/PD-1 axes impedes tumor progression more efficiently than single blockage of either axes, thus offering potential new approach to immunotherapy of tumors.


Asunto(s)
Antígeno B7-H1/inmunología , Neoplasias del Colon/inmunología , Inmunidad Celular , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/inmunología , Células Asesinas Naturales/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Transducción de Señal/inmunología , Animales , Antígeno B7-H1/genética , Línea Celular Tumoral , Neoplasias del Colon/genética , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Receptor de Muerte Celular Programada 1/genética , Transducción de Señal/genética
6.
Front Immunol ; 12: 704836, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650552

RESUMEN

Intestinal ischemia/reperfusion (I/R) injury is a grave condition with high morbidity and mortality. We previously confirmed that intestinal I/R induces intestinal flora disorders and changes in metabolites, but the role of different metabolites in intestinal I/R injury is currently unclear. Based on targeted metabolic sequencing, pravastatin (PA) was determined to be a metabolite of the gut microbiota. Further, intestinal I/R model mice were established through superior mesenteric artery obstruction. In addition, a co-culture model of small intestinal organoids and type II innate lymphoid cells (ILC2s) was subjected to hypoxia/reoxygenation (H/R) to simulate an intestinal I/R model. Moreover, correlation analysis between the PA level in preoperative feces of patients undergoing cardiopulmonary bypass and the indices of postoperative intestinal I/R injury was carried out. IL-33-deficient mice, ILC2-deleted mice, and anti-IL-13 neutralizing antibodies were also used to explore the potential mechanism through which PA attenuates intestinal I/R injury. We demonstrated that PA levels in the preoperative stool of patients undergoing cardiopulmonary bypass were negatively correlated with the indices of postoperative intestinal I/R injury. Furthermore, PA alleviated intestinal I/R injury and improved the survival of mice. We further showed that PA promotes IL-13 release from ILC2s by activating IL-33/ST2 signaling to attenuate intestinal I/R injury. In addition, IL-13 promoted the self-renewal of intestinal stem cells by activating Notch1 and Wnt signals. Overall, results indicated that the gut microbial metabolite PA can attenuate intestinal I/R injury by promoting the release of IL-13 from ILC2s via IL-33/ST2 signaling, revealing a novel mechanism of and therapeutic strategy for intestinal I/R injury.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Inmunidad Innata , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-13/inmunología , Interleucina-33/inmunología , Enfermedades Intestinales/inmunología , Linfocitos/inmunología , Pravastatina/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-13/genética , Interleucina-33/genética , Enfermedades Intestinales/genética , Masculino , Ratones , Ratones Noqueados , Daño por Reperfusión
7.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638904

RESUMEN

Group A Streptococcus (GAS) causes invasive human diseases with the cytokine storm. Interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) axis is known to drive TH2 response, while its effect on GAS infection is unclear. We used an air pouch model to examine the effect of the IL-33/ST2 axis on GAS-induced necrotizing fasciitis. GAS infection induced IL-33 expression in wild-type (WT) C57BL/6 mice, whereas the IL-33- and ST2-knockout mice had higher mortality rates, more severe skin lesions and higher bacterial loads in the air pouches than those of WT mice after infection. Surveys of infiltrating cells in the air pouch of GAS-infected mice at the early stage found that the number and cell viability of infiltrating cells in both gene knockout mice were lower than those of WT mice. The predominant effector cells in GAS-infected air pouches were neutrophils. Absence of the IL-33/ST2 axis enhanced the expression of inflammatory cytokines, but not TH1 or TH2 cytokines, in the air pouch after infection. Using in vitro assays, we found that the IL-33/ST2 axis not only enhanced neutrophil migration but also strengthened the bactericidal activity of both sera and neutrophils. These results suggest that the IL-33/ST2 axis provided the protective effect on GAS infection through enhancing the innate immunity.


Asunto(s)
Inmunidad Innata/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/inmunología , Infecciones Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Animales , Movimiento Celular/inmunología , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/microbiología , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/citología , Neutrófilos/inmunología , Neutrófilos/microbiología , Transducción de Señal/inmunología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/fisiología
8.
Sci Rep ; 11(1): 16163, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373564

RESUMEN

Cytokines signalling pathway genes are crucial factors of the genetic network underlying the pathogenesis of Immunoglobulin-A vasculitis (IgAV), an inflammatory vascular condition. An influence of the interleukin (IL)33- IL1 receptor like (IL1RL)1 signalling pathway on the increased risk of several immune-mediated diseases has been described. Accordingly, we assessed whether the IL33-IL1RL1 pathway represents a novel genetic risk factor for IgAV. Three tag polymorphisms within IL33 (rs3939286, rs7025417 and rs7044343) and three within IL1RL1 (rs2310173, rs13015714 and rs2058660), that also were previously associated with several inflammatory diseases, were genotyped in 380 Caucasian IgAV patients and 845 matched healthy controls. No genotypes or alleles differences were observed between IgAV patients and controls when IL33 and IL1RL1 variants were analysed independently. Likewise, no statistically significant differences were found in IL33 or IL1RL1 genotype and allele frequencies when IgAV patients were stratified according to the age at disease onset or to the presence/absence of gastrointestinal (GI) or renal manifestations. Similar results were disclosed when IL33 and IL1RL1 haplotypes were compared between IgAV patients and controls and between IgAV patients stratified according to the clinical characteristics mentioned above. Our results suggest that the IL33-IL1RL1 signalling pathway does not contribute to the genetic network underlying IgAV.


Asunto(s)
Vasculitis por IgA/genética , Vasculitis por IgA/inmunología , Inmunoglobulina A/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/genética , Interleucina-33/inmunología , Adolescente , Estudios de Casos y Controles , Niño , Femenino , Frecuencia de los Genes , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos , Humanos , Vasculitis por IgA/etiología , Masculino , Polimorfismo de Nucleótido Simple , Transducción de Señal/genética , Transducción de Señal/inmunología , Adulto Joven
9.
J Immunol ; 206(12): 2989-2999, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34088769

RESUMEN

The respiratory epithelium forms the first line of defense against inhaled pathogens and acts as an important source of innate cytokine responses to environmental insults. One critical mediator of these responses is the IL-1 family cytokine IL-33, which is rapidly secreted upon acute epithelial injury as an alarmin and induces type 2 immune responses. Our recent work highlighted the importance of the NADPH oxidase dual oxidase 1 (DUOX1) in acute airway epithelial IL-33 secretion by various airborne allergens associated with H2O2 production and reduction-oxidation-dependent activation of Src kinases and epidermal growth factor receptor (EGFR) signaling. In this study, we show that IL-33 secretion in response to acute airway challenge with house dust mite (HDM) allergen critically depends on the activation of Src by a DUOX1-dependent oxidative mechanism. Intriguingly, HDM-induced epithelial IL-33 secretion was dramatically attenuated by small interfering RNA- or Ab-based approaches to block IL-33 signaling through its receptor IL1RL1 (ST2), indicating that HDM-induced IL-33 secretion includes a positive feed-forward mechanism involving ST2-dependent IL-33 signaling. Moreover, activation of type 2 cytokine responses by direct airway IL-33 administration was associated with ST2-dependent activation of DUOX1-mediated H2O2 production and reduction-oxidation-based activation of Src and EGFR and was attenuated in Duox1 -/- and Src +/- mice, indicating that IL-33-induced epithelial signaling and subsequent airway responses involve DUOX1/Src-dependent pathways. Collectively, our findings suggest an intricate relationship between DUOX1, Src, and IL-33 signaling in the activation of innate type 2 immune responses to allergens, involving DUOX1-dependent epithelial Src/EGFR activation in initial IL-33 secretion and in subsequent IL-33 signaling through ST2 activation.


Asunto(s)
Alérgenos/inmunología , Oxidasas Duales/inmunología , Interleucina-33/inmunología , Mucosa Respiratoria/inmunología , Familia-src Quinasas/inmunología , Enfermedad Aguda , Animales , Células Cultivadas , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucosa Respiratoria/patología , Transducción de Señal/inmunología , Familia-src Quinasas/deficiencia
10.
Eur J Immunol ; 51(8): 1943-1955, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34131922

RESUMEN

IL-33, a member of the IL-1 family, was initially reported to be expressed constitutively in the nucleus of tissue-lining and structural cells. However, upon tissue damage or injury, IL-33 can be released quickly to bind with its cognate receptor ST2 in response to wound healing and inflammation and act as a DAMP. As a key regulator of Th2 responses, IL-33/ST2 signal is primarily associated with immunity and immune-related disorders. In recent years, IL-33/ST2 signaling pathway has been reported to promote the development of cancer and remodel the tumor microenvironment by expanding immune suppressive cells such as myeloid-derived suppressor cells or regulatory T cells. However, its role remains controversial in some tumor settings. IL-33 could also promote effective infiltration of immune cells such as CD8+ T and NK cells, which act as antitumor. These dual effects may limit the clinical application to target this cytokine axis. Therefore, more comprehensive exploration and deeper understanding of IL-33 are required. In this review, we summarized the IL-33/ST2 axis versatile roles in the tumor microenvironment with a focus on the IL-33-target immune cells and downstream signaling pathways. We also discuss how the IL-33/ST2 axis could be used as a potential therapeutic target for cancer immunotherapy.


Asunto(s)
Inmunoterapia/métodos , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/inmunología , Neoplasias/inmunología , Microambiente Tumoral/inmunología , Animales , Humanos
11.
Inflamm Res ; 70(5): 569-579, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33852061

RESUMEN

BACKGROUND: Asthma is one of the most common noninfectious chronic diseases characterized by type II inflammation. This study aimed to investigate the effects of molecular hydrogen on the pathogenesis of asthma. METHODS: OVA sensitized asthma mouse model and house dust mite treated 16HBE cellular model were established and hydrogen/oxygen mixture was used to treat asthmatic mice and 16HBE cells. Serum and BALF cytokines were measured with specific ELISA assays. E-cadherin and ZO-1 were detected by immunohistochemical staining and expression of caspase 3 and 9, NF-κB, IL-33 and ST2 was assessed by quantitative real-time PCR, western blot and/or immunofluorescence. IL-33 promoter activity was analyzed by dual-luciferase assay. ILC2 population was assayed by flow cytometry and differentially expressed miRNAs were detected using miRNA array. RESULTS: Serum and BALF levels of IL-33 and other alarmin and type II cytokines were greatly increased by OVA and inhibited by H2 in asthmatic mice. The expression of NF-κB (p65) and ST2 was upregulated by OVA and suppressed by H2. ILC2 population was markedly increased in OVA-induced asthmatic mice, and such increase was inhibited by H2. E-cadherin and ZO-1 levels in airway tissues of asthmatic mice were significantly lower than that of control mice, and the reduction was recovered by H2 treatment. H2 alleviated HDM induced apoptosis of 16HBE cells, upregulation of IL-33 and ST2, and elevation of IL-33 promoter activity. A group of miRNAs differentially expressed in HDM and HDM + H2 treated 16HBE cells were identified. CONCLUSIONS: These data demonstrated that H2 is efficient in suppressing allergen-induced asthma and could be developed as a therapeutics for asthma and other conditions of type II inflammation.


Asunto(s)
Antiasmáticos/uso terapéutico , Asma/tratamiento farmacológico , Citocinas/inmunología , Hidrógeno/uso terapéutico , Alérgenos/inmunología , Animales , Antiasmáticos/farmacología , Apoptosis/efectos de los fármacos , Asma/sangre , Asma/inmunología , Asma/patología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Línea Celular , Citocinas/sangre , Citocinas/genética , Células Epiteliales/inmunología , Femenino , Humanos , Hidrógeno/farmacología , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Ratones Endogámicos ICR , MicroARNs/genética , Ovalbúmina/inmunología , Pyroglyphidae/inmunología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología
12.
J Allergy Clin Immunol ; 148(3): 867-875.e4, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33662368

RESUMEN

BACKGROUND: IL-33 is an emerging key factor in development of allergic diseases. The IL-33 receptor (suppressor of tumorigenicity [ST2]) is a differentially expressed gene in pathogenic TH2 cells, but its role in T-cell effector function has not been elucidated. OBJECTIVE: We investigated the role of IL-33 in modulating circulating allergen-specific T-cell responses. We hypothesized that selective ST2 expression on allergen-specific CD4+ T cells would confer susceptibility to the effects of IL-33. METHODS: PBMCs from subjects with food allergy, inhalant allergy, and no allergy were obtained on the basis of clinical history and serum IgE level. A T-cell receptor-dependent CD154 upregulation assay and direct peptide major histocompatibility complex class II tetramer staining were used to profile allergen-specific CD4+ T cells by flow cytometry. Allergen-specific CD4+ T cell cytokine production was evaluated during IL-33 exposure. ST2 expression was also tracked by using a 2-color flow-based assay. RESULTS: ST2 expression on peripheral allergen-specific CD4+ T cells was confined to subjects with allergy and restricted to TH2A cells. Comparison between direct peptide major histocompatibility complex class II tetramer staining and the CD154 functional assay identified ST2 as a marker of TH2A cell activation. IL-33 exposure enhanced IL-4 and IL-5 secretion in allergen-reactive TH2A cells. Allergen-induced ST2 expression on peripheral CD4+ T cells can be used to track allergen-reactive TH2A cells from donors with allergy. CONCLUSION: ST2 expression on circulating CD4+ T cells represents a transient phenotype associated with TH2A cell activation, allowing these cells to sense locally elicited tissue cytokines. IL-33 selectively amplifies pathogenic TH2 cell effector functions, suggesting a tissue checkpoint that may regulate adaptive allergic immunity.


Asunto(s)
Hipersensibilidad/inmunología , Interleucina-33/inmunología , Células Th2/inmunología , Células Epiteliales/inmunología , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Receptores de Interleucina-17/inmunología , Transducción de Señal
13.
Acupunct Med ; 39(3): 217-225, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32539427

RESUMEN

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) are known to serve important functions in the pathogenesis of allergic airway inflammation. Studies have shown that acupuncture has an anti-inflammatory effect in the airways. However, how acupuncture treatment affects innate immunity, especially with regard to the function of ILC2s in ovalbumin (OVA)-induced allergic airway inflammation, is poorly understood. METHODS: BALB/c mice were injected and subsequently challenged with OVA ± treated with manual acupuncture. At the end of the experimental course, lung function was assessed by measurement of airway resistance (RL) and lung dynamic compliance (Cdyn). Cytokine levels were detected by enzyme-linked immunosorbent assay (ELISA). ILC2 proportions in the lung were analyzed by flow cytometry. RESULTS: The results showed that airway inflammation and mucus secretion were significantly suppressed by acupuncture treatment. RL decreased while Cdyn increased after acupuncture treatment. There was an apparent decrease in the bronchoalveolar lavage fluid (BALF) concentrations of interleukin (IL)-5, IL-13, IL-9, IL-25 and IL-33 and an increase in soluble IL-33 receptor (sST2) levels compared with untreated asthmatic mice. Acupuncture also reduced the lin-CD45+KLRG1+ST2+ cell proportion in the lung. CONCLUSION: In conclusion, this study has demonstrated that acupuncture treatment alleviates allergic airway inflammation and inhibits pulmonary ILC2 influx and IL-5, IL-9 and IL-13 production. The inhibition of ILC2s by acupuncture may be associated with the IL-33/ST2-signaling pathway and IL-25 levels, thereby offering protection from the respiratory inflammation associated with asthma.


Asunto(s)
Terapia por Acupuntura , Asma/terapia , Linfocitos/inmunología , Animales , Asma/etiología , Asma/genética , Asma/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Femenino , Humanos , Inmunidad Innata , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucinas/inmunología , Pulmón/inmunología , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/efectos adversos
14.
J Exp Med ; 218(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33095261

RESUMEN

ST2, the receptor for the alarmin IL-33, is expressed by a subset of regulatory T (T reg) cells residing in nonlymphoid tissues, and these cells can potently expand upon provision of exogenous IL-33. Whether the accumulation and residence of T reg cells in tissues requires their cell-intrinsic expression of and signaling by ST2, or whether indirect IL-33 signaling acting on other cells suffices, has been a matter of contention. Here, we report that ST2 expression on T reg cells is largely dispensable for their accumulation and residence in nonlymphoid organs, including the visceral adipose tissue (VAT), even though cell-intrinsic sensing of IL-33 promotes type 2 cytokine production by VAT-residing T reg cells. In addition, we uncovered a novel ST2-dependent role for T reg cells in limiting the size of IL-17A-producing γδT cells in the CNS in a mouse model of neuroinflammation, experimental autoimmune encephalomyelitis (EAE). Finally, ST2 deficiency limited to T reg cells led to disease exacerbation in EAE.


Asunto(s)
Inflamación/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Neuronas/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Interleucina-17/inmunología , Interleucina-33/inmunología , Masculino , Ratones
15.
JCI Insight ; 6(1)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33232303

RESUMEN

Immune and inflammatory responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contribute to disease severity of coronavirus disease 2019 (COVID-19). However, the utility of specific immune-based biomarkers to predict clinical outcome remains elusive. Here, we analyzed levels of 66 soluble biomarkers in 175 Italian patients with COVID-19 ranging from mild/moderate to critical severity and assessed type I IFN-, type II IFN-, and NF-κB-dependent whole-blood transcriptional signatures. A broad inflammatory signature was observed, implicating activation of various immune and nonhematopoietic cell subsets. Discordance between IFN-α2a protein and IFNA2 transcript levels in blood suggests that type I IFNs during COVID-19 may be primarily produced by tissue-resident cells. Multivariable analysis of patients' first samples revealed 12 biomarkers (CCL2, IL-15, soluble ST2 [sST2], NGAL, sTNFRSF1A, ferritin, IL-6, S100A9, MMP-9, IL-2, sVEGFR1, IL-10) that when increased were independently associated with mortality. Multivariate analyses of longitudinal biomarker trajectories identified 8 of the aforementioned biomarkers (IL-15, IL-2, NGAL, CCL2, MMP-9, sTNFRSF1A, sST2, IL-10) and 2 additional biomarkers (lactoferrin, CXCL9) that were substantially associated with mortality when increased, while IL-1α was associated with mortality when decreased. Among these, sST2, sTNFRSF1A, IL-10, and IL-15 were consistently higher throughout the hospitalization in patients who died versus those who recovered, suggesting that these biomarkers may provide an early warning of eventual disease outcome.


Asunto(s)
COVID-19/inmunología , COVID-19/mortalidad , Corticoesteroides/uso terapéutico , Adulto , Anciano , Antibacterianos/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antivirales/uso terapéutico , Azitromicina/uso terapéutico , Biomarcadores , COVID-19/genética , COVID-19/terapia , Calgranulina B/genética , Calgranulina B/inmunología , Estudios de Casos y Controles , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Quimiocina CXCL9/genética , Quimiocina CXCL9/inmunología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Ferritinas/genética , Ferritinas/inmunología , Perfilación de la Expresión Génica , Humanos , Hidroxicloroquina/uso terapéutico , Factores Inmunológicos/uso terapéutico , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-15/genética , Interleucina-15/inmunología , Interleucina-2/genética , Interleucina-2/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Lactoferrina/genética , Lactoferrina/inmunología , Lipocalina 2/genética , Lipocalina 2/inmunología , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/inmunología , Persona de Mediana Edad , Análisis Multivariante , FN-kappa B/genética , FN-kappa B/inmunología
16.
Int J Nanomedicine ; 15: 9745-9758, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33299314

RESUMEN

BACKGROUND: Asthma has been regarded as an inflammatory disease, and group 2 innate lymphoid cells (ILC2s) are implicated in asthma pathogenesis. However, no strategy is available to block ILC2s function. Efficiency is also limited due to the use of systemic or subcutaneous routes of administration. The purpose of this study was to investigate the effects of nanoparticles targeting suppression of tumorigenicity 2 (ST2), which is the ILC2 receptor, to alleviate lung inflammation in the murine model of asthma. METHODS: The ultra-small SPIO nanoparticles were firstly synthesized, OVA-induced mice were administered by anti-ST2-conjugated nanoparticles. The inflammatory degree of the lung was investigated by H&E. The percentages of ILC2s and CD4+T cells in bronchoalveolar lavage fluid (BALF) and lung tissue were determined by FACS. Th2-cytokine and OVA-IgE levels were detected by real-time PCR and ELISA, respectively. RESULTS: Treatment with anti-ST2-conjugated nanoparticles significantly alleviated airway inflammation, IL-33 and IL-13 levels and the percentage of CD4+T cells. The percentage of ILC2s was increased, whereas the levels of IL-13 and IL-5 expressed by ILC2s were reduced. CONCLUSION: In the present study, we demonstrated that anti-ST2-conjugated nanoparticles can efficiently control lung inflammation in OVA-induced mice by reducing the ability of ILC2s to produce IL-5 and IL-13, thereby reducing CD4+T cells. Our study also demonstrated that the nanoparticle delivery system could improve the performance of anti-ST2, which may be used as a strategic tool to expand the current drug market.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Inmunidad Innata/inmunología , Inmunoconjugados/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Linfocitos/inmunología , Nanopartículas/química , Neumonía/inmunología , Animales , Inmunoconjugados/química , Interleucina-33/metabolismo , Ratones , Neumonía/metabolismo
17.
Front Immunol ; 11: 581445, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133101

RESUMEN

Initially described as Th2 promoter cytokine, more recently, IL-33 has been recognized as an alarmin, mainly in epithelial and endothelial cells. While localized in the nucleus acting as a gene regulator, it can be also released after injury, stress or inflammatory cell death. As proinflammatory signal, IL-33 binds to the surface receptor ST2, which enhances mast cell, Th2, regulatory T cell, and innate lymphoid cell type 2 functions. Besides these Th2 roles, free IL-33 can activate CD8+ T cells during ongoing Th1 immune responses to potentiate its cytotoxic function. Celiac Disease (CD) is a chronic inflammatory disorder characterized by a predominant Th1 response leading to multiple pathways of mucosal damage in the proximal small intestine. By immunofluorescence and western blot analysis of duodenal tissues, we found an increased expression of IL-33 in duodenal mucosa of active CD (ACD) patients. Particularly, locally digested IL-33 releases active 18/21kDa fragments which can contribute to expand the proinflammatory signal. Endothelial (CD31+) and mesenchymal, myofibroblast and pericyte cells from microvascular structures in villi and crypts, showed IL-33 nuclear location; while B cells (CD20+) showed a strong cytoplasmic staining. Both ST2 forms, ST2L and sST2, were also upregulated in duodenal mucosa of CD patients. This was accompanied by increased number of CD8+ST2+ T cells and the expression of T-bet in some ST2+ intraepithelial lymphocytes and lamina propria cells. IL-33 and sST2 mRNA levels correlated with IRF1, an IFN induced factor relevant in responses to viral infections and interferon mediated proinflammatory responses highly represented in duodenal tissues in ACD. These findings highlight the potential contribution of IL-33 and its fragments to exacerbate the proinflammatory circuit and potentiate the cytotoxic activity of CD8+ T cells in CD pathology.


Asunto(s)
Alarminas/inmunología , Enfermedad Celíaca/inmunología , Inflamación/inmunología , Interleucina-33/inmunología , Intestino Delgado/inmunología , Animales , Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Citocinas/inmunología , Células HT29 , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Mucosa Intestinal/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/inmunología , Células Th2/inmunología
18.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971846

RESUMEN

Interleukin 33 (IL-33) is an IL-1 family cytokine that plays a central role in immune system by regulating and initiating inflammatory responses. The binding of IL-33 to the suppressor of tumorigenicity 2 (ST2) receptor induces mitogen-activated protein kinases (MAPK) and nuclear factor κB (NF-κB) pathways, thereby leading to inflammatory cytokines production in type 2 helper T cells and type 2 innate lymphoid cells. To develop an antibody specific to IL-33 with a defined epitope, we characterized a single-chain antibody variable fragments (scFvs) clone specific to IL-33, C2_2E12, which was selected from a human synthetic library of scFvs using phage display. Affinity (Kd) of C2_2E12 was determined to be 38 nM using enzyme-linked immunosorbent assay. C2_2E12 did not show cross-reactivity toward other interleukin cytokines, including closely related IL-1 family cytokines and unrelated proteins. Mutational scanning analysis revealed that the epitope of IL-33 consisted of residues 149-158 with key residues being L150 and K151 of IL-33. Structural modeling suggested that L150 and K151 residues are important for the interaction of IL-33 with C2_2E12, implicating that C2_2E12 could block the binding of ST2 to IL-33. Pull-down and in-cell assays supported that C2_2E12 can inhibit the IL-33/ST2 signaling axis. These results suggest that the scFv clone characterized here can function as a neutralizing antibody.


Asunto(s)
Epítopos , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Sistema de Señalización de MAP Quinasas/inmunología , Anticuerpos de Cadena Única , Línea Celular , Epítopos/química , Epítopos/inmunología , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/química , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/antagonistas & inhibidores , Interleucina-33/química , Interleucina-33/inmunología , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/inmunología
19.
Front Immunol ; 11: 1058, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582171

RESUMEN

Background: Eosinophils develop from CD34+ progenitor cells in the bone marrow under the influence of interleukin (IL)-5. Several cell types produce IL-5, including type 2 innate lymphoid cells (ILC2s). The alarmin cytokine IL-33 is known to activate ILC2s in mucosal tissues, but little is known about IL-33-responsive ILC2s in the bone marrow in allergen-induced airway inflammation. Methods: Wild type (WT) and Rag1 deficient (Rag1-/-) mice, which lack mature T and B cells, received intranasal doses of papain to induce acute allergic inflammation. In some experiments, mice were pre-treated with anti-IL-5 prior to the papain challenge. Furthermore, recombinant IL-33 was administered to WT mice, Rag1-/- mice, lymphocyte deficient mice (Rag2-/-Il2rg-/-) and to ex vivo whole bone marrow cultures. Bone marrow eosinophils and ILC2s were analyzed by flow cytometry. Eosinophil count was assessed by differential cell count and secreted IL-5 from bone marrow cells by ELISA. Results: Intranasal administration of papain or IL-33 increased the number of mature eosinophils in the bone marrow despite the absence of adaptive immune cells in Rag1-/- mice. In parallel, an increased number of eosinophils was observed in the airways together with elevated levels of Eotaxin-2/CCL24. Bone marrow ILC2s were increased after papain or IL-33 administration, whereas ILC2s was found to be increased at baseline in Rag1-/- mice compared to WT mice. An upregulation of the IL-33 receptor (ST2) expression on bone marrow ILC2s was observed after papain challenge in both Rag1-/- and WT mice which correlated to increased number of bone marrow eosinophilia. Furthermore, an increased number of ST2+ mature eosinophils in the bone marrow was observed after papain challenge, which was further dependent on IL-5. In addition, bone marrow-derived ILC2s from both mouse strains produced large amounts of IL-5 ex vivo after IL-33 stimulation of whole bone marrow cultures. In contrast, IL-33-induced bone marrow and airway eosinophilia were abolished in the absence of ILC2s in Rag2-/-Il2rg-/- mice and no production of IL-5 was detected in IL-33-stimulated bone marrow cultures. Conclusion: These findings establish bone marrow ILC2s and the IL-33/ST2 axis as promising targets for modulation of uncontrolled IL-5-dependent eosinophilic diseases including asthma.


Asunto(s)
Eosinofilia/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/inmunología , Inmunidad Adaptativa , Alérgenos/administración & dosificación , Alérgenos/inmunología , Animales , Asma/etiología , Asma/inmunología , Células de la Médula Ósea/inmunología , Modelos Animales de Enfermedad , Eosinofilia/etiología , Femenino , Inmunidad Innata , Interleucina-5/biosíntesis , Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Papaína/administración & dosificación , Papaína/inmunología , Eosinofilia Pulmonar/etiología , Eosinofilia Pulmonar/inmunología
20.
JCI Insight ; 5(9)2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32376804

RESUMEN

Immune checkpoint blockade immunotherapy delivers promising clinical results in colorectal cancer (CRC). However, only a fraction of cancer patients develop durable responses. The tumor microenvironment (TME) negatively impacts tumor immunity and subsequently clinical outcomes. Therefore, there is a need to identify other checkpoint targets associated with the TME. Early-onset factors secreted by stromal cells as well as tumor cells often help recruit immune cells to the TME, among which are alarmins such as IL-33. The only known receptor for IL-33 is stimulation 2 (ST2). Here we demonstrated that high ST2 expression is associated with poor survival and is correlated with low CD8+ T cell cytotoxicity in CRC patients. ST2 is particularly expressed in tumor-associated macrophages (TAMs). In preclinical models of CRC, we demonstrated that ST2-expressing TAMs (ST2+ TAMs) were recruited into the tumor via CXCR3 expression and exacerbated the immunosuppressive TME; and that combination of ST2 depletion using ST2-KO mice with anti-programmed death 1 treatment resulted in profound growth inhibition of CRC. Finally, using the IL-33trap fusion protein, we suppressed CRC tumor growth and decreased tumor-infiltrating ST2+ TAMs. Together, our findings suggest that ST2 could serve as a potential checkpoint target for CRC immunotherapy.


Asunto(s)
Neoplasias Colorrectales/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/inmunología , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología , Animales , Línea Celular Tumoral , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Macrófagos Asociados a Tumores/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...