Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 161: 107737, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31398382

RESUMEN

Cultured rat cortical neurons co-expressing VGLUT1 and VGAT (mixed synapses) co-release Glu and GABA. Here, mixed synapses were studied in cultured mouse cortical neurons to verify whether in mice mixed synapses co-release Glu and GABA, and to gain insight into how they may influence excitation/inhibition balance. Results showed the existence of synapses and autapses that co-release Glu and GABA in cultured mouse cortical neurons, and the ability of both neurotransmitters to evoke postsynaptic responses mediated by ionotropic receptors. We studied the short-term plasticity of glutamatergic, GABAergic, and mixed responses and we found that the kinetics of mixPSC amplitude depression was similar to that observed in EPSCs, but it was different from that of IPSCs. We found similar presynaptic release characteristics in glutamatergic and mixed synapses. Analysis of postsynaptic features, obtained by measuring AMPAR- and NMDAR-mediated currents, showed that AMPAR-mediated currents were significantly higher in pure glutamatergic than in mixed synapses, whereas NMDAR-mediated currents were not significantly different from those measured in mixed synapses. Overall, our findings demonstrate that glutamatergic and mixed synapses share similar electrophysiological properties. However, co-release of GABA and Glu influences postsynaptic ionotropic glutamatergic receptor subtypes, thus selectively influencing AMPAR-mediated currents. These findings strengthen the view that mixed neurons can play a key role in CNS development and in maintaining the excitation-inhibition balance.


Asunto(s)
Corteza Cerebral/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Receptores de Glutamato/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/fisiología , Fenómenos Electrofisiológicos/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Cinética , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Terminales Presinápticos , Receptores AMPA/metabolismo , Receptores de Glutamato/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología
2.
J Neurosci ; 38(39): 8388-8406, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30120207

RESUMEN

Excitatory synapses are specialized cell-cell contacts located on actin-rich dendritic spines that mediate information flow and storage in the brain. The postsynaptic adhesion-G protein-coupled receptor (A-GPCR) BAI1 is a critical regulator of excitatory synaptogenesis, which functions in part by recruiting the Par3-Tiam1 polarity complex to spines, inducing local Rac1 GTPase activation and actin cytoskeletal remodeling. However, a detailed mechanistic understanding of how BAI1 controls synapse and spine development remains elusive. Here, we confirm that BAI1 is required in vivo for hippocampal spine development, and we identify three distinct signaling mechanisms mediating BAI1's prosynaptogenic functions. Using in utero electroporation to sparsely knock down BAI1 expression in hippocampal pyramidal neurons, we show that BAI1 cell-autonomously promotes spinogenesis in the developing mouse brain. BAI1 appears to function as a receptor at synapses, as its extracellular N-terminal segment is required for both its prospinogenic and prosynaptogenic functions. Moreover, BAI1 activation with a Stachel-derived peptide, which mimics a tethered agonist motif found in A-GPCRs, drives synaptic Rac1 activation and subsequent spine and synapse development. We also reveal, for the first time, a trans-synaptic function for BAI1, demonstrating in a mixed-culture assay that BAI1 induces the clustering of presynaptic vesicular glutamate transporter 1 (vGluT1) in contacting axons, indicative of presynaptic differentiation. Finally, we show that BAI1 forms a receptor complex with the synaptogenic cell-adhesion molecule Neuroligin-1 (NRLN1) and mediates NRLN1-dependent spine growth and synapse development. Together, these findings establish BAI1 as an essential postsynaptic A-GPCR that regulates excitatory synaptogenesis by coordinating bidirectional trans-synaptic signaling in cooperation with NRLN1.SIGNIFICANCE STATEMENT Adhesion-G protein-coupled receptors are cell-adhesion receptors with important roles in nervous system development, function, and neuropsychiatric disorders. The postsynaptic adhesion-G protein-coupled receptor BAI1 is a critical regulator of dendritic spine and excitatory synapse development. However, the mechanism by which BAI1 controls these functions remains unclear. Our study identifies three distinct signaling paradigms for BAI1, demonstrating that it mediates forward, reverse, and lateral signaling in spines. Activation of BAI1 by a Stachel-dependent mechanism induces local Rac1 activation and subsequent spinogenesis/synaptogenesis. BAI1 also signals trans-synaptically to promote presynaptic differentiation. Furthermore, BAI1 interacts with the postsynaptic cell-adhesion molecule Neuroligin-1 (NRLN1) and facilitates NRLN1-dependent spine growth and excitatory synaptogenesis. Thus, our findings establish BAI1 as a functional synaptogenic receptor that promotes presynaptic and postsynaptic development in cooperation with synaptic organizer NRLN1.


Asunto(s)
Espinas Dendríticas/fisiología , Hipocampo/fisiología , Plasticidad Neuronal , Células Piramidales/fisiología , Receptores Acoplados a Proteínas G/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/fisiología , Células Cultivadas , Femenino , Masculino , Ratas Long-Evans , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Proteína de Unión al GTP rac1/fisiología
3.
Biochim Biophys Acta Biomembr ; 1859(5): 931-940, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28188742

RESUMEN

Vesicular glutamate transporter (VGLUT) is an active transporter responsible for vesicular storage of glutamate in synaptic vesicles and plays an essential role in glutamatergic neurotransmission. VGLUT consists of three isoforms, VGLUT1, VGLUT2, and VGLUT3. The VGLUT1 variant, VGLUT1v, with an additional 75-base pair sequence derived from a second intron between exons 2 and 3, which corresponds to 25 amino acid residues in the 1st loop of VGLUT1, is the only splicing variant among VGLUTs, although whether VGLUT1v protein is actually translated at the protein level remains unknown. In the present study, VGLUT1v was expressed in insect cells, solubilized, purified to near homogeneity, and its transport activity was examined. Proteoliposomes containing purified VGLUT1v were shown to accumulate glutamate upon imposition of an inside-positive membrane potential (Δψ). The Δψ-driven glutamate uptake activity requires Cl- and its pharmacological profile and kinetics are comparable to those of other VGLUTs. The retinal membrane contained two VGLUT1 moieties with apparent molecular masses of 65 and 57kDa. VGLUT1v-specific antibodies against an inserted 25-amino acid residue sequence identified a 65-kDa immunoreactive polypeptide. Immunohistochemical analysis indicated that VGLUT1v immunoreactivity is present in photoreceptor cells and is associated with synaptic vesicles. VGLUT1v immunoreactivity is also present in pinealocytes, but not in other areas, including the brain. These results indicated that VGLUT1v exists in a functional state in rat photosensitive cells and is involved in glutamatergic chemical transmission.


Asunto(s)
Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Animales , Ácido Glutámico/metabolismo , Inmunohistoquímica , Potenciales de la Membrana , Células Fotorreceptoras/química , Glándula Pineal/química , Empalme del ARN , Ratas , Vesículas Sinápticas/química , Proteína 1 de Transporte Vesicular de Glutamato/análisis
4.
J Neurosci ; 34(10): 3475-92, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24599449

RESUMEN

Peripheral nerve injury induces permanent alterations in spinal cord circuitries that are not reversed by regeneration. Nerve injury provokes the loss of many proprioceptive IA afferent synapses (VGLUT1-IR boutons) from motoneurons, the reduction of IA EPSPs in motoneurons, and the disappearance of stretch reflexes. After motor and sensory axons successfully reinnervate muscle, lost IA VGLUT1 synapses are not re-established and the stretch reflex does not recover; however, electrically evoked EPSPs do recover. The reasons why remaining IA synapses can evoke EPSPs on motoneurons, but fail to transmit useful stretch signals are unknown. To better understand changes in the organization of VGLUT1 IA synapses that might influence their input strength, we analyzed their distribution over the entire dendritic arbor of motoneurons before and after nerve injury. Adult rats underwent complete tibial nerve transection followed by microsurgical reattachment and 1 year later motoneurons were intracellularly recorded and filled with neurobiotin to map the distribution of VGLUT1 synapses along their dendrites. We found in control motoneurons an average of 911 VGLUT1 synapses; ~62% of them were lost after injury. In controls, VGLUT1 synapses were focused to proximal dendrites where they were grouped in tight clusters. After injury, most synaptic loses occurred in the proximal dendrites and remaining synapses were declustered, smaller, and uniformly distributed throughout the dendritic arbor. We conclude that this loss and reorganization renders IA afferent synapses incompetent for efficient motoneuron synaptic depolarization in response to natural stretch, while still capable of eliciting EPSPs when synchronously fired by electrical volleys.


Asunto(s)
Neuronas Motoras/química , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Animales , Dendritas/química , Dendritas/fisiología , Femenino , Neuronas Motoras/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Ratas , Ratas Wistar , Médula Espinal/química , Médula Espinal/fisiología , Sinapsis/química , Sinapsis/fisiología , Nervio Tibial/química , Nervio Tibial/lesiones , Nervio Tibial/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/fisiología
5.
J Neurosci ; 33(26): 10647-60, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23804088

RESUMEN

The vesicular glutamate transporters (VGLUTs) package glutamate into synaptic vesicles, and the two principal isoforms VGLUT1 and VGLUT2 have been suggested to influence the properties of release. To understand how a VGLUT isoform might influence transmitter release, we have studied their trafficking and previously identified a dileucine-like endocytic motif in the C terminus of VGLUT1. Disruption of this motif impairs the activity-dependent recycling of VGLUT1, but does not eliminate its endocytosis. We now report the identification of two additional dileucine-like motifs in the N terminus of VGLUT1 that are not well conserved in the other isoforms. In the absence of all three motifs, rat VGLUT1 shows limited accumulation at synaptic sites and no longer responds to stimulation. In addition, shRNA-mediated knockdown of clathrin adaptor proteins AP-1 and AP-2 shows that the C-terminal motif acts largely via AP-2, whereas the N-terminal motifs use AP-1. Without the C-terminal motif, knockdown of AP-1 reduces the proportion of VGLUT1 that responds to stimulation. VGLUT1 thus contains multiple sorting signals that engage distinct trafficking mechanisms. In contrast to VGLUT1, the trafficking of VGLUT2 depends almost entirely on the conserved C-terminal dileucine-like motif: without this motif, a substantial fraction of VGLUT2 redistributes to the plasma membrane and the transporter's synaptic localization is disrupted. Consistent with these differences in trafficking signals, wild-type VGLUT1 and VGLUT2 differ in their response to stimulation.


Asunto(s)
Leucina/genética , Leucina/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Complejo 2 de Proteína Adaptadora/metabolismo , Secuencias de Aminoácidos/fisiología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Clatrina/metabolismo , Endocitosis/fisiología , Hipocampo/citología , Hipocampo/metabolismo , Concentración de Iones de Hidrógeno , Inmunohistoquímica , Datos de Secuencia Molecular , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/fisiología , Reacción en Cadena de la Polimerasa , Interferencia de ARN , Ratas , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
6.
J Neurosci ; 33(2): 734-47, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23303951

RESUMEN

Identification of the neural pathways involved in retraining the spinal central pattern generators (CPGs) by afferent input in the absence of descending supraspinal control is feasible in isolated rodent spinal cords where the locomotor CPGs are potently activated by sacrocaudal afferent (SCA) input. Here we study the involvement of sacral neurons projecting rostrally through the ventral funiculi (VF) in activation of the CPGs by sensory stimulation. Fluorescent labeling and immunostaining showed that VF neurons are innervated by primary afferents immunoreactive for vesicular glutamate transporters 1 and 2 and by intraspinal neurons. Calcium imaging revealed that 55% of the VF neurons were activated by SCA stimulation. The activity of VF neurons and the sacral and lumbar CPGs was abolished when non-NMDA receptors in the sacral segments were blocked by the antagonist CNQX. When sacral NMDA receptors were blocked by APV, the sacral CPGs were suppressed, VF neurons with nonrhythmic activity were recruited and a moderate-drive locomotor rhythm developed during SCA stimulation. In contrast, when the sacral CPGs were activated by SCA stimulation, rhythmic and nonrhythmic VF neurons were recruited and the locomotor rhythm was most powerful. The activity of 73 and 27% of the rhythmic VF neurons was in-phase with the ipsilateral and contralateral motor output, respectively. Collectively, our studies indicate that sacral VF neurons serve as a major link between SCA and the hindlimb CPGs and that the ability of SCA to induce stepping can be enhanced by the sacral CPGs. The nature of the ascending drive to lumbar CPGs, the identity of subpopulations of VF neurons, and their potential role in activating the locomotor rhythm are discussed.


Asunto(s)
Vías Aferentes/fisiología , Interneuronas/fisiología , Locomoción/fisiología , Médula Espinal/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Vías Aferentes/citología , Vías Aferentes/efectos de los fármacos , Animales , Calcio/fisiología , Interpretación Estadística de Datos , Estimulación Eléctrica , Electrodos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Técnica del Anticuerpo Fluorescente , Lateralidad Funcional/efectos de los fármacos , Lateralidad Funcional/fisiología , Ácido Glutámico/fisiología , Miembro Posterior/inervación , Miembro Posterior/fisiología , Inmunohistoquímica , Interneuronas/efectos de los fármacos , Locomoción/efectos de los fármacos , Masculino , Microscopía Fluorescente , Ratas , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Región Sacrococcígea/fisiología , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
7.
Neuroscience ; 226: 253-69, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22989920

RESUMEN

Spinocerebellar tract neurons are inhibited by various sources of input via pathways activated by descending tracts as well as peripheral afferents. Inhibition may be used to modulate transmission of excitatory information forwarded to the cerebellum. However it may also provide information on the degree of inhibition of motoneurons and on the operation of inhibitory premotor neurons. Our aim was to extend previous comparisons of morphological substrates of excitation of spinocerebellar neurons to inhibitory input. Contacts formed by inhibitory axon terminals were characterised as either GABAergic, glycinergic or both GABAergic/glycinergic by using antibodies against vesicular GABA transporter, glutamic acid decarboxylase and gephyrin. Quantitative analysis revealed the presence of much higher proportions of inhibitory contacts when compared with excitatory contacts on spinal border (SB) neurons. However similar proportions of inhibitory and excitatory contacts were associated with ventral spinocerebellar tract (VSCT) and dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and the dorsal horn (dhDSCT). In all of the cells, the majority of inhibitory terminals were glycinergic. The density of contacts was higher on somata and proximal versus distal dendrites of SB and VSCT neurons but more evenly distributed in ccDSCT and dhDSCT neurons. Variations in the density and distribution of inhibitory contacts found in this study may reflect differences in information on inhibitory processes forwarded by subtypes of spinocerebellar tract neurons to the cerebellum.


Asunto(s)
Neuronas/fisiología , Médula Espinal/fisiología , Tractos Espinocerebelares/fisiología , Animales , Gatos , Estimulación Eléctrica , Ácido Glutámico/fisiología , Glicina/fisiología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Microscopía Confocal , Terminaciones Nerviosas/fisiología , Nervios Periféricos/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología , Ácido gamma-Aminobutírico/fisiología
8.
J Physiol ; 590(7): 1737-55, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22371473

RESUMEN

The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity.


Asunto(s)
Movimiento/fisiología , Neuronas/fisiología , Médula Espinal/fisiología , Tractos Espinocerebelares/fisiología , Animales , Gatos , Estimulación Eléctrica , Miembro Posterior/inervación , Miembro Posterior/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Médula Espinal/citología , Tractos Espinocerebelares/citología , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
10.
J Physiol ; 588(Pt 21): 4217-33, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20837640

RESUMEN

The intermediate zone of the spinal grey matter contains premotor interneurons mediating reflex actions of group I and II muscle afferents. However, limited information is available on how activity of inhibitory versus excitatory interneurons in this population are modulated and how they contribute to motor networks. There were three aims of this study: (1) to characterize excitatory axonal contacts on interneurons; (2) to determine if contact patterns on excitatory and inhibitory interneurons are different; (3) to determine if there are differences in presynaptic inhibitory control of excitatory and inhibitory interneurons. We used intracellular labelling of electrophysiologically identified cells along with immunochemistry to characterise contacts formed by axons that contain vesicular glutamate transporters (VGLUT1 and VGLUT2) and contacts formed by VGLUT1 terminals which in turn were contacted by GABAergic terminals on cells that were characterised according to their transmitter phenotype. All 17 cells investigated were associated with numerous VGLUT1 contacts originating from primary afferents, and similar contact densities were found on excitatory and inhibitory cells, but VGLUT2-immunoreactive terminals originating from intraspinal neurons were less frequent, or were practically absent, especially on excitatory cells. Similar numbers of VGLUT1 contacts with associated GABAergic terminals were found on excitatory and inhibitory cells indicating a similar extent of presynaptic GABAergic control. However, scarce VGLUT2 terminals on intermediate zone excitatory premotor interneurons with input from muscle afferents suggest that they are not significantly excited by other spinal neurons but are under direct excitatory control of supraspinal neurons and, principally inhibitory, control of spinal neurons.


Asunto(s)
Interneuronas/fisiología , Músculo Esquelético/inervación , Neuronas Aferentes/fisiología , Terminales Presinápticos/fisiología , Sinapsis/fisiología , Animales , Gatos , Comunicación Celular/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Modelos Animales , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
11.
Ann N Y Acad Sci ; 1198: 231-41, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20536938

RESUMEN

After peripheral nerve injuries to a motor nerve, the axons of motoneurons and proprioceptors are disconnected from the periphery and monosynaptic connections from group I afferents and motoneurons become diminished in the spinal cord. Following successful reinnervation in the periphery, motor strength, proprioceptive sensory encoding, and Ia afferent synaptic transmission on motoneurons partially recover. Muscle stretch reflexes, however, never recover and motor behaviors remain uncoordinated. In this review, we summarize recent findings that suggest that lingering motor dysfunction might be in part related to decreased connectivity of Ia afferents centrally. First, sensory afferent synapses retract from lamina IX, causing a permanent relocation of the inputs to more distal locations and significant disconnection from motoneurons. Second, peripheral reconnection between proprioceptive afferents and muscle spindles is imperfect. As a result, a proportion of sensory afferents that retain central connections with motoneurons might not reconnect appropriately in the periphery. A hypothetical model is proposed in which the combined effect of peripheral and central reconnection deficits might explain the failure of muscle stretch to initiate or modulate firing of many homonymous motoneurons.


Asunto(s)
Vías Aferentes/fisiología , Axones/fisiología , Neuronas Motoras/fisiología , Regeneración Nerviosa/fisiología , Sistema Nervioso Periférico/lesiones , Sinapsis/fisiología , Animales , Gatos , Dendritas/fisiología , Músculo Esquelético/inervación , Sistema Nervioso Periférico/fisiopatología , Ratas , Células Receptoras Sensoriales/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/rehabilitación , Proteína 1 de Transporte Vesicular de Glutamato/fisiología
12.
Cereb Cortex ; 20(3): 684-93, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19574394

RESUMEN

Vesicular glutamate transporters 1 and 2 (VGLUT1, VGLUT2) show largely complementary distribution in the mature rodent brain and tend to segregate to synapses with different physiological properties. In the hippocampus, VGLUT1 is the dominate subtype in adult animals, whereas VGLUT2 is transiently expressed during early postnatal development. We generated and characterized VGLUT1 knockout mice in order to examine the functional contribution of this transporter to hippocampal synaptic plasticity and hippocampus-dependent spatial learning. Because complete deletion of VGLUT1 resulted in postnatal lethality, we used heterozygous animals for analysis. Here, we report that deletion of VGLUT1 resulted in impaired hippocampal long-term potentiation (LTP) in the CA1 region in vitro. In contrast, heterozygous VGLUT2 mice that were investigated for comparison did not show any changes in LTP. The reduced ability of VGLUT1-deficient mice to express LTP was accompanied by a specific deficit in spatial reversal learning in the water maze. Our data suggest a functional role of VGLUT1 in forms of hippocampal synaptic plasticity that are required to adapt and modify acquired spatial maps to external stimuli and changes.


Asunto(s)
Reacción de Prevención/fisiología , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Conducta Espacial/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Análisis de Varianza , Animales , Biofisica , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Estimulación Eléctrica/métodos , Hipocampo/citología , Potenciación a Largo Plazo/genética , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Estadísticas no Paramétricas , Proteína 1 de Transporte Vesicular de Glutamato/deficiencia , Proteína 2 de Transporte Vesicular de Glutamato/deficiencia
13.
Epilepsia ; 50(7): 1717-28, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19389151

RESUMEN

PURPOSE: Vesicular glutamate transporters (VGLUTs) are responsible for loading synaptic vesicles with glutamate, determining the phenotype of glutamatergic neurons, and have been implicated in the regulation of quantal size and presynaptic plasticity. We analyzed VGLUT subtype expression in normal human hippocampus and tested the hypothesis that alterations in VGLUT expression may contribute to long-term changes in glutamatergic transmission reported in patients with temporal lobe epilepsy (TLE). METHODS: VGLUT immunohistochemistry, immunofluorescence, in situ hybridization, Western blotting, and quantitative polymerase chain reaction (qPCR) were performed on biopsies from TLE patients without (non-HS) and with hippocampal sclerosis (HS) and compared to autopsy controls and rat hippocampus. VGLUT1 expression was compared with synaptophysin, neuropeptide Y (NPY), and Timm's staining. RESULTS: VGLUT1 was the predominant VGLUT in human hippocampus and appeared to be localized to presynaptic glutamatergic terminals. In non-HS hippocampi, VGLUT1 protein levels were increased compared to control and HS hippocampi in all subfields. In HS hippocampi VGLUT1 expression was decreased in subfields with severe neuronal loss, but strongly up-regulated in the dentate gyrus, characterized by mossy fiber sprouting. DISCUSSION: VGLUT1 is used as marker for glutamatergic synapses in the human hippocampus. In HS hippocampi VGLUT1 up-regulation in the dentate gyrus probably marks new glutamatergic synapses formed by mossy fiber sprouting. Our data indicate that non-HS patients have an increased capacity to store glutamate in vesicles, most likely due to an increase in translational processes or upregulation of VGLUT1 in synapses from afferent neurons outside the hippocampus. This up-regulation may increase glutamatergic transmission, and thus contribute to increased extracellular glutamate levels and hyperexcitability.


Asunto(s)
Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Animales , Giro Dentado/metabolismo , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/fisiopatología , Ácido Glutámico/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Inmunohistoquímica , Fibras Musgosas del Hipocampo/metabolismo , Fibras Musgosas del Hipocampo/patología , Neuronas/metabolismo , Neuronas/patología , Neuropéptido Y/metabolismo , Ratas , Esclerosis/patología , Sinapsis/metabolismo , Sinapsis/patología , Sinapsis/fisiología , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patología , Sinaptofisina/metabolismo , Distribución Tisular , Proteína 1 de Transporte Vesicular de Glutamato/fisiología
14.
Eur J Pain ; 13(10): 1008-17, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19171494

RESUMEN

Glutamate is the major excitatory neurotransmitter in the central nervous system with an important role in nociceptive processing. Storage of glutamate into vesicles is controlled by vesicular glutamate transporters (VGLUT). Null mutants for VGLUT1 and VGLUT2 were poorly viable, thus, pain-related behavior was presently compared between heterozygote VGLUT1 and VGLUT2 mice and their respective wild-type littermates using a test battery that included a variety of assays for thermal and mechanical acute nociception, and inflammatory and neuropathic pain syndromes. Behavioral analysis of VGLUT1 mutant mice did not show important behavioral changes in the pain conditions tested. Reduction of VGLUT2 also resulted in unaltered acute nociceptive and inflammatory-induced pain behavior. Interestingly, VGLUT2 heterozygote mice showed an attenuation or absence of some typical neuropathic pain features (e.g., absence of mechanical and cold allodynia after spared nerve injury). Chronic constriction injury in VGLUT2 heterozygote mice showed also reduced levels of cold allodynia, but had no impact on mechanical thresholds. Together, these data suggest that VGLUT2, but not VGLUT1, plays a role in neuropathy-induced allodynia and hypersensitivity, and might be a therapeutic target to prevent and/or treat neuropathic pain.


Asunto(s)
Hiperalgesia/fisiopatología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Transducción de Señal/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Animales , Ataxia/genética , Ataxia/fisiopatología , Conducta Animal/fisiología , Carragenina , Constricción Patológica/fisiopatología , Formaldehído , Calor , Hiperalgesia/genética , Hiperalgesia/psicología , Inflamación/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/psicología , Estimulación Física , Equilibrio Postural/fisiología , Tiempo de Reacción/fisiología , Transducción de Señal/genética , Corteza Somatosensorial/fisiología , Neuropatía Tibial/genética , Neuropatía Tibial/fisiopatología , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/genética
15.
J Neurosci ; 27(27): 7245-55, 2007 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-17611277

RESUMEN

Glutamatergic neurotransmission requires vesicular glutamate transporters (VGLUTs) to sequester glutamate into synaptic vesicles. Generally, VGLUT1 and VGLUT2 isoforms show complementary expression in the CNS and retina. However, little is known about whether isoform-specific expression serves distinct pathways and physiological functions. Here, by examining visual functions in VGLUT1-null mice, we demonstrate that visual signaling from photoreceptors to retinal output neurons requires VGLUT1. However, photoentrainment and pupillary light responses are preserved. We provide evidence that melanopsin-containing, intrinsically photosensitive retinal ganglion cells (RGCs), signaling via VGLUT2 pathways, support these non-image-forming functions. We conclude that VGLUT1 is essential for transmitting visual signals from photoreceptors to second- and third-order neurons, but VGLUT1 is not necessary for intrinsic visual functions. Furthermore, melanopsin and VGLUT2 expression in a subset of RGCs immediately after birth strongly supports the idea that intrinsic vision can function well before rod- and cone-mediated signaling has matured.


Asunto(s)
Células Fotorreceptoras/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Visión Ocular/fisiología , Animales , Potenciales Evocados Visuales/fisiología , Ratones , Ratones Noqueados , Estimulación Luminosa/métodos , Isoformas de Proteínas/fisiología , Ratas , Ratas Long-Evans , Células Ganglionares de la Retina/fisiología
16.
J Neurosci ; 27(25): 6823-31, 2007 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-17581970

RESUMEN

The vesicular glutamate (GLU) transporter (VGLUT1) is a critical component of glutamatergic neurons that regulates GLU release. Despite the likely role of GLU release in drug abuse pathology, there is no information that links VGLUT1 with drugs of abuse. This study provides the first evidence that methamphetamine (METH) alters the dynamic regulation of striatal VGLUT1 function and expression through a polysynaptic pathway. METH increases cortical VGLUT1 mRNA, striatal VGLUT1 protein in subcellular fractions, and the Vmax of striatal vesicular GLU uptake. METH also increases glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein in the crude vesicle fraction. METH-induced increases in cortical VGLUT1 mRNA, as well as striatal VGLUT1 and GAPDH, are GABA(A) receptor-dependent because they are blocked by GABA(A) receptor antagonism in the substantia nigra. These results show that VGLUT1 can be dynamically regulated via a polysynaptic pathway to facilitate vesicular accumulation of GLU for subsequent release after METH.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Ácido Glutámico/metabolismo , Metanfetamina/farmacología , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/biosíntesis , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
17.
Neurochem Int ; 48(6-7): 643-9, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16546297

RESUMEN

The functional balance of glutamatergic and GABAergic signaling in neuronal cortical circuits is under homeostatic control. That is, prolonged alterations of global network activity leads to opposite changes in quantal amplitude at glutamatergic and GABAergic synapses. Such scaling of excitatory and inhibitory transmission within cortical circuits serves to restore and maintain a constant spontaneous firing rate of pyramidal neurons. Our recent work shows that this includes alterations in the levels of expression of vesicular glutamate (VGLUT1 and VGLUT2) and GABA (VIAAT) transporters. Other vesicle markers, such as synaptophysin or synapsin, are not regulated in this way. Endogenous regulation at the level of mRNA and synaptic protein controls the number of transporters per vesicle and hence, the level of vesicle filling with transmitter. Bidirectional and opposite activity-dependent regulation of VGLUT1 and VIAAT expression would serve to adjust the balance of glutamate and GABA release and therefore the level of postsynaptic receptor saturation. In some excitatory neurons and synapses, co-expression of VGLUT1 and VGLUT2 occurs. Bidirectional and opposite changes in the levels of two excitatory vesicular transporters would enable individual neocortical neurons to scale up or scale down the level of vesicular glutamate storage, and thus, the amount available for release at individual synapses. Regulated vesicular transmitter storage and release via selective changes in the level of expression of vesicular glutamate and GABA transporters indicates that homeostatic plasticity of synaptic strength at cortical synapses includes presynaptic elements.


Asunto(s)
Corteza Cerebral/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/biosíntesis , Proteína 2 de Transporte Vesicular de Glutamato/biosíntesis , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/biosíntesis , Animales , Corteza Cerebral/metabolismo , Ácido Glutámico/metabolismo , Homeostasis , Humanos , Red Nerviosa/fisiología , Plasticidad Neuronal , Neuronas/metabolismo , Sinapsis/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología
18.
J Neurosci ; 25(26): 6221-34, 2005 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-15987952

RESUMEN

A fundamental question in synaptic physiology is whether the unitary strength of a synapse can be regulated by presynaptic characteristics and, if so, what those characteristics might be. Here, we characterize a newly proposed mechanism for altering the strength of glutamatergic synapses based on the recently identified vesicular glutamate transporter VGLUT1. We provide direct evidence that filling in isolated synaptic vesicles is subject to a dynamic equilibrium that is determined by both the concentration of available glutamate and the number of vesicular transporters participating in loading. We observe that changing the number of vesicular transporters expressed at hippocampal excitatory synapses results in enhanced evoked and miniature responses and verify biophysically that these changes correspond to an increase in the amount of glutamate released per vesicle into the synaptic cleft. In addition, we find that this modulation of synaptic strength by vesicular transporter expression is endogenously regulated, both across development to coincide with a maturational increase in vesicle cycling and quantal amplitude and by excitatory and inhibitory receptor activation in mature neurons to provide an activity-dependent scaling of quantal size via a presynaptic mechanism. Together, these findings underscore that vesicular transporter expression is used endogenously to directly regulate the extent of glutamate release, providing a concise presynaptic mechanism for controlling the quantal efficacy of excitatory transmission during synaptic refinement and plasticity.


Asunto(s)
Terminales Presinápticos/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Animales , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Potenciales Evocados/fisiología , Ácido Glutámico/metabolismo , Homeostasis , Procesamiento de Imagen Asistido por Computador , Células PC12 , Técnicas de Placa-Clamp , Teoría Cuántica , Ratas , Proteína 1 de Transporte Vesicular de Glutamato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...