Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 12: 642715, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815396

RESUMEN

A systematic and flexible immunoregulatory network is required to ensure the proper outcome of antiviral immune signaling and maintain homeostasis during viral infection. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2), a novel immunoregulatory protein, has been extensively studied in inflammatory response, apoptosis, and cancer. However, the function of TIPE2 in antiviral innate immunity is poorly clarified. In this study, we reported that the expression of TIPE2 declined at the early period and then climbed up in macrophages under RNA virus stimulation. Knockout of TIPE2 in the macrophages enhanced the antiviral capacity and facilitated type I interferon (IFN) signaling after RNA viral infection both in vitro and in vivo. Consistently, overexpression of TIPE2 inhibited the production of type I IFNs and pro-inflammatory cytokines, and thus promoted the viral infection. Moreover, TIPE2 restrained the activation of TBK1 and IRF3 in the retinoic acid inducible gene-I (RIG-I)-like receptors (RLR) signaling pathway by directly interacting with retinoic acid inducible gene-I (RIG-I). Taken together, our results suggested that TIPE2 suppresses the type I IFN response induced by RNA virus by targeting RIG-I and blocking the activation of downstream signaling. These findings will provide new insights to reveal the immunological function of TIPE2 and may help to develop new strategies for the clinical treatment of RNA viral infections.


Asunto(s)
Proteína 58 DEAD Box/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Macrófagos/inmunología , Infecciones por Virus ARN/inmunología , Receptores Inmunológicos/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Células Cultivadas , Humanos , Inmunidad Innata , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/biosíntesis , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Replicación Viral
2.
J Infect Dev Ctries ; 15(1): 1-8, 2021 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-33571140

RESUMEN

An innate immune response is essential to mobilize protective immunity upon the infection of respiratory epithelial cells with influenza A virus (IAV). The response is classified as early (nonspecific effectors), local systematic (effector cells recruitment) and late (antigen to lymphoid organ transport, naive B and T cells recognition, effector cells clonal expansion and differentiation). Virus particles are detected by the host cells as non-self by various sensors that are present on the cell surface, endosomes and cytosol. These sensors are collectively termed as pattern recognition receptors (PRRs). The PRRs distinguish unique molecular signatures known as pathogen-associated molecular pattern, which are present either on the cell surface or within intracellular compartments. PRRs have been classified into five major groups: C-Type Lectin Receptor (CLR), Toll-like receptor (TLR), Nod-like receptor (NLR), Retinoic acid-inducible gene-I-like receptor (RLR), which play a role in innate immunity to IAV infection, and the pyrin and hematopoietic interferon-inducible nuclear (PYHIN) domain protein. Here, we discuss the role of PRRs in cellular infectivity of IAV and highlight the recent progress.


Asunto(s)
Virus de la Influenza A/fisiología , Virus de la Influenza A/patogenicidad , Gripe Humana/inmunología , Gripe Humana/virología , Receptores de Reconocimiento de Patrones/fisiología , Transducción de Señal , Animales , Proteína 58 DEAD Box/fisiología , Interacciones Microbiota-Huesped , Humanos , Inmunidad Innata , Lectinas Tipo C/fisiología , Proteína Adaptadora de Señalización NOD1/fisiología , Proteínas Nucleares/fisiología , Receptores Inmunológicos/fisiología , Receptores Virales/fisiología , Receptores Toll-Like/fisiología
3.
Biochem J ; 478(3): 493-510, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33459340

RESUMEN

An integral aspect of innate immunity is the ability to detect foreign molecules of viral origin to initiate antiviral signaling via pattern recognition receptors (PRRs). One such receptor is the RNA helicase retinoic acid inducible gene 1 (RIG-I), which detects and is activated by 5'triphosphate uncapped double stranded RNA (dsRNA) as well as the cytoplasmic viral mimic dsRNA polyI:C. Once activated, RIG-I's CARD domains oligomerize and initiate downstream signaling via mitochondrial antiviral signaling protein (MAVS), ultimately inducing interferon (IFN) production. Another dsRNA binding protein PACT, originally identified as the cellular protein activator of dsRNA-activated protein kinase (PKR), is known to enhance RIG-I signaling in response to polyI:C treatment, in part by stimulating RIG-I's ATPase and helicase activities. TAR-RNA-binding protein (TRBP), which is ∼45% homologous to PACT, inhibits PKR signaling by binding to PKR as well as by sequestration of its' activators, dsRNA and PACT. Despite the extensive homology and similar structure of PACT and TRBP, the role of TRBP has not been explored much in RIG-I signaling. This work focuses on the effect of TRBP on RIG-I signaling and IFN production. Our results indicate that TRBP acts as an inhibitor of RIG-I signaling in a PACT- and PKR-independent manner. Surprisingly, this inhibition is independent of TRBP's post-translational modifications that are important for other signaling functions of TRBP, but TRBP's dsRNA-binding ability is essential. Our work has major implications on viral susceptibility, disease progression, and antiviral immunity as it demonstrates the regulatory interplay between PACT and TRBP IFN production.


Asunto(s)
Proteínas Portadoras/fisiología , Proteína 58 DEAD Box/fisiología , Proteínas de Unión al ARN/fisiología , Receptores Inmunológicos/fisiología , Transducción de Señal/fisiología , Transporte Activo de Núcleo Celular , Adenosina Trifosfato/metabolismo , Animales , Fibroblastos , Genes Reporteros , Células HEK293 , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferones/fisiología , Ratones , Modelos Biológicos , Mutación , Fosforilación , Poli I-C/farmacología , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , ARN Bicatenario/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
4.
Mol Immunol ; 130: 69-76, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33360745

RESUMEN

Ubiquitin specific protease 14 (USP14) is a regulator of protein deubiquitination and proteasome activation, and has been implicated in negative regulation of type I IFN signaling pathway. However, the effect of USP14 on RNA virus-related inflammatory response has not been studied. Retinoic acid-inducible gene I (RIG-I) is the important pattern recognition receptor of the innate immunity to detect RNA viruses or intracellular Poly(I:C)-LMW. Here, we reported that USP14 knockdown increased pro-inflammatory cytokines production in macrophages upon VSV infection or intracellular Poly(I:C)-LMW stimulation. USP14-overexpressed HeLa cells exhibited a decrease in RIG-I-mediated IL-6 and TNF-α expression. IU1, USP14 inhibitor, significantly promotes pro-inflammatory cytokines production in VSV-infected mice in vivo. Furthermore, USP14 was also found to inhibit the RIG-I-triggered NF-κB activation by deubiquitinating K63-linked RIG-I. Thus, our results demonstrate that USP14 is a negative regulator of RIG-I-mediated inflammatory response.


Asunto(s)
Proteína 58 DEAD Box/genética , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Receptores Inmunológicos/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina Tiolesterasa/fisiología , Animales , Células Cultivadas , Proteína 58 DEAD Box/fisiología , Regulación hacia Abajo/genética , Regulación hacia Abajo/inmunología , Femenino , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Inflamación/genética , Inflamación/metabolismo , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores Inmunológicos/fisiología , Transducción de Señal/genética , Transducción de Señal/inmunología , Células THP-1
5.
PLoS Biol ; 18(12): e3000996, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33264285

RESUMEN

RNA interference (RNAi) is an antiviral pathway common to many eukaryotes that detects and cleaves foreign nucleic acids. In mammals, mitochondrially localized proteins such as mitochondrial antiviral signaling (MAVS), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated protein 5 (MDA5) mediate antiviral responses. Here, we report that mitochondrial dysfunction in Caenorhabditis elegans activates RNAi-directed silencing via induction of a pathway homologous to the mammalian RIG-I helicase viral response pathway. The induction of RNAi also requires the conserved RNA decapping enzyme EOL-1/DXO. The transcriptional induction of eol-1 requires DRH-1 as well as the mitochondrial unfolded protein response (UPRmt). Upon mitochondrial dysfunction, EOL-1 is concentrated into foci that depend on the transcription of mitochondrial RNAs that may form double-stranded RNA (dsRNA), as has been observed in mammalian antiviral responses. Enhanced RNAi triggered by mitochondrial dysfunction is necessary for the increase in longevity that is induced by mitochondrial dysfunction.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Mitocondrias/metabolismo , Interferencia de ARN/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteína 58 DEAD Box/fisiología , ARN Helicasas DEAD-box/metabolismo , Regulación de la Expresión Génica/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , Mitocondrias/fisiología , ARN Bicatenario/genética , ARN Interferente Pequeño/genética , ARN Viral/genética , Transducción de Señal/genética
6.
Front Immunol ; 11: 678, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425931

RESUMEN

The innate immune system, which senses invading pathogens, plays a critical role as the first line of host defense. After recognition of foreign RNA ligands (e.g., RNA viruses), host cells generate an innate immune or antiviral response via the interferon-mediated signaling pathway. Retinoic acid-inducible gene I (RIG-1) acts as a major sensor that recognizes a broad range of RNA ligands in mammals; however, chickens lack a RIG-1 homolog, meaning that RNA ligands should be recognized by other cellular sensors such as melanoma differentiation-associated protein 5 (MDA5) and toll-like receptors (TLRs). However, it is unclear which of these cellular sensors compensates for the loss of RIG-1 to act as the major sensor for RNA ligands. Here, we show that chicken MDA5 (cMDA5), rather than chicken TLRs (cTLRs), plays a pivotal role in the recognition of RNA ligands, including poly I:C and influenza virus. First, we used a knockdown approach to show that both cMDA5 and cTLR3 play roles in inducing interferon-mediated innate immune responses against RNA ligands in chicken DF-1 cells. Furthermore, targeted knockout of cMDA5 or cTLR3 in chicken DF-1 cells revealed that loss of cMDA5 impaired the innate immune responses against RNA ligands; however, the responses against RNA ligands were retained after loss of cTLR3. In addition, double knockout of cMDA5 and cTLR3 in chicken DF-1 cells abolished the innate immune responses against RNA ligands, suggesting that cMDA5 is the major sensor whereas cTLR3 is a secondary sensor. Taken together, these findings provide an understanding of the functional role of cMDA5 in the recognition of RNA ligands in chicken DF-1 cells and may facilitate the development of an innate immune-deficient cell line or chicken model.


Asunto(s)
Inmunidad Innata , Helicasa Inducida por Interferón IFIH1/fisiología , ARN Bicatenario/metabolismo , Receptor Toll-Like 3/fisiología , Animales , Línea Celular , Pollos , Proteína 58 DEAD Box/fisiología , Fibroblastos/inmunología , Interferón beta/genética , Ligandos , Orthomyxoviridae/fisiología , Poli I-C/farmacología , Regiones Promotoras Genéticas , Replicación Viral
7.
Nat Rev Immunol ; 20(9): 537-551, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32203325

RESUMEN

Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are key sensors of virus infection, mediating the transcriptional induction of type I interferons and other genes that collectively establish an antiviral host response. Recent studies have revealed that both viral and host-derived RNAs can trigger RLR activation; this can lead to an effective antiviral response but also immunopathology if RLR activities are uncontrolled. In this Review, we discuss recent advances in our understanding of the types of RNA sensed by RLRs in the contexts of viral infection, malignancies and autoimmune diseases. We further describe how the activity of RLRs is controlled by host regulatory mechanisms, including RLR-interacting proteins, post-translational modifications and non-coding RNAs. Finally, we discuss key outstanding questions in the RLR field, including how our knowledge of RLR biology could be translated into new therapeutics.


Asunto(s)
Proteína 58 DEAD Box/fisiología , ARN/metabolismo , Animales , Humanos , Sistema Inmunológico/fisiología , ARN Viral/metabolismo
8.
Front Immunol ; 10: 1069, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139191

RESUMEN

The serine/threonine kinase phosphatase and tensin homolog (PTEN)-induced putative kinase 1(PINK1) controls mitochondrial quality and plays a vital role in the pathogenesis of early-onset Parkinson's disease. However, whether PINK1 has functions in innate antiviral immunity is largely unknown. Here, we report that viral infection down regulates PINK1 expression in macrophages. PINK1 knockdown results in decreased cytokine production and attenuated IRF3 and NF-κB activation upon viral infection. PINK1 promotes the retinoic-acid-inducible gene I (RIG-I)-like receptors (RLR)-triggered immune responses in a kinase domain-dependent manner. Furthermore, PINK1 associates with TRAF3 via the kinase domain and inhibits Parkin-mediated TRAF3 K48-linked proteasomal degradation. In addition, PINK1 interacts with Yes-associated protein 1 (YAP1) upon viral infection and impairs YAP1/IRF3 complex formation. Collectively, our results demonstrate that PINK1 positively regulates RIG-I triggered innate immune responses by inhibiting TRAF3 degradation and relieving YAP-mediated inhibition of the cellular antiviral response.


Asunto(s)
Proteína 58 DEAD Box/fisiología , Proteínas Mitocondriales/fisiología , Proteínas Quinasas/fisiología , Virosis/inmunología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Citocinas/biosíntesis , Femenino , Células HEK293 , Humanos , Lactante , Factor 3 Regulador del Interferón/fisiología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/fisiología , Células RAW 264.7 , Receptores Inmunológicos , Transducción de Señal/fisiología , Factor 3 Asociado a Receptor de TNF/fisiología , Factores de Transcripción/fisiología , Ubiquitinación , Proteínas Señalizadoras YAP
9.
Biomed J ; 41(4): 218-233, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30348265

RESUMEN

The respiratory epithelium is the major interface between the environment and the host. Sophisticated barrier, sensing, anti-microbial and immune regulatory mechanisms have evolved to help maintain homeostasis and to defend the lung against foreign substances and pathogens. During influenza virus infection, these specialised structural cells and populations of resident immune cells come together to mount the first response to the virus, one which would play a significant role in the immediate and long term outcome of the infection. In this review, we focus on the immune defence machinery of the respiratory epithelium and briefly explore how it repairs and regenerates after infection.


Asunto(s)
Gripe Humana/inmunología , Mucosa Respiratoria/inmunología , Polaridad Celular , Quimiocinas/fisiología , Citocinas/fisiología , Proteína 58 DEAD Box/fisiología , Humanos , Interferones/fisiología , Proteínas NLR/fisiología , Uniones Estrechas/fisiología , Receptores Toll-Like/fisiología
10.
J Immunol ; 198(3): 1274-1284, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011935

RESUMEN

Upon virus infection, host cells use retinoic-acid-inducible geneI I (RIG-I)-like receptors to recognize viral RNA and activate type I IFN expression. To investigate the role of protein methylation in the antiviral signaling pathway, we screened all the SET domain-containing proteins and identified TTLL12 as a negative regulator of RIG-I signaling. TTLL12 contains SET and TTL domains, which are predicted to have lysine methyltransferase and tubulin tyrosine ligase activities, respectively. Exogenous expression of TTLL12 represses IFN-ß expression induced by Sendai virus. TTLL12 deficiency by RNA interference and CRISPR-gRNA techniques increases the induced IFN-ß expression and inhibits virus replication in the cell. The global gene expression profiling indicated that TTLL12 specifically inhibits the expression of the downstream genes of innate immunity pathways. Cell fractionation and fluorescent staining indicated that TTLL12 is localized in the cytosol. The mutagenesis study suggested that TTLL12's ability to repress the RIG-I pathway is probably not dependent on protein modifications. Instead, TTLL12 directly interacts with virus-induced signaling adaptor (VISA), TBK1, and IKKε, and inhibits the interactions of VISA with other signaling molecules. Taken together, our findings demonstrate TTLL12 as a negative regulator of RNA-virus-induced type I IFN expression by inhibiting the interaction of VISA with other proteins.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas Portadoras/fisiología , Interferón Tipo I/fisiología , Transducción de Señal/fisiología , Proteínas Portadoras/análisis , Línea Celular , Citosol/química , Proteína 58 DEAD Box/fisiología , Humanos , Quinasa I-kappa B/fisiología , Inmunidad Innata , Proteínas Serina-Treonina Quinasas/fisiología , Receptores Inmunológicos , Replicación Viral
11.
PLoS One ; 11(11): e0166088, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27824940

RESUMEN

Insects are not only major vectors of mammalian viruses, but are also host to insect-restricted viruses that can potentially be transmitted to mammals. While mammalian innate immune responses to arboviruses are well studied, less is known about how mammalian cells respond to viruses that are restricted to infect only invertebrates. Here we demonstrate that IIV-6, a DNA virus of the family Iridoviridae, is able to induce a type I interferon-dependent antiviral immune response in mammalian cells. Although IIV-6 is a DNA virus, we demonstrate that the immune response activated during IIV-6 infection is mediated by the RIG-I-like receptor (RLR) pathway, and not the canonical DNA sensing pathway via cGAS/STING. We further show that RNA polymerase III is required for maximal IFN-ß secretion, suggesting that viral DNA is transcribed by this enzyme into an RNA species capable of activating the RLR pathway. Finally, we demonstrate that the RLR-driven mammalian innate immune response to IIV-6 is functionally capable of protecting cells from subsequent infection with the arboviruses Vesicular Stomatitis virus and Kunjin virus. These results represent a novel example of an invertebrate DNA virus activating a canonically RNA sensing pathway in the mammalian innate immune response, which reduces viral load of ensuing arboviral infection.


Asunto(s)
Proteína 58 DEAD Box/fisiología , Infecciones por Virus ADN/inmunología , Inmunidad Innata/inmunología , Iridoviridae/inmunología , Animales , Línea Celular , Immunoblotting , Interferón beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Electrónica de Transmisión , Interferencia de ARN , ARN Polimerasa III/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...