Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
J Agric Food Chem ; 72(17): 9782-9794, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38597360

RESUMEN

Uncontrolled inflammation contributes significantly to the mortality in acute respiratory infections. Our previous research has demonstrated that maize bran feruloylated oligosaccharides (FOs) possess notable anti-inflammatory properties linked to the NF-kB pathway regulation. In this study, we clarified that the oral administration of FOs moderately inhibited H1N1 virus infection and reduced lung inflammation in influenza-infected mice by decreasing a wide spectrum of cytokines (IFN-α, IFN-ß, IL-6, IL-10, and IL-23) in the lungs. The mechanism involves FOs suppressing the transduction of the RIG-I/MAVS/TRAF3 signaling pathway, subsequently lowering the expression of NF-κB. In silico analysis suggests that FOs have a greater binding affinity for the RIG-I/MAVS signaling complex. This indicates that FOs have potential as promising targets for immune modulation. Moreover, in MAVS knockout mice, we confirmed that the anti-inflammatory function of FOs against influenza depends on MAVS. Comprehensive analysis using 16S rRNA gene sequencing and metabolite profiling techniques showed that FOs have the potential to restore immunity by modulating the gut microbiota. In conclusion, our study demonstrates that FOs are effective anti-inflammatory phytochemicals in inhibiting lung inflammation caused by influenza. This suggests that FOs could serve as a potential nutritional strategy for preventing the H1N1 virus infection and associated lung inflammation.


Asunto(s)
Proteína 58 DEAD Box , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Ratones Noqueados , Oligosacáridos , Infecciones por Orthomyxoviridae , Transducción de Señal , Factor 3 Asociado a Receptor de TNF , Animales , Ratones , Oligosacáridos/administración & dosificación , Oligosacáridos/química , Oligosacáridos/farmacología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Humanos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Factor 3 Asociado a Receptor de TNF/inmunología , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Proteína 58 DEAD Box/inmunología , Neumonía/inmunología , Neumonía/prevención & control , Neumonía/metabolismo , Neumonía/virología , Ratones Endogámicos C57BL , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Pulmón/virología , Citocinas/metabolismo , Citocinas/inmunología , Citocinas/genética , Femenino , FN-kappa B/inmunología , FN-kappa B/genética , FN-kappa B/metabolismo , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología
2.
Life Sci Alliance ; 6(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37558422

RESUMEN

RIG-I recognizes viral dsRNA and activates a cell-autonomous antiviral response. Upon stimulation, it triggers a signaling cascade leading to the production of type I and III IFNs. IFNs are secreted and signal to elicit the expression of IFN-stimulated genes, establishing an antiviral state of the cell. The topology of this pathway has been studied intensively, however, its exact dynamics are less understood. Here, we employed electroporation to synchronously activate RIG-I, enabling us to characterize cell-intrinsic innate immune signaling at a high temporal resolution. Employing IFNAR1/IFNLR-deficient cells, we could differentiate primary RIG-I signaling from secondary signaling downstream of the IFN receptors. Based on these data, we developed a comprehensive mathematical model capable of simulating signaling downstream of dsRNA recognition by RIG-I and the feedback and signal amplification by IFN. We further investigated the impact of viral antagonists on signaling dynamics. Our work provides a comprehensive insight into the signaling events that occur early upon virus infection and opens new avenues to study and disentangle the complexity of the host-virus interface.


Asunto(s)
Proteína 58 DEAD Box , Receptores Inmunológicos , Transducción de Señal , Virosis , Línea Celular , Receptores Inmunológicos/inmunología , Proteína 58 DEAD Box/inmunología , Virosis/inmunología
3.
J Immunol ; 208(10): 2390-2402, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35459743

RESUMEN

Respiratory viruses stimulate the release of antiviral IFNs from the airway epithelium. Previous studies have shown that asthmatic patients show diminished release of type I and type III IFNs from bronchial epithelia. However, the mechanism of this suppression is not understood. In this study, we report that extracellular nucleotides and histamine, which are elevated in asthmatic airways, strongly inhibit release of type I and type III IFNs from human bronchial airway epithelial cells (AECs). Specifically, ATP, UTP, and histamine all inhibited the release of type I and type III IFNs from AECs induced by activation of TLR3, retinoic acid-inducible gene I (RIG-I), or cyclic GMP-AMP synthase-STING. This inhibition was at least partly mediated by Gq signaling through purinergic P2Y2 and H1 receptors, but it did not involve store-operated calcium entry. Pharmacological blockade of protein kinase C partially reversed inhibition of IFN production. Conversely, direct activation of protein kinase C with phorbol esters strongly inhibited TLR3- and RIG-I-mediated IFN production. Inhibition of type I and type III IFNs by ATP, UTP, histamine, and the proteinase-activated receptor 2 (PAR2) receptor agonist SLIGKV also occurred in differentiated AECs grown at an air-liquid interface, indicating that the suppression is conserved following mucociliary differentiation. Importantly, histamine and, more strikingly, ATP inhibited type I IFN release from human airway cells infected with live influenza A virus or rhinovirus 1B. These results reveal an important role for extracellular nucleotides and histamine in attenuating the induction of type I and III IFNs from AECs and help explain the molecular basis of the suppression of IFN responses in asthmatic patients.


Asunto(s)
Proteína 58 DEAD Box , Histamina , Interferones , Nucleótidos , Receptores Inmunológicos , Mucosa Respiratoria , Receptor Toll-Like 3 , Adenosina Trifosfato/inmunología , Proteína 58 DEAD Box/inmunología , Células Epiteliales/inmunología , Histamina/inmunología , Humanos , Interferones/inmunología , Nucleótidos/inmunología , Proteína Quinasa C/inmunología , Receptores Inmunológicos/inmunología , Mucosa Respiratoria/inmunología , Receptor Toll-Like 3/inmunología , Uridina Trifosfato/metabolismo , Uridina Trifosfato/farmacología
4.
Cell Rep ; 38(10): 110434, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35263596

RESUMEN

Type I interferons (IFN-I) are essential to establish antiviral innate immunity. Unanchored (or free) polyubiquitin (poly-Ub) has been shown to regulate IFN-I responses. However, few unanchored poly-Ub interactors are known. To identify factors regulated by unanchored poly-Ub in a physiological setting, we developed an approach to isolate unanchored poly-Ub from lung tissue. We identified the RNA helicase DHX16 as a potential pattern recognition receptor (PRR). Silencing of DHX16 in cells and in vivo diminished IFN-I responses against influenza virus. These effects extended to members of other virus families, including Zika and SARS-CoV-2. DHX16-dependent IFN-I production requires RIG-I and unanchored K48-poly-Ub synthesized by the E3-Ub ligase TRIM6. DHX16 recognizes a signal in influenza RNA segments that undergo splicing and requires its RNA helicase motif for direct, high-affinity interactions with specific viral RNAs. Our study establishes DHX16 as a PRR that partners with RIG-I for optimal activation of antiviral immunity requiring unanchored poly-Ub.


Asunto(s)
Proteína 58 DEAD Box , Interferón Tipo I , ARN Helicasas , ARN Viral , Receptores Inmunológicos , Infección por el Virus Zika , Virus Zika , COVID-19 , Proteína 58 DEAD Box/inmunología , Humanos , Inmunidad Innata , Interferón Tipo I/inmunología , ARN Helicasas/inmunología , Receptores Inmunológicos/inmunología , SARS-CoV-2 , Proteínas de Motivos Tripartitos , Virus Zika/genética , Infección por el Virus Zika/inmunología
5.
PLoS Pathog ; 18(1): e1010271, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35061864

RESUMEN

Flavivirus infection of cells induces massive rearrangements of the endoplasmic reticulum (ER) membrane to form viral replication organelles (ROs) which segregates viral RNA replication intermediates from the cytoplasmic RNA sensors. Among other viral nonstructural (NS) proteins, available evidence suggests for a prominent role of NS4B, an ER membrane protein with multiple transmembrane domains, in the formation of ROs and the evasion of the innate immune response. We previously reported a benzodiazepine compound, BDAA, which specifically inhibited yellow fever virus (YFV) replication in cultured cells and in vivo in hamsters, with resistant mutation mapped to P219 of NS4B protein. In the following mechanistic studies, we found that BDAA specifically enhances YFV induced inflammatory cytokine response in association with the induction of dramatic structural alteration of ROs and exposure of double-stranded RNA (dsRNA) in virus-infected cells. Interestingly, the BDAA-enhanced cytokine response in YFV-infected cells is attenuated in RIG-I or MAD5 knockout cells and completely abolished in MAVS knockout cells. However, BDAA inhibited YFV replication at a similar extent in the parent cells and cells deficient of RIG-I, MDA5 or MAVS. These results thus provided multiple lines of biological evidence to support a model that BDAA interaction with NS4B may impair the integrity of YFV ROs, which not only inhibits viral RNA replication, but also promotes the release of viral RNA from ROs, which consequentially activates RIG-I and MDA5. Although the innate immune enhancement activity of BDAA is not required for its antiviral activity in cultured cells, its dual antiviral mechanism is unique among all the reported antiviral agents thus far and warrants further investigation in animal models in future.


Asunto(s)
Antivirales/farmacología , Benzodiazepinas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Virus de la Fiebre Amarilla/efectos de los fármacos , Línea Celular , Proteína 58 DEAD Box/inmunología , Humanos , Inmunidad Innata/inmunología , Proteínas no Estructurales Virales/efectos de los fármacos , Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/inmunología
6.
Signal Transduct Target Ther ; 7(1): 22, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075101

RESUMEN

As a highly pathogenic human coronavirus, SARS-CoV-2 has to counteract an intricate network of antiviral host responses to establish infection and spread. The nucleic acid-induced stress response is an essential component of antiviral defense and is closely related to antiviral innate immunity. However, whether SARS-CoV-2 regulates the stress response pathway to achieve immune evasion remains elusive. In this study, SARS-CoV-2 NSP5 and N protein were found to attenuate antiviral stress granule (avSG) formation. Moreover, NSP5 and N suppressed IFN expression induced by infection of Sendai virus or transfection of a synthetic mimic of dsRNA, poly (I:C), inhibiting TBK1 and IRF3 phosphorylation, and restraining the nuclear translocalization of IRF3. Furthermore, HEK293T cells with ectopic expression of NSP5 or N protein were less resistant to vesicular stomatitis virus infection. Mechanistically, NSP5 suppressed avSG formation and disrupted RIG-I-MAVS complex to attenuate the RIG-I-mediated antiviral immunity. In contrast to the multiple targets of NSP5, the N protein specifically targeted cofactors upstream of RIG-I. The N protein interacted with G3BP1 to prevent avSG formation and to keep the cofactors G3BP1 and PACT from activating RIG-I. Additionally, the N protein also affected the recognition of dsRNA by RIG-I. This study revealed the intimate correlation between SARS-CoV-2, the stress response, and innate antiviral immunity, shedding light on the pathogenic mechanism of COVID-19.


Asunto(s)
Proteasas 3C de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/genética , Proteína 58 DEAD Box/genética , ADN Helicasas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas de Unión al ARN/genética , Receptores Inmunológicos/genética , SARS-CoV-2/genética , Gránulos de Estrés/genética , Animales , Chlorocebus aethiops , Proteasas 3C de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteína 58 DEAD Box/inmunología , ADN Helicasas/inmunología , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Evasión Inmune , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Poli I-C/farmacología , Proteínas de Unión a Poli-ADP-Ribosa/inmunología , Unión Proteica , ARN Helicasas/inmunología , Proteínas con Motivos de Reconocimiento de ARN/inmunología , ARN Bicatenario/genética , ARN Bicatenario/inmunología , Proteínas de Unión al ARN/inmunología , Receptores Inmunológicos/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Virus Sendai/genética , Virus Sendai/inmunología , Transducción de Señal , Gránulos de Estrés/efectos de los fármacos , Gránulos de Estrés/inmunología , Gránulos de Estrés/virología , Células Vero , Vesiculovirus/genética , Vesiculovirus/inmunología
7.
Front Immunol ; 12: 780667, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899743

RESUMEN

Src homology region 2 domain-containing phosphatase 1 (SHP1), encoded by the protein tyrosine phosphatase nonreceptor type 6 (ptpn6) gene, belongs to the family of protein tyrosine phosphatases (PTPs) and participates in multiple signaling pathways of immune cells. However, the mechanism of SHP1 in regulating fish immunity is largely unknown. In this study, we first identified two gibel carp (Carassius gibelio) ptpn6 homeologs (Cgptpn6-A and Cgptpn6-B), each of which had three alleles with high identities. Then, relative to Cgptpn6-B, dominant expression in adult tissues and higher upregulated expression of Cgptpn6-A induced by polyinosinic-polycytidylic acid (poly I:C), poly deoxyadenylic-deoxythymidylic (dA:dT) acid and spring viremia of carp virus (SVCV) were uncovered. Finally, we demonstrated that CgSHP1-A (encoded by the Cgptpn6-A gene) and CgSHP1-B (encoded by the Cgptpn6-B gene) act as negative regulators of the RIG-I-like receptor (RLR)-mediated interferon (IFN) response via two mechanisms: the inhibition of CaTBK1-induced phosphorylation of CaMITA shared by CgSHP1-A and CgSHP1-B, and the autophagic degradation of CaMITA exclusively by CgSHP1-A. Meanwhile, the data support that CgSHP1-A and CgSHP1-B have sub-functionalized and that CgSHP1-A overwhelmingly dominates CgSHP1-B in the process of RLR-mediated IFN response. The current study not only sheds light on the regulative mechanism of SHP1 in fish immunity, but also provides a typical case of duplicated gene evolutionary fates.


Asunto(s)
Carpas/inmunología , Proteína 58 DEAD Box/inmunología , Proteínas de Peces/inmunología , Interferones/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/inmunología , Animales , Enfermedades de los Peces/inmunología
8.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34948194

RESUMEN

The innate immune system plays a pivotal role in the first line of host defense against infections and is equipped with patterns recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Several classes of PRRS, including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) recognize distinct microbial components and directly activate immune cells. TLRs are transmembrane receptors, while NLRs and RLRs are intracellular molecules. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. The innate immune system also influences pathways involved in cancer immunosurveillance. Natural and synthetic agonists of TLRs, NLRs, or RLRs can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8+ T cells, and NK cells, into the tumor microenvironment, and are being explored as promising adjuvants in cancer immunotherapies. In this review, we provide a concise overview of TLRs, NLRs, and RLRs: their structure, functions, signaling pathways, and regulation. We also describe various ligands for these receptors and their possible application in treatment of hematopoietic diseases.


Asunto(s)
Proteína 58 DEAD Box/inmunología , Proteínas NLR/inmunología , Receptores Toll-Like/inmunología , Animales , Proteína 58 DEAD Box/metabolismo , Humanos , Inmunidad Innata/inmunología , Inmunidad Innata/fisiología , Factores Inmunológicos , Inmunoterapia , Ligandos , Proteínas NLR/metabolismo , Transporte de Proteínas , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal/inmunología , Receptores Toll-Like/metabolismo
9.
Viruses ; 13(11)2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834938

RESUMEN

Two key cytosolic receptors belonging to the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family sense the viral RNA-derived danger signals: RIG-I and melanoma differentiation-associated protein 5 (MDA5). Their activation establishes an antiviral state by downstream signaling that ultimately activates interferon-stimulated genes (ISGs). While in rare cases RIG-I gene loss has been detected in mammalian and avian species, most notably in the chicken, MDA5 pseudogenization has only been detected once in mammals. We have screened over a hundred publicly available avian genome sequences and describe an independent disruption of MDA5 in two unrelated avian lineages, the storks (Ciconiiformes) and the rallids (Gruiformes). The results of our RELAX analysis confirmed the absence of negative selection in the MDA5 pseudogene. In contrast to our prediction, we have shown, using multiple dN/dS-based approaches, that the MDA5 loss does not appear to have resulted in any compensatory evolution in the RIG-I gene, which may partially share its ligand-binding specificity. Together, our results indicate that the MDA5 pseudogenization may have important functional effects on immune responsiveness in these two avian clades.


Asunto(s)
Proteínas Aviares/genética , Aves/genética , Proteína 58 DEAD Box/genética , Eliminación de Gen , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Proteínas Aviares/inmunología , Aves/clasificación , Aves/inmunología , Proteína 58 DEAD Box/química , Proteína 58 DEAD Box/inmunología , Humanos , Inmunidad Innata , Modelos Moleculares , Filogenia , Seudogenes , Alineación de Secuencia
10.
Cells ; 10(11)2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34831243

RESUMEN

The liver is targeted by several human pathogenic RNA viruses for viral replication and dissemination; despite this, the extent of innate immune sensing of RNA viruses by human hepatocytes is insufficiently understood to date. In particular, for highly human tropic viruses such as hepatitis C virus, cell culture models are needed to study immune sensing. However, several human hepatoma cell lines have impaired RNA sensing pathways and fail to mimic innate immune responses in the human liver. Here we compare the RNA sensing properties of six human hepatoma cell lines, namely Huh-6, Huh-7, HepG2, HepG2-HFL, Hep3B, and HepaRG, with primary human hepatocytes. We show that primary liver cells sense RNA through retinoic acid-inducible gene I (RIG-I) like receptor (RLR) and Toll-like receptor 3 (TLR3) pathways. Of the tested cell lines, Hep3B cells most closely mimicked the RLR and TLR3 mediated sensing in primary hepatocytes. This was shown by the expression of RLRs and TLR3 as well as the expression and release of bioactive interferon in primary hepatocytes and Hep3B cells. Our work shows that Hep3B cells partially mimic RNA sensing in primary hepatocytes and thus can serve as in vitro model to study innate immunity to RNA viruses in hepatocytes.


Asunto(s)
Hepatocitos/inmunología , Inmunidad Innata , ARN/inmunología , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Células Cultivadas , Proteína 58 DEAD Box/inmunología , Hepatocitos/virología , Humanos , Interferones/inmunología , Hígado/citología , Hígado/inmunología , Hígado/virología , Neoplasias Hepáticas/patología , Virus ARN/fisiología , Receptores Inmunológicos/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 3/inmunología , Carga Viral
11.
Acc Chem Res ; 54(21): 4012-4023, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34677064

RESUMEN

In vitro-transcribed RNAs are emerging as new biologics for therapeutic innovation, as exemplified by their application recently in SARS-CoV-2 vaccinations. RNAs prepared by in vitro transcription (IVT) allow transient expression of proteins of interest, conferring safety over DNA- or virus-mediated gene delivery systems. However, in vitro-transcribed RNAs should be used with caution because of their immunogenicity, which is in part triggered by double-stranded RNA (dsRNA) byproducts during IVT. Cellular innate immune response to dsRNA byproducts can lead to undesirable consequences, including suppression of protein synthesis and cell death, which in turn can detrimentally impact the efficacy of mRNA therapy. Thus, it is critical to understand the nature of IVT byproducts and the mechanisms by which they trigger innate immune responses.Our lab has been investigating the mechanisms by which the innate immune system discriminates between "self" and "nonself" RNA, with the focus on the cytoplasmic dsRNA receptors retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated 5 (MDA5). We have biochemically and structurally characterized critical events involving RNA discrimination and signal transduction by RIG-I or MDA5. We have used in vitro-transcribed RNAs as tools to investigate RNA specificity of RIG-I and MDA5, which required optimization of the IVT reaction and purification processes to eliminate the effect of IVT byproducts. In this Account, we summarize our current understanding of RIG-I and MDA5 and IVT reactions and propose future directions for improving IVT as a method to generate both research tools and therapeutics. Other critical proteins in cellular innate immune response to dsRNAs are also discussed. We arrange the contents in the following order: (i) innate immunity sensors for nonself RNA, including the RIG-I-like receptors (RLRs) in the cytosol and the toll-like receptors (TLRs) in the endosome, as well as cytoplasmic dsRNA-responding proteins, including protein kinase R (PKR) and 2',5'-oligoadenylate synthetases (OASes), illustrating the feature of protein-RNA binding and its consequences; (ii) the immunogenicity of IVT byproducts, specifically the generation of dsRNA molecules during IVT; and (iii) methods to reduce IVT RNA immunogenicity, including optimizations of RNA polymerases, reagents, and experimental conditions during IVT and subsequent purification.


Asunto(s)
ARN Viral/inmunología , SARS-CoV-2/genética , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/inmunología , Humanos , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/inmunología , ARN Viral/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , SARS-CoV-2/inmunología
12.
Viruses ; 13(10)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34696478

RESUMEN

RIG-I functions as a virus sensor that induces a cellular antiviral response. Although it has been investigated in other species, there have been no further studies to date on canine RIG-I against canine influenza virus (CIV). In the present study, we cloned the RIG-I gene of beagle dogs and characterized its expression, subcellular localization, antiviral response, and interactions with CIV proteins. RIG-I was highly expressed and mainly localized in the cytoplasm, with low levels detected in the nucleus. The results revealed that overexpression of the CARD domain of RIG-I and knockdown of RIG-I showed its ability to activate the RLR pathway and induced the expression of downstream interferon-stimulated genes. Moreover, overexpression of canine RIG-I suppressed the replication of CIV. The association between RIG-I and CIV was evaluated with the luciferase assay and by indirect immunofluorescence and bimolecular fluorescence complementation analyses. The results showed that CIV nonstructural protein 1 (NS1) can strongly suppress the RIG-I-mediated innate immune response, and the novel interactions between CIV matrix proteins (M1 and M2) and canine RIG-I were disclosed. These findings provide a basis for investigating the antiviral mechanism of canine RIG-I against CIV, which can lead to effective strategies for preventing CIV infection in dogs.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Subtipo H3N8 del Virus de la Influenza A/efectos de los fármacos , Animales , Antivirales/metabolismo , Línea Celular , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/inmunología , Enfermedades de los Perros/virología , Perros , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/inmunología , Subtipo H3N8 del Virus de la Influenza A/patogenicidad , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/genética , Células de Riñón Canino Madin Darby , Infecciones por Orthomyxoviridae/virología , Proteínas no Estructurales Virales/genética , Replicación Viral/genética
13.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34445801

RESUMEN

The cytoplasmic retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) initiate interferon (IFN) production and antiviral gene expression in response to RNA virus infection. Consequently, RLR signalling is tightly regulated by both host and viral factors. Tripartite motif protein 25 (TRIM25) is an E3 ligase that ubiquitinates multiple substrates within the RLR signalling cascade, playing both ubiquitination-dependent and -independent roles in RIG-I-mediated IFN induction. However, additional regulatory roles are emerging. Here, we show a novel interaction between TRIM25 and another protein in the RLR pathway that is essential for type I IFN induction, DEAD-box helicase 3X (DDX3X). In vitro assays and knockdown studies reveal that TRIM25 ubiquitinates DDX3X at lysine 55 (K55) and that TRIM25 and DDX3X cooperatively enhance IFNB1 induction following RIG-I activation, but the latter is independent of TRIM25's catalytic activity. Furthermore, we found that the influenza A virus non-structural protein 1 (NS1) disrupts the TRIM25:DDX3X interaction, abrogating both TRIM25-mediated ubiquitination of DDX3X and cooperative activation of the IFNB1 promoter. Thus, our results reveal a new interplay between two RLR-host proteins that cooperatively enhance IFN-ß production. We also uncover a new and further mechanism by which influenza A virus NS1 suppresses host antiviral defence.


Asunto(s)
Antivirales/inmunología , Proteína 58 DEAD Box/inmunología , ARN Helicasas DEAD-box/inmunología , Inmunidad/inmunología , Receptores Inmunológicos/inmunología , Factores de Transcripción/inmunología , Proteínas de Motivos Tripartitos/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Línea Celular , Regulación de la Expresión Génica/inmunología , Células HEK293 , Humanos , Virus de la Influenza A/inmunología , Interferones/inmunología , Regiones Promotoras Genéticas/inmunología , Unión Proteica/inmunología , Transducción de Señal/inmunología , Ubiquitinación/inmunología
14.
Viruses ; 13(8)2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34452305

RESUMEN

A weak production of INF-ß along with an exacerbated release of pro-inflammatory cytokines have been reported during infection by the novel SARS-CoV-2 virus. SARS-CoV-2 encodes several proteins able to counteract the host immune system, which is believed to be one of the most important features contributing to the viral pathogenesis and development of a severe clinical picture. Previous reports have demonstrated that SARS-CoV-2 N protein, along with some non-structural and accessory proteins, efficiently suppresses INF-ß production by interacting with RIG-I, an important pattern recognition receptor (PRR) involved in the recognition of pathogen-derived molecules. In the present study, we better characterized the mechanism by which the SARS-CoV-2 N counteracts INF-ß secretion and affects RIG-I signaling pathways. In detail, when the N protein was ectopically expressed, we noted a marked decrease in TRIM25-mediated RIG-I activation. The capability of the N protein to bind to, and probably mask, TRIM25 could be the consequence of its antagonistic activity. Furthermore, this interaction occurred at the SPRY domain of TRIM25, harboring the RNA-binding activity necessary for TRIM25 self-activation. Here, we describe new findings regarding the interplay between SARS-CoV-2 and the IFN system, filling some gaps for a better understanding of the molecular mechanisms affecting the innate immune response in COVID-19.


Asunto(s)
COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteína 58 DEAD Box/inmunología , Receptores Inmunológicos/inmunología , SARS-CoV-2/inmunología , Factores de Transcripción/inmunología , Proteínas de Motivos Tripartitos/inmunología , Ubiquitina-Proteína Ligasas/inmunología , COVID-19/genética , COVID-19/virología , Proteínas de la Nucleocápside de Coronavirus/genética , Proteína 58 DEAD Box/genética , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Interferón beta/genética , Interferón beta/inmunología , Regiones Promotoras Genéticas , Receptores Inmunológicos/genética , SARS-CoV-2/genética , Transducción de Señal , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética
15.
Viruses ; 13(8)2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-34452429

RESUMEN

As a result of a viral infection, viral genomes are not only recognized by RIG-I, but also lead to the activation of RNase L, which cleaves cellular RNA to generate the endogenous RIG-I ligand (eRL). The eRL was previously identified as a specific sequence derived from the internal transcribed spacer region 2, which bears a 2'3' cyclic phosphate instead of the common 5' triphosphate. By now, the generation of the eRL and its immunostimulatory effect were shown both in vitro and in reporter systems. In this work, we aimed to elucidate whether the eRL is also generated in Influenza A (IAV) and vesicular stomatitis virus (VSV) infected cells. RNA was extracted from virus-infected cells and used for immunostimulations as well as specific PCR-strategies to detect eRL cleavage. We show that the eRL is generated in IAV infected HEK293 cells, but we could not detect specific eRL fragments in VSV infected cells. Further, RIG-I mediated IFN-response depends not only on viral genomes but also on the eRL, as immunostimulatory properties remain present under 5'triphosphate degrading conditions. In summary, we prove the IAV infection induced eRL generation in HEK293 cells, amplifying the innate immune response.


Asunto(s)
Proteína 58 DEAD Box/genética , Interacciones Huésped-Patógeno/genética , Inmunidad Innata , Virus de la Influenza A/inmunología , Receptores Inmunológicos/genética , Células A549 , Proteína 58 DEAD Box/inmunología , Genoma Viral , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Humanos , Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Receptores Inmunológicos/inmunología , Virus de la Estomatitis Vesicular Indiana/inmunología , Virus de la Estomatitis Vesicular Indiana/patogenicidad , Replicación Viral/inmunología
16.
Front Immunol ; 12: 688758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220846

RESUMEN

Coronaviruses (CoVs) are a known global threat, and most recently the ongoing COVID-19 pandemic has claimed more than 2 million human lives. Delays and interference with IFN responses are closely associated with the severity of disease caused by CoV infection. As the most abundant viral protein in infected cells just after the entry step, the CoV nucleocapsid (N) protein likely plays a key role in IFN interruption. We have conducted a comprehensive comparative analysis and report herein that the N proteins of representative human and animal CoVs from four different genera [swine acute diarrhea syndrome CoV (SADS-CoV), porcine epidemic diarrhea virus (PEDV), severe acute respiratory syndrome CoV (SARS-CoV), SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), infectious bronchitis virus (IBV) and porcine deltacoronavirus (PDCoV)] suppress IFN responses by multiple strategies. In particular, we found that the N protein of SADS-CoV interacted with RIG-I independent of its RNA binding activity, mediating K27-, K48- and K63-linked ubiquitination of RIG-I and its subsequent proteasome-dependent degradation, thus inhibiting the host IFN response. These data provide insight into the interaction between CoVs and host, and offer new clues for the development of therapies against these important viruses.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteína 58 DEAD Box/metabolismo , Interferones/antagonistas & inhibidores , Interferones/inmunología , Receptores Inmunológicos/metabolismo , Secuencia de Aminoácidos/genética , Animales , COVID-19/patología , Proteína 58 DEAD Box/inmunología , Deltacoronavirus/genética , Deltacoronavirus/inmunología , Humanos , Virus de la Bronquitis Infecciosa/genética , Virus de la Bronquitis Infecciosa/inmunología , Factor 3 Regulador del Interferón/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Fosforilación , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/inmunología , Receptores Inmunológicos/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Porcinos , Ubiquitinación/fisiología
17.
Front Immunol ; 12: 687962, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248974

RESUMEN

Non-coding RNAs have emerged as critical regulators of the immune response to infection. MicroRNAs (miRNAs) are small non-coding RNAs which regulate host defense mechanisms against viruses, bacteria and fungi. They are involved in the delicate interplay between Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), and its host, which dictates the course of infection. Differential expression of miRNAs upon infection with M. tuberculosis, regulates host signaling pathways linked to inflammation, autophagy, apoptosis and polarization of macrophages. Experimental evidence suggests that virulent M. tuberculosis often utilize host miRNAs to promote pathogenicity by restricting host-mediated antibacterial signaling pathways. At the same time, host- induced miRNAs augment antibacterial processes such as autophagy, to limit bacterial proliferation. Targeting miRNAs is an emerging option for host-directed therapies. Recent studies have explored the role of long non-coding RNA (lncRNAs) in the regulation of the host response to mycobacterial infection. Among other functions, lncRNAs interact with chromatin remodelers to regulate gene expression and also function as miRNA sponges. In this review we attempt to summarize recent literature on how miRNAs and lncRNAs are differentially expressed during the course of M. tuberculosis infection, and how they influence the outcome of infection. We also discuss the potential use of non-coding RNAs as biomarkers of active and latent tuberculosis. Comprehensive understanding of the role of these non-coding RNAs is the first step towards developing RNA-based therapeutics and diagnostic tools for the treatment of TB.


Asunto(s)
Inmunidad Innata , MicroARNs/inmunología , Mycobacterium tuberculosis/inmunología , ARN Largo no Codificante/inmunología , Tuberculosis/inmunología , Animales , Apoptosis , Autofagia , Proteína 58 DEAD Box/inmunología , Proteína 58 DEAD Box/metabolismo , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Mycobacterium tuberculosis/patogenicidad , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Tuberculosis/genética , Tuberculosis/metabolismo , Tuberculosis/microbiología
18.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299310

RESUMEN

Oxidative stress is a major contributor to the pathogenesis of various inflammatory diseases. Accumulating evidence has shown that oxidative stress is characterized by the overproduction of reactive oxygen species (ROS). Previous reviews have highlighted inflammatory signaling pathways, biomarkers, molecular targets, and pathogenetic functions mediated by oxidative stress in various diseases. The inflammatory signaling cascades are initiated through the recognition of host cell-derived damage associated molecular patterns (DAMPs) and microorganism-derived pathogen associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). In this review, the effects of PRRs from the Toll-like (TLRs), the retinoic acid-induced gene I (RIG-I)-like receptors (RLRs) and the NOD-like (NLRs) families, and the activation of these signaling pathways in regulating the production of ROS and/or oxidative stress are summarized. Furthermore, important directions for future studies, especially for pathogen-induced signaling pathways through oxidative stress are also reviewed. The present review will highlight potential therapeutic strategies relevant to inflammatory diseases based on the correlations between ROS regulation and PRRs-mediated signaling pathways.


Asunto(s)
Inflamación/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Alarminas/genética , Alarminas/inmunología , Alarminas/metabolismo , Animales , Autofagia , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/terapia , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/inmunología , Proteína 58 DEAD Box/metabolismo , Interacciones Microbiota-Huesped , Humanos , Inflamasomas/genética , Inflamasomas/inmunología , Inflamasomas/metabolismo , Inflamación/genética , Inflamación/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/terapia , Modelos Biológicos , Proteínas NLR/genética , Proteínas NLR/inmunología , Proteínas NLR/metabolismo , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia , Estrés Oxidativo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología , Transducción de Señal , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Activación Transcripcional
19.
EMBO J ; 40(15): e107826, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34101213

RESUMEN

SARS-CoV-2 infection causes broad-spectrum immunopathological disease, exacerbated by inflammatory co-morbidities. A better understanding of mechanisms underpinning virus-associated inflammation is required to develop effective therapeutics. Here, we discover that SARS-CoV-2 replicates rapidly in lung epithelial cells despite triggering a robust innate immune response through the activation of cytoplasmic RNA sensors RIG-I and MDA5. The inflammatory mediators produced during epithelial cell infection can stimulate primary human macrophages to enhance cytokine production and drive cellular activation. Critically, this can be limited by abrogating RNA sensing or by inhibiting downstream signalling pathways. SARS-CoV-2 further exacerbates the local inflammatory environment when macrophages or epithelial cells are primed with exogenous inflammatory stimuli. We propose that RNA sensing of SARS-CoV-2 in lung epithelium is a key driver of inflammation, the extent of which is influenced by the inflammatory state of the local environment, and that specific inhibition of innate immune pathways may beneficially mitigate inflammation-associated COVID-19.


Asunto(s)
COVID-19/inmunología , Proteína 58 DEAD Box/inmunología , Células Epiteliales/inmunología , Helicasa Inducida por Interferón IFIH1/inmunología , Macrófagos/inmunología , ARN Viral/inmunología , Receptores Inmunológicos/inmunología , SARS-CoV-2 , COVID-19/genética , COVID-19/virología , Línea Celular , Citocinas/genética , Citocinas/inmunología , Células Epiteliales/virología , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Inflamación/genética , Inflamación/inmunología , Inflamación/virología , Quinasas Janus/inmunología , Pulmón/citología , Pulmón/inmunología , Pulmón/virología , Activación de Macrófagos , FN-kappa B/inmunología , Mucosa Respiratoria/citología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Factores de Transcripción STAT/inmunología , Replicación Viral
20.
Front Immunol ; 12: 672165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054851

RESUMEN

Influenza A virus (IAV), a highly infectious respiratory pathogen, remains a major threat to global public health. Numerous long non-coding RNAs (lncRNAs) have been shown to be implicated in various cellular processes. Here, we identified a new lncRNA termed RIG-I-dependent IAV-upregulated noncoding RNA (RDUR), which was induced by infections with IAV and several other viruses. Both in vitro and in vivo studies revealed that robust expression of host RDUR induced by IAV was dependent on the RIG-I/NF-κB pathway. Overexpression of RDUR suppressed IAV replication and downregulation of RDUR promoted the virus replication. Deficiency of mouse RDUR increased virus production in lungs, body weight loss, acute organ damage and consequently reduced survival rates of mice, in response to IAV infection. RDUR impaired the viral replication by upregulating the expression of several vital antiviral molecules including interferons (IFNs) and interferon-stimulated genes (ISGs). Further study showed that RDUR interacted with ILF2 and ILF3 that were required for the efficient expression of some ISGs such as IFITM3 and MX1. On the other hand, we found that while NF-κB positively regulated the expression of RDUR, increased expression of RDUR, in turn, inactivated NF-κB through a negative feedback mechanism to suppress excessive inflammatory response to viral infection. Together, the results demonstrate that RDUR is an important lncRNA acting as a critical regulator of innate immunity against the viral infection.


Asunto(s)
Inmunidad Innata/inmunología , FN-kappa B/inmunología , Infecciones por Orthomyxoviridae/inmunología , ARN Largo no Codificante/inmunología , Animales , Línea Celular , Proteína 58 DEAD Box/inmunología , Retroalimentación Fisiológica , Humanos , Virus de la Influenza A , Gripe Humana/inmunología , Ratones , Receptores Inmunológicos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...