Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
Nat Commun ; 15(1): 4383, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782909

RESUMEN

Macrophages (Mφ) autophagy is a pivotal contributor to inflammation-related diseases. However, the mechanistic details of its direct role in acute kidney injury (AKI) were unclear. Here, we show that Mφ promote AKI progression via crosstalk with tubular epithelial cells (TECs), and autophagy of Mφ was activated and then inhibited in cisplatin-induced AKI mice. Mφ-specific depletion of ATG7 (Atg7Δmye) aggravated kidney injury in AKI mice, which was associated with tubulointerstitial inflammation. Moreover, Mφ-derived exosomes from Atg7Δmye mice impaired TEC mitochondria in vitro, which may be attributable to miR-195a-5p enrichment in exosomes and its interaction with SIRT3 in TECs. Consistently, either miR-195a-5p inhibition or SIRT3 overexpression improved mitochondrial bioenergetics and renal function in vivo. Finally, adoptive transfer of Mφ from AKI mice to Mφ-depleted mice promotes the kidney injury response to cisplatin, which is alleviated when Mφ autophagy is activated with trehalose. We conclude that exosomal miR-195a-5p mediate the communication between autophagy-deficient Mφ and TECs, leading to impaired mitochondrial biogenetic in TECs and subsequent exacerbation of kidney injury in AKI mice via miR-195a-5p-SIRT3 axis.


Asunto(s)
Lesión Renal Aguda , Autofagia , Cisplatino , Macrófagos , MicroARNs , Mitocondrias , Sirtuina 3 , Animales , MicroARNs/genética , MicroARNs/metabolismo , Cisplatino/efectos adversos , Sirtuina 3/metabolismo , Sirtuina 3/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Autofagia/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Masculino , Exosomas/metabolismo , Ratones Endogámicos C57BL , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Trehalosa/farmacología , Túbulos Renales/patología , Túbulos Renales/metabolismo , Humanos , Riñón/patología , Riñón/metabolismo , Modelos Animales de Enfermedad
2.
Biomolecules ; 14(4)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38672517

RESUMEN

Obesity stands as a significant risk factor for type 2 diabetes, hyperlipidemia, and cardiovascular diseases, intertwining increased inflammation and decreased adipogenesis with metabolic disorders. Studies have highlighted the correlation between Caspase-1 and inflammation in obesity, elucidating its essential role in the biological functions of adipose tissue. However, the impact of Caspase-1 on adipogenesis and the underlying mechanisms remain largely elusive. In our study, we observed a positive correlation between Caspase-1 expression and obesity and its association with adipogenesis. In vivo experiments revealed that, under normal diet conditions, Caspase-1 deficiency improved glucose homeostasis, stimulated subcutaneous adipose tissue expansion, and enhanced adipogenesis. Furthermore, our findings indicate that Caspase-1 deficiency promotes the expression of autophagy-related proteins and inhibits autophagy with 3-MA or CQ blocked Caspase-1 deficiency-induced adipogenesis in vitro. Notably, Caspase-1 deficiency promotes adipogenesis via Atg7-mediated autophagy activation. In addition, Caspase-1 deficiency resisted against high-fat diet-induced obesity and glucose intolerance. Our study proposes the downregulation of Caspase-1 as a promising strategy for mitigating obesity and its associated metabolic disorders.


Asunto(s)
Adipogénesis , Proteína 7 Relacionada con la Autofagia , Autofagia , Caspasa 1 , Inflamación , Obesidad , Adipogénesis/genética , Animales , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Ratones , Caspasa 1/metabolismo , Caspasa 1/genética , Caspasa 1/deficiencia , Obesidad/metabolismo , Obesidad/patología , Obesidad/genética , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Masculino , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Células 3T3-L1 , Ratones Noqueados
3.
J Exp Clin Cancer Res ; 43(1): 114, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627815

RESUMEN

BACKGROUND: The efficacy of anti-PD-1 therapy is primarily hindered by the limited T-cell immune response rate and immune evasion capacity of tumor cells. Autophagy-related protein 7 (ATG7) plays an important role in autophagy and it has been linked to cancer. However, the role of ATG7 in the effect of immune checkpoint blockade (ICB) treatment on high microsatellite instability (MSI-H)/mismatch repair deficiency (dMMR) CRC is still poorly understood. METHODS: In this study, patients from the cancer genome altas (TCGA) COAD/READ cohorts were used to investigate the biological mechanism driving ATG7 development. Several assays were conducted including the colony formation, cell viability, qRT-PCR, western blot, immunofluorescence, flow cytometry, ELISA, immunohistochemistry staining and in vivo tumorigenicity tests. RESULTS: We found that ATG7 plays a crucial role in MSI-H CRC. Its knockdown decreased tumor growth and caused an infiltration of CD8+ T effector cells in vivo. ATG7 inhibition restored surface major histocompatibility complex I (MHC-I) levels, causing improved antigen presentation and anti-tumor T cell response by activating reactive oxygen species (ROS)/NF-κB pathway. Meanwhile, ATG7 inhibition also suppressed cholesterol accumulation and augmentation of anti-tumor immune responses. Combining ATG7 inhibition and statins improved the therapeutic benefit of anti-PD-1 in MSI-H CRC. Importantly, CRC patients with high expression of both ATG7 and recombinant 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) experienced worse prognosis compared to those with low ATG7 and HMGCR expression. CONCLUSIONS: Inhibition of ATG7 leads to upregulation of MHC-I expression, augments immune response and suppresses cholesterol accumulation. These findings demonstrate that ATG7 inhibition has therapeutic potential and application of statins can increase the sensitivity to immune checkpoint inhibitors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Síndromes Neoplásicos Hereditarios , Humanos , Proteína 7 Relacionada con la Autofagia/genética , Colesterol , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Reparación de la Incompatibilidad de ADN , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad , Inestabilidad de Microsatélites
4.
J Biol Chem ; 300(4): 107173, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499149

RESUMEN

Sunlight exposure results in an inflammatory reaction of the skin commonly known as sunburn, which increases skin cancer risk. In particular, the ultraviolet B (UVB) component of sunlight induces inflammasome activation in keratinocytes to instigate the cutaneous inflammatory responses. Here, we explore the intracellular machinery that maintains skin homeostasis by suppressing UVB-induced inflammasome activation in human keratinocytes. We found that pharmacological inhibition of autophagy promoted UVB-induced NLRP3 inflammasome activation. Unexpectedly, however, gene silencing of Atg5 or Atg7, which are critical for conventional autophagy, had no effect, whereas gene silencing of Beclin1, which is essential not only for conventional autophagy but also for Atg5/Atg7-independent alternative autophagy, promoted UVB-induced inflammasome activation, indicating an involvement of alternative autophagy. We found that damaged mitochondria were highly accumulated in UVB-irradiated keratinocytes when alternative autophagy was inhibited, and they appear to be recognized by NLRP3. Overall, our findings indicate that alternative autophagy, rather than conventional autophagy, suppresses UVB-induced NLRP3 inflammasome activation through the clearance of damaged mitochondria in human keratinocytes and illustrate a previously unknown involvement of alternative autophagy in inflammation. Alternative autophagy may be a new therapeutic target for sunburn and associated cutaneous disorders.


Asunto(s)
Autofagia , Inflamasomas , Queratinocitos , Mitocondrias , Proteína con Dominio Pirina 3 de la Familia NLR , Rayos Ultravioleta , Humanos , Autofagia/efectos de la radiación , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Beclina-1/metabolismo , Beclina-1/genética , Inflamasomas/metabolismo , Queratinocitos/metabolismo , Queratinocitos/patología , Queratinocitos/efectos de la radiación , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Rayos Ultravioleta/efectos adversos , Células Cultivadas
5.
Commun Biol ; 7(1): 382, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553562

RESUMEN

Autophagy is a dynamic self-renovation biological process that maintains cell homeostasis and is responsible for the quality control of proteins, organelles, and energy metabolism. The E1-like ubiquitin-activating enzyme autophagy-related gene 7 (ATG7) is a critical factor that initiates classic autophagy reactions by promoting the formation and extension of autophagosome membranes. Recent studies have identified the key functions of ATG7 in regulating the cell cycle, apoptosis, and metabolism associated with the occurrence and development of multiple diseases. This review summarizes how ATG7 is precisely programmed by genetic, transcriptional, and epigenetic modifications in cells and the relationship between ATG7 and aging-related diseases.


Asunto(s)
Autofagosomas , Autofagia , Proteína 7 Relacionada con la Autofagia/genética , Autofagosomas/metabolismo , Autofagia/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
6.
Exp Parasitol ; 260: 108745, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521196

RESUMEN

Autophagy is a key step involved in many unicellular eukaryotic diseases, including leishmaniasis, for cellular remodelling and differentiation during parasite's lifecycle. Lipids play a significant role in the infection process that begins with Leishmania major invading host cells. MicroRNAs (miRNAs), a family of small, 22-24 nucleotide noncoding regulatory RNAs, target mRNAs to modify gene expression and, subsequently, proteome output may have a regulatory role in altering the host cell processes. We observed miR-146a-3p expression increases in a time-dependent manner post Leishmania major infection. Transfecting miR-146a-3p mimic increases the expression of ATG7, an autophagy gene that encodes an E1-like enzyme in two ubiquitin-like conjugation systems required for autophagosome progression. HPGD (15-hydroxyprostaglandin dehydrogenase) operates as an enzyme, converting prostaglandin to its non-active form. Microarray data and western studies reveal that miR-146a-3p targets and inhibits HPGD, thereby increasing prostaglandin activity in lipid droplets. Herein, our research focuses on miR-146a-3p, which boosts ATG7 expression while reducing HPGD post Leishmania major infections helping us comprehend the intricate network of microRNA, autophagy, and lipid metabolism in leishmaniasis.


Asunto(s)
Autofagia , Leishmania major , Leishmaniasis Cutánea , Metabolismo de los Lípidos , MicroARNs , MicroARNs/metabolismo , MicroARNs/genética , Leishmania major/genética , Leishmania major/fisiología , Leishmania major/metabolismo , Leishmaniasis Cutánea/parasitología , Animales , Ratones , Proteína 7 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Ratones Endogámicos BALB C , Macrófagos/parasitología , Macrófagos/metabolismo , Humanos , Transfección , Western Blotting
7.
Mol Metab ; 81: 101892, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331318

RESUMEN

BACKGROUND: Myoprotein degradation accelerates in obese individuals, resulting in a decline in muscular mass. Atg7 plays a crucial role in regulating protein stability and function through both autophagy-dependent and independent pathways. As obesity progresses, the expression of Atg7 gradually rises in muscle tissue. Nonetheless, the precise impact and mechanism of Atg7 in promoting muscle mass decline in obesity remain uncertain. The study aimed to elucidate the role and underly mechanism of Atg7 action in the context of obesity-induced muscle mass decline. METHODS: In this study, we established a murine model of high-fat diet-induced obesity (DIO) and introduced adeno-associated virus delivery of short hairpin RNA to knock down Atg7 (shAtg7) into the gastrocnemius muscle. We then examined the expressions of Atg7 and myoprotein degradation markers in the gastrocnemius tissues of obese patients and mice using immunofluorescence and western blotting techniques. To further investigate the effects of Atg7, we assessed skeletal muscle cell diameter and the myoprotein degradation pathway in C2C12 and HSkMC cells in the presence or absence of Atg7. Immunofluorescence staining for MyHC and western blotting were utilized for this purpose. To understand the transcriptional regulation of Atg7 in response to myoprotein degradation, we conducted luciferase reporter assays and chromatin immunoprecipitation experiments to examine whether FoxO3a enhances the transcription of Atg7. Moreover, we explored the role of Akt in Atg7-mediated regulation and its relevance to obesity-induced muscle mass decline. This was accomplished by Akt knockdown, treatment with MK2206, and GST pulldown assays to assess the interaction between Atg7 and Akt. RESULTS: After 20 weeks of being on a high-fat diet, obesity was induced, leading to a significant decrease in the gastrocnemius muscle area and a decline in muscle performance. This was accompanied by a notable increase in Atg7 protein expression (p < 0.01). Similarly, in gastrocnemius tissues of obese patients when compared to nonobese individuals, there was a significant increase in both Atg7 (p < 0.01) and TRIM63 (p < 0.01) levels. When palmitic acid was administered to C2C12 cells, it resulted in increased Atg7 (p < 0.01), LC3Ⅱ/Ⅰ (p < 0.01), and p62 levels (p < 0.01). Additionally, it promoted FoxO3a-mediated transcription of Atg7. The knockdown of Atg7 in the gastrocnemius partially reversed DIO-induced muscle mass decline. Furthermore, when Atg7 was knocked down in C2C12 and HSkMC cells, it mitigated palmitic acid-induced insulin resistance, increased the p-Akt/Akt ratio (p < 0.01), and reduced TRIM63 (p < 0.01). Muscular atrophy mediated by Atg7 was reversed by genetic knockdown of Akt and treatment with the p-Akt inhibitor MK2206. Palmitic acid administration increased the binding between Atg7 and Akt (p < 0.01) while weakening the binding of PDK1 (p < 0.01) and PDK2 (p < 0.01) to Akt. GST pulldown assays demonstrated that Atg7 directly interacted with the C-terminal domain of Akt. CONCLUSION: The consumption of a high-fat diet, along with lipid-induced effects, led to the inhibition of Akt signaling, which, in turn, promoted FoxO3a-mediated transcription, increasing Atg7 levels in muscle cells. The excess Atg7 inhibited the phosphorylation of Akt, leading to a cyclic activation of FoxO3a and exacerbating the decline in muscle mass regulated by obesity. Consequently, Atg7 serves as a regulatory point in determining the decline in muscle mass induced by obesity.


Asunto(s)
Ácido Palmítico , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Transducción de Señal , Fibras Musculares Esqueléticas/metabolismo , Obesidad/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo
8.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003698

RESUMEN

Autophagy plays a critical role in nutrient recycling/re-utilizing under nutrient deprivation conditions. However, the role of autophagy in soybeans has not been intensively investigated. In this study, the Autophay-related gene 7 (ATG7) gene in soybeans (referred to as GmATG7) was silenced using a virus-induced gene silencing approach mediated by Bean pod mottle virus (BPMV). Our results showed that ATG8 proteins were highly accumulated in the dark-treated leaves of the GmATG7-silenced plants relative to the vector control leaves (BPMV-0), which is indicative of an impaired autophagy pathway. Consistent with the impaired autophagy, the dark-treated GmATG7-silenced leaves displayed an accelerated senescence phenotype, which was not seen on the dark-treated BPMV-0 leaves. In addition, the accumulation levels of both H2O2 and salicylic acid (SA) were significantly induced in the GmATG7-silenced plants compared with the BPMV-0 plants, indicating an activated immunity. Consistently, the GmATG7-silenced plants were more resistant against both Pseudomonas syringae pv. glycinea (Psg) and Soybean mosaic virus (SMV) compared with the BPMV-0 plants. However, the activated immunity in the GmATG7-silenced plant was not dependent upon the activation of MPK3/MPK6. Collectively, our results demonstrated that the function of GmATG7 is indispensable for autophagy in soybeans, and the activated immunity in the GmATG7-silenced plant is a result of impaired autophagy.


Asunto(s)
Proteína 7 Relacionada con la Autofagia , Glycine max , Proteínas de Plantas , Resistencia a la Enfermedad , Silenciador del Gen , Peróxido de Hidrógeno , Enfermedades de las Plantas , Glycine max/inmunología , Glycine max/metabolismo , Glycine max/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo
9.
Skin Res Technol ; 29(6): e13337, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37357660

RESUMEN

BACKGROUND: Radiation-induced skin injury, which may progress to fibrosis, is a severe side effect of radiotherapy in patients with cancer. However, currently, there is a lack of preventive or curative treatments for this injury. Meanwhile, the mechanisms underlying this injury remain poorly understood. Here, we elucidated whether autophagy is essential for the development of radiation-induced skin injury and the potential molecular pathways and mechanisms involved. METHODS AND RESULTS: We used the myofibroblast-specific Atg7 knockout (namely, conditional Atg7 knockout) mice irradiated with a single electron beam irradiation dose of 30 Gy. Vaseline-based 0.2% rapamycin ointment was topically applied once daily from the day of irradiation for 30 days. On day 30 post irradiation, skin tissues were harvested for further analysis. In vitro, human foreskin fibroblast cells were treated with rapamycin (100 nM) for 24 h and pretreated with 3-MA (5 mM) for 12 h. Macroscopic skin manifestations, histological changes, and fibrosis markers at the mRNA and protein expression levels were measured. Post irradiation, the myofibroblast-specific autophagy-deficient (Atg7Flox/Flox Cre+ ) mice had increased fibrosis marker (COL1A1, CTGF, TGF-ß1, and α-SMA) levels in the irradiated area and had more severe macroscopic skin manifestations than the control group (Atg7Flox/Flox Cre- ) mice. Treatment with an autophagy agonist rapamycin attenuated macroscopic skin injury scores and skin fibrosis marker levels with decreased epidermal thickness and dermal collagen deposition in Atg7Flox/Flox Cre+ mice compared with the vehicle control. Moreover, in vitro experiment results were consistent with the in vivo results. Together with studies at the molecular level, we found that these changes involved the Akt/mTOR pathway. In addition, this phenomenon might also relate to Nrf2-autophagy signaling pathway under oxidative stress conditions. CONCLUSION: In conclusion, Atg7 and autophagy-related mechanisms confer radioprotection, and reactivation of the autophagy process can be a novel therapeutic strategy to reduce and prevent the occurrence of radiodermatitis, particularly skin fibrosis, in patients with cancer.


Asunto(s)
Enfermedades de la Piel , Piel , Humanos , Ratones , Animales , Autofagia/genética , Fibrosis , Transducción de Señal , Epidermis , Ratones Noqueados , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/farmacología
10.
FASEB J ; 37(6): e22937, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37171262

RESUMEN

Heart failure (HF) is a chronic disease in which the heart is unable to provide enough blood and oxygen to the peripheral tissues. Cardiomyocyte apoptosis and autophagy have been linked to HF progression. However, the underlying mechanism of HF is unknown. In this study, H2 O2 -treated AC16 cells were used as a cell model of HF. The mRNA and protein levels of related genes were examined using RT-qPCR and western blot. Cell viability and apoptosis were assessed using CCK-8 and flow cytometry, respectively. The interactions between ETS2, TUG1, miR-129-5p, and ATG7 were validated by luciferase activity, ChIP, and RNA-Binding protein Immunoprecipitation assays. According to our findings, H2 O2 stimulation increased the expression of ETS2, TUG1, and ATG7 while decreasing the expression of miR-129-5p in AC16 cells. Furthermore, H2 O2 stimulation induced cardiomyocyte apoptosis and autophagy, which were reversed by ETS2 depletion, TUG1 silencing, or miR-129-5p upregulation. Mechanistically, ETS2 promoted TUG1 expression by binding to the TUG1 promoter, and TUG1 sponged miR-129-5p to increase ATG7 expression. Furthermore, TUG1 overexpression reversed ETS2 knockdown-mediated inhibition of cardiomyocyte apoptosis and autophagy and miR-129-5p inhibition abolished TUG1 depletion-mediated suppression of cardiomyocyte apoptosis and autophagy in H2 O2 -induced AC16 cells. As presumed, ATG7 overexpression reversed miR-129-5p mimics-mediated repression of cardiomyocyte apoptosis and autophagy in H2 O2 -induced AC16 cells. Finally, ETS2 silencing reduced cardiomyocyte apoptosis and autophagy to slow HF progression by targeting the ETS2/TUG1/miR-129-5p/ATG7 axis, which may provide new therapeutic targets for HF treatment.


Asunto(s)
Insuficiencia Cardíaca , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Miocitos Cardíacos/metabolismo , Proliferación Celular/genética , Apoptosis/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Autofagia/genética , Proteína Proto-Oncogénica c-ets-2/genética , Proteína Proto-Oncogénica c-ets-2/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo
11.
J Cell Biol ; 222(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36995368

RESUMEN

Microvascular basement membrane (BM) plays a pivotal role in the interactions of astrocyte with endothelium to maintain the blood-brain barrier (BBB) homeostasis; however, the significance and precise regulation of the endothelial cell-derived BM component in the BBB remain incompletely understood. Here, we report that conditional knockout of Atg7 in endothelial cells (Atg7-ECKO) leads to astrocyte-microvascular disassociation in the brain. Our results reveal astrocytic endfeet detachment from microvessels and BBB leakage in Atg7-ECKO mice. Furthermore, we find that the absence of endothelial Atg7 downregulates the expression of fibronectin, a major BM component of the BBB, causing significantly reduced coverage of astrocytes along cerebral microvessels. We reveal Atg7 triggers the expression of endothelial fibronectin via regulating PKA activity to affect the phosphorylation of cAMP-responsive element-binding protein. These results suggest that Atg7-regulated endothelial fibronectin production is required for astrocytes adhesion to microvascular wall for maintaining the BBB homeostasis. Thus, endothelial Atg7 plays an essential role in astrocyte-endothelium interactions to maintain the BBB integrity.


Asunto(s)
Astrocitos , Proteína 7 Relacionada con la Autofagia , Barrera Hematoencefálica , Animales , Ratones , Astrocitos/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Fibronectinas/metabolismo , Membrana Basal/metabolismo , Adhesión Celular
12.
Nat Microbiol ; 8(5): 803-818, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36959508

RESUMEN

Autophagy is a cellular innate-immune defence mechanism against intracellular microorganisms, including Mycobacterium tuberculosis (Mtb). How canonical and non-canonical autophagy function to control Mtb infection in phagosomes and the cytosol remains unresolved. Macrophages are the main host cell in humans for Mtb. Here we studied the contributions of canonical and non-canonical autophagy in the genetically tractable human induced pluripotent stem cell-derived macrophages (iPSDM), using a set of Mtb mutants generated in the same genetic background of the common lab strain H37Rv. We monitored replication of Mtb mutants that are either unable to trigger canonical autophagy (Mtb ΔesxBA) or reportedly unable to block non-canonical autophagy (Mtb ΔcpsA) in iPSDM lacking either ATG7 or ATG14 using single-cell high-content imaging. We report that deletion of ATG7 by CRISPR-Cas9 in iPSDM resulted in increased replication of wild-type Mtb but not of Mtb ΔesxBA or Mtb ΔcpsA. We show that deletion of ATG14 resulted in increased replication of both Mtb wild type and the mutant Mtb ΔesxBA. Using Mtb reporters and quantitative imaging, we identified a role for ATG14 in regulating fusion of phagosomes containing Mtb with lysosomes, thereby enabling intracellular bacteria restriction. We conclude that ATG7 and ATG14 are both required for restricting Mtb replication in human macrophages.


Asunto(s)
Células Madre Pluripotentes Inducidas , Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , Citosol , Macrófagos , Fagosomas/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo
13.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674839

RESUMEN

The autophagy gene ATG7 has been shown to be essential for the induction of autophagy, a process that used to be suppressed in nonalcoholic fatty liver disease (NAFLD). However, the specific role of ATG7 in NAFLD remains unclear. The aim of this study was to analyze hepatic ATG7 mRNA and ATG7 protein expression regarding obesity-associated NAFLD. Patients included women classified into normal weight (NW, n = 6) and morbid obesity (MO, n = 72). The second group was subclassified into normal liver (NL, n = 11), simple steatosis (SS, n= 29), and nonalcoholic steatohepatitis (NASH, n = 32). mRNA expression was analyzed by RT-qPCR and protein expression was evaluated by Western blotting. Our results showed that NASH patients presented higher ATG7 mRNA and ATG7 protein levels. ATG7 mRNA expression was increased in NASH compared with SS, while ATG7 protein abundance was enhanced in NASH compared with NL. ATG7 mRNA correlated negatively with the expression of some hepatic lipid metabolism-related genes and positively with endocannabinoid receptors, adiponectin hepatic expression, and omentin levels. These results suggest that ATG7-mediated autophagy may play an important role in the pathogenesis of NAFLD, especially in NASH, perhaps playing a possible protective role. However, this is a preliminary study that needs to be further studied.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Femenino , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hígado/metabolismo , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo
14.
Oncol Rep ; 49(2)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36601767

RESUMEN

Long non­coding RNAs (lncRNAs) are common in the human body. Misregulated lncRNA expression can cause a variety of diseases in the human body. The present study aimed to investigate the effect of lncRNA differentiation antagonizing non­protein­coding RNA (DANCR) on glioma proliferation and autophagy through the microRNA (miR)­33b/distal­less homeobox 6 (DLX6)/autophagy­related 7 (ATG7) axis. Reverse transcription­quantitative PCR was used to detect DANCR and miR­33b expression. Cell Counting Kit­8 assay and flow cytometry were used to detect cell proliferation and apoptosis, respectively. Transmission electron microscopy was used to determine the autophagy level by observing intracellular autophagosomes. A western blot assay was used to detect protein expression levels and determine the level of autophagy in different cells. The binding sites of miR­33b and DANCR or DLX6 were detected using a dual­luciferase reporter assay. A chromatin immunoprecipitation assay confirmed DLX6 as a transcript of ATG7. In vivo tumorigenesis of glioma cells was validated in nude mice. DANCR and DLX6 were highly expressed in glioma cells, while miR­33b showed low expression in glioma cells. DANCR reduced the targeted binding of miR­33b to DLX6 by sponging miR­33b. The result verified that DANCR could promote ATG7 protein expression through miR­33b/DLX6, promote intracellular autophagy and proliferation and reduce apoptosis. The present study identified the role of the DANCR/miR­33b/DLX6/ATG7 axis in regulating autophagy, proliferation, and apoptosis in glioma cells, providing new ideas for glioma treatment.


Asunto(s)
Glioma , MicroARNs , ARN Largo no Codificante , Animales , Ratones , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Autofagia/genética , Apoptosis/genética , Glioma/genética , Línea Celular Tumoral , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo
15.
J Clin Invest ; 133(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36480290

RESUMEN

Modification of cysteine residues by oxidative and nitrosative stress affects structure and function of proteins, thereby contributing to the pathogenesis of cardiovascular disease. Although the major function of thioredoxin 1 (Trx1) is to reduce disulfide bonds, it can also act as either a denitrosylase or transnitrosylase in a context-dependent manner. Here we show that Trx1 transnitrosylates Atg7, an E1-like enzyme, thereby stimulating autophagy. During ischemia, Trx1 was oxidized at Cys32-Cys35 of the oxidoreductase catalytic center and S-nitrosylated at Cys73. Unexpectedly, Atg7 Cys545-Cys548 reduced the disulfide bond in Trx1 at Cys32-Cys35 through thiol-disulfide exchange and this then allowed NO to be released from Cys73 in Trx1 and transferred to Atg7 at Cys402. Experiments conducted with Atg7 C402S-knockin mice showed that S-nitrosylation of Atg7 at Cys402 promotes autophagy by stimulating E1-like activity, thereby protecting the heart against ischemia. These results suggest that the thiol-disulfide exchange and the NO transfer are functionally coupled, allowing oxidized Trx1 to mediate a salutary effect during myocardial ischemia through transnitrosylation of Atg7 and stimulation of autophagy.


Asunto(s)
Isquemia Miocárdica , Tiorredoxinas , Animales , Ratones , Autofagia , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Cisteína/metabolismo , Disulfuros , Isquemia Miocárdica/genética , Oxidación-Reducción , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
16.
Hum Cell ; 36(1): 377-392, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36357766

RESUMEN

Application of microRNA-mediated mRNA expression in treatment of diverse cancers has been documented. The current study was explored to study the role of miR-217 in breast cancer (BC) progression and the related downstream factors. Clinical tissue samples, BC cell lines and the established xenograft models were prepared for ectopic expression and depletion experiments to discern the regulatory roles of miR-217-mediated NF1 in BC cell proliferation, metastasis and chemoresistance as well as tumorigenic ability of BC cells in nude mice. miR-217 was upregulated in BC, which was a predictor of poor prognosis of BC patients. NF1 could be targeted by miR-217. miR-217 promoted malignant characteristics of BC cells through enhancing ATF3-MMP13 interaction by inhibiting NF1. miR-217 repressed sensitivity against anti-cancer drugs by inducing autophagy of BC cells through the NF1/HSF1/ATG7 axis. Also, miR-217 could inhibit NF1 to facilitate tumorigenic ability of BC cells in vivo. Our study emphasized that miR-217 could potentially inhibit NF1 expression to activate the c-Jun, thus enhancing the expression and interaction of ATF3/MMP13 and promoting the malignant features of BC cells. Furthermore, miR-217 conferred chemoresistance on BC by enhancing BC cell autophagy, which was achieved by limiting NF1 expression to induce the HSF1/ATG7 pathway.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Animales , Ratones , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Ratones Desnudos , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Proliferación Celular/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Factor de Transcripción Activador 3/genética , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo
17.
Autophagy ; 19(2): 726-728, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35708538

RESUMEN

Macroautophagy/autophagy defects are a risk factor for inflamatory bowel disease (IBD), but the mechanism remains unclear. We previously demonstrated that conditional whole-body deletion of the essential Atg7 (autophagy related 7) gene in adult mice (atg7Δ/Δ) causes specific tissue damage and shortens lifespan to three months primarily due to neurodegeneration with surprisingly no disturbing effects on the intestine. In contrast, we recently found that conditional whole-body deletion of other essential autophagy genes, Atg5 or Rb1cc1/Fip200 (atg5Δ/Δ or rb1cc1Δ/Δ), cause death within five days due to rapid inhibition of autophagy, elimination of intestinal stem cells, and loss of barrier function in the ileum. atg5Δ/Δ mice lose PDGFRA/PDGFRα+ mesenchymal cells (PMCs) and WNT signaling essential for stem cell renewal. Depletion of aspartate and nucleotides in atg5Δ/Δ ileum was revealed by novel mass-spectrometry imaging (MALDI-MSI), consistent with metabolic insufficiency underlying PMCs loss. The difference in the autophagy gene knockout phenotypes is likely due to distinct kinetics of autophagy loss because gradual whole-body atg5 deletion extends lifespan, phenocopying deletion of Atg7 or Atg12. Therefore, we established that autophagy is required for ileum PMC metabolism, stem cell maintenance and mammalian survival. PMC loss caused by autophagy deficiency may therefore contribute to IBD.


Asunto(s)
Autofagia , Intestinos , Ratones , Animales , Autofagia/fisiología , Células Madre/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Proteínas Tirosina Quinasas Receptoras , Mamíferos/metabolismo , Homeostasis
18.
Oxid Med Cell Longev ; 2022: 8441676, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36254233

RESUMEN

Background: Ferroptosis has gained significant attention from oncologists as a vital outcome of oxidative stress. The aim of this study was to develop a prognostic signature that was based on the ferroptosis-related genes (FRGs) for osteosarcoma patients and explore their specific role in osteosarcoma. Methods: The training cohort dataset was extracted from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Different techniques like the univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, multivariate Cox regression analyses, and the Kaplan-Meier (KM) survival analyses were utilized to develop a prognostic signature. Then, the intrinsic relationship between the developed gene signature and the infiltration levels of the immune cells was further investigated. An external validation dataset from the Gene Expression Omnibus (GEO) database was employed to assess the predictive ability of the developed gene signature. Subsequently, the specific function of potential FRG in affecting the oxidative stress reaction and ferroptosis of osteosarcoma cells was identified. Results: A prognostic signature based on 5 FRGs (CBS, MUC1, ATG7, SOCS1, and PEBP1) was developed, and the patients were classified into the low- and high-risk groups (categories). High-risk patients displayed poor overall survival outcomes. The risk level was seen to be an independent risk factor for determining the prognosis of osteosarcoma patients (p < 0.001, hazard ratio: 7.457, 95% CI: 3.302-16.837). Additionally, the risk level was associated with immune function, which might affect the survival status of osteosarcoma patients. Moreover, the findings of the study indicated that the expression of ATG7 was related to the regulation of oxidative stress in osteosarcoma. Silencing the ATG7 gene promoted the proliferation and migration in osteosarcoma cells, suppressing the oxidative stress and ferroptosis process. Conclusions: A novel FRG signature was developed in this study to predict the prognosis of osteosarcoma patients. The results indicated that ATG7 might regulate the process of oxidative stress and ferroptosis in osteosarcoma cells and could be used as a potential target to develop therapeutic strategies for treating osteosarcoma.


Asunto(s)
Proteína 7 Relacionada con la Autofagia , Neoplasias Óseas , Ferroptosis , Osteosarcoma , Humanos , Proteína 7 Relacionada con la Autofagia/genética , Neoplasias Óseas/genética , Perfilación de la Expresión Génica , Estimación de Kaplan-Meier , Osteosarcoma/genética , Estrés Oxidativo/genética
19.
Eur J Histochem ; 66(3)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36053263

RESUMEN

Long non-coding RNA WAC antisense RNA 1 (lncRNA WAC-AS1) is involved in the replication of the hepatitis B virus (HBV). The purpose of this study was to determine its functions and specific mechanism. The levels of lncRNA WAC-AS1, RNA (miR)-192-5p and were examined in serum of HBV-infected patients and in HepG2.2.15 cells using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blotting. Using the database starBase, the target binding sites of lncRNA WAC-AS1 and miR-192-5p were predicted and confirmed by dual-luciferase reporter assay and RNA pull-down assay. The expression of pgRNA and HBV DNA was determined by qRT-PCR, while the levels of HBeAg and HBsAg were measured by enzyme-linked immunosorbent assay (ELISA). Using laser scanning confocal microscopy, the light chain 3 (LC3) expression was analyzed. qRT-PCR and Western blotting were used to assess the expression of beclin-1, p62, and LC3I/II. Overexpression of lncRNA WAC-AS1, upregulation of ATG7. and downregulation of miR-192-5p were observed in the serum of HBV-infected patients and the in vitro model. miR-192-5p directly targets lncRNA WAC-AS1. LncRNA WAC-AS1 was downregulated in lncRNA WAC-AS1-shRNA‒transfected cells. miR-192-5p was upregulated in lncRNA WAC-AS1-shRNA-transfected cells and downregulated in cells transfected with a miR-192-5p inhibitor. In HepG2 2.15 cells, the downregulation of lncRNA WAC-AS1 inhibited HBV replication and autophagy. In contrast, the miR-192-5p inhibitor-transfected group exhibited the opposite results, and ATG7 overexpression reversed the effects of miR-192-5p mimic or lncRNA WAC-AS1-shRNA on HBV replication and cell autophagy. Our findings indicate that lncRNA WAC-AS1 regulates HBV replication by reinforcing the autophagy induced by miR-192-5p/ATG7. Consequently, lncRNA WAC-AS1 may serve as a therapeutically-promising target in HBV patients.


Asunto(s)
Hepatitis B , MicroARNs , ARN Largo no Codificante , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Línea Celular Tumoral , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN sin Sentido/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...