Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Mol Biol Lett ; 29(1): 126, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333870

RESUMEN

BACKGROUND: Metastasis, the leading cause of renal cell carcinoma (RCC) mortality, involves cancer cells resisting anoikis and invading. Until now, the role of the matrix metalloproteinase (MMP)-related enzyme, A disintegrin and metalloprotease with thrombospondin motifs 1 (ADAMTS1), in RCC anoikis regulation remains unclear. METHODS: The clinical significance of ADAMTS1 and its associated molecules in patients with RCC was investigated using data from the Gene Expression Omnibus (GEO) and TCGA datasets. Human phosphoreceptor tyrosine kinase (RTK) array, luciferase reporter assays, immunoprecipitation (IP) assays, western blotting, and real-time reverse-transcription quantitative polymerase chain reaction (RT-qPCR) were used to elucidate the underlying mechanisms of ADAMTS1. Functional assays, including anoikis resistance assays, invasion assays, and a Zebrafish xenotransplantation model, were conducted to assess the roles of ADAMTS1 in conferring resistance to anoikis in RCC. RESULTS: This study found elevated ADAMTS1 transcripts in RCC tissues that were correlated with a poor prognosis. ADAMTS1 manipulation significantly affected cell anoikis through the mitochondrial pathway in RCC cells. Human receptor tyrosine kinase (RTK) array screening identified that epidermal growth factor receptor (EGFR) activation was responsible for ADAMTS1-induced anoikis resistance and invasion. Further investigations revealed that enzymatically active ADAMTS1-induced versican V1 (VCAN V1) proteolysis led to EGFR transactivation, which in turn, through positive feedback, regulated ADAMTS1. Additionally, ADAMTS1 can form a complex with p53 to influence EGFR signaling. In vivo, VCAN or EGFR knockdown reversed ADAMTS1-induced prometastatic characteristics of RCC. A clinical analysis revealed a positive correlation between ADAMTS1 and VCAN or the EGFR and patients with RCC with high ADAMTS1 and VCAN expression had the worst prognoses. CONCLUSIONS: Our results collectively uncover a novel cyclic axis involving ADAMTS1-VCAN-EGFR, which significantly contributes to RCC invasion and resistance to anoikis, thus presenting a promising therapeutic target for RCC metastasis.


Asunto(s)
Proteína ADAMTS1 , Anoicis , Carcinoma de Células Renales , Receptores ErbB , Neoplasias Renales , Transducción de Señal , Versicanos , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Anoicis/genética , Proteína ADAMTS1/metabolismo , Proteína ADAMTS1/genética , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Animales , Línea Celular Tumoral , Versicanos/metabolismo , Versicanos/genética , Transducción de Señal/genética , Invasividad Neoplásica , Regulación Neoplásica de la Expresión Génica , Pez Cebra , Pronóstico
2.
Zhen Ci Yan Jiu ; 49(8): 787-796, 2024 Aug 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39318307

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture on miR-142-5p and ADAMTS1/PI3K/AKT pathway in rats with ischemic stroke, so as to explore the regulatory mechanism of electroacupuncture on angiogenesis after ischemic stroke. METHODS: This study was divided into two parts. The first part of the experiment:SD rats were randomly divided into sham operation group, model group and electroacupuncture group. There were 20 rats in each group. The middle cerebral artery occlusion (MCAO) rat model was prepared using a modified Longa's method. In the electroacupuncture group, "Shuigou" (GV26) was selected for electroacupuncture intervention (4 Hz/20 Hz) for 30 min each time. The rats in the electroacupuncture group were given electroacupuncture immediately after successful modeling, once a day for 4 times. Hunter score and TTC staining were used to observe the neurological deficits and infarct volumes respectively;HE staining was used to observe the cortical pathological changes;immunohistochemistry was used to determine the changes of cerebral microvascular density. Real-time quantitative PCR and Western blot were used to observe the miR-142-5p expression, mRNA and protein expression levels of ADAMTS1, VEGF, PI3K, AKT, eNOS in ischemic cortex. The second part of the experiment:The rats were randomly divided into electroacupuncture+control group and electroacupuncture+miR-142-5p Antagomir group with 8 rats in each group. MCAO model was established after injection. Electroacupuncture+control group was given 0.9% sodium chloride solution injected into the right ventricle.The rats in the electroacupuncture+miR-142-5p Antagomir group were injected with miR-142-5p inhibitor into the right ventricle 30 min before modeling. Rats in electroacupuncture+control group and electroacupuncture+miR-142-5p Antagomir group were all given the same electroacupuncture treatment. Real-time fluorescence quantitative PCR was used to observe the effect of miR-142-5p Antagomir on the expression of miR-142-5p and ADAMTS1 mRNA. The effect of miR-142-5p Antagomir on ADAMTS1 protein was observed by Western blot. RESULTS: In the first part of the experiment, compared with the sham operation group, the Hunter score in the model group was significantly increased (P<0.01);the volume of cerebral infarction in the model group was significantly increased (P<0.01);the degree of brain edema and neuronal necrosis and the density of cerebral microvessels was increased;the cerebral microvascular density was significantly increased (P<0.01);the expression levels of miR-142-5p and the mRNA expression levels of VEGF, AKT and eNOS were significantly decreased (P<0.01, P<0.05), and the protein expression levels of VEGF, p-AKT and eNOS were significantly down-regulated (P<0.01), while the mRNA expression levels of ADAMTS1 and PI3K, and the protein expression levels of ADAMTS1 and p-PI3K were all up-regulated (P<0.01, P<0.05) in the model group. Compared with the model group, after intervention, the Hunter score in the electroacupuncture group was decreased (P<0.01), the volume of cerebral infarction was significantly decreased (P<0.01);the degree of brain edema and neuronal necrosis were alleviated;the cerebral microvascular density was significantly increased (P<0.01);the expression of miR-142-5p and the mRNA expression of VEGF, PI3K, AKT and eNOS were increased (P<0.01), the protein expressions of VEGF, p-PI3K, p-AKT and eNOS were increased (P<0.01, P<0.05), while the mRNA and protein expression of ADAMTS1 were decreased (P<0.05, P<0.01). After injection of miR-142-5p inhibitor, compared with electroacupuncture+control group, the expression of miR-142-5p in electroacupuncture+miR-142-5p Antagomir group was decreased(P<0.05), while the mRNA and protein expression of ADAMTS1 were increased (P<0.01, P<0.05). CONCLUSIONS: Electroacupuncture at GV26 can improve the neurological damage of ischemic stroke rats, reduce the volume of cerebral infarction and promote angiogenesis. The mechanism may be associated with the function of electroacupuncture in promoting the expression of miR-142-5p, so as to inhibit the expression of its target gene ADAMTS1, mediate the up-regulation of VEGF expression, activate PI3K/AKT pathway, promote the release of eNOS, and participate in promoting angiogenesis in ischemic stroke rats.


Asunto(s)
Proteína ADAMTS1 , Electroacupuntura , MicroARNs , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Accidente Cerebrovascular , Animales , Ratas , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Masculino , Proteína ADAMTS1/genética , Proteína ADAMTS1/metabolismo , Humanos , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Transducción de Señal , Neovascularización Fisiológica/genética , Angiogénesis
3.
Exp Eye Res ; 247: 110026, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39122105

RESUMEN

Scleral hypoxia is considered a trigger in scleral remodeling-induced myopia. Identifying differentially expressed molecules within the sclera is essential for understanding the mechanism of myopia. We developed a scleral fibroblast hypoxia model and conducted RNA sequencing and bioinformatic analysis. RNA interference technology was then applied to knock down targeted genes with upregulated expression, followed by an analysis of COLLAGEN I protein level. Microarray data analysis showed that the expression of Adamts1 and Adamts5 were upregulated in fibroblasts under hypoxia (t-test, p < 0.05). Western blot analysis confirmed increased protein levels of ADAMTS1 and ADAMTS5, and a concurrent decrease in COLLAGEN I in hypoxic fibroblasts. The knockdown of either Adamts1 or Adamts5 in scleral fibroblasts under hypoxia resulted in an upregulation of COLLAGEN I. Moreover, a form-deprivation myopia (FDM) mouse model was established for validation. The sclera tissue from FDM mice exhibited increased levels of ADAMTS1 and ADAMTS5 protein and a decrease in COLLAGEN I, compared to controls. The study suggests that Adamts1 and Adamts5 may be involved in scleral remodeling induced by hypoxia and the development of myopia.


Asunto(s)
Proteína ADAMTS1 , Proteína ADAMTS5 , Western Blotting , Modelos Animales de Enfermedad , Fibroblastos , Ratones Endogámicos C57BL , Miopía , Esclerótica , Animales , Proteína ADAMTS1/metabolismo , Proteína ADAMTS1/genética , Esclerótica/metabolismo , Esclerótica/patología , Ratones , Miopía/metabolismo , Miopía/genética , Miopía/patología , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Células Cultivadas , Hipoxia/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Masculino , Regulación de la Expresión Génica
4.
Matrix Biol ; 131: 1-16, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38750698

RESUMEN

Extracellular matrix remodeling mechanisms are understudied in cardiac development and congenital heart defects. We show that matrix-degrading metalloproteases ADAMTS1 and ADAMTS5, are extensively co-expressed during mouse cardiac development. The mouse mutants of each gene have mild cardiac anomalies, however, their combined genetic inactivation to elicit cooperative roles is precluded by tight gene linkage. Therefore, we coupled Adamts1 inactivation with pharmacologic ADAMTS5 blockade to uncover stage-specific cooperative roles and investigated their potential substrates in mouse cardiac development. ADAMTS5 blockade was achieved in Adamts1 null mouse embryos using an activity-blocking monoclonal antibody during distinct developmental windows spanning myocardial compaction or cardiac septation and outflow tract rotation. Synchrotron imaging, RNA in situ hybridization, immunofluorescence microscopy and electron microscopy were used to determine the impact on cardiac development and compared to Gpc6 and ADAMTS-cleavage resistant versican mutants. Mass spectrometry-based N-terminomics was used to seek relevant substrates. Combined inactivation of ADAMTS1 and ADAMTS5 prior to 12.5 days of gestation led to dramatic accumulation of versican-rich cardiac jelly and inhibited formation of compact and trabecular myocardium, which was also observed in mice with ADAMTS cleavage-resistant versican. Combined inactivation after 12.5 days impaired outflow tract development and ventricular septal closure, generating a tetralogy of Fallot-like defect. N-terminomics of combined ADAMTS knockout and control hearts identified a cleaved glypican-6 peptide only in the controls. ADAMTS1 and ADAMTS5 expression in cells was associated with specific glypican-6 cleavages. Paradoxically, combined ADAMTS1 and ADAMTS5 inactivation reduced cardiac glypican-6 and outflow tract Gpc6 transcription. Notably, Gpc6-/- hearts demonstrated similar rotational defects as combined ADAMTS inactivated hearts and both had reduced hedgehog signaling. Thus, versican proteolysis in cardiac jelly at the canonical Glu441-Ala442 site is cooperatively mediated by ADAMTS1 and ADAMTS5 and required for proper ventricular cardiomyogenesis, whereas, reduced glypican-6 after combined ADAMTS inactivation impairs hedgehog signaling, leading to outflow tract malrotation.


Asunto(s)
Proteína ADAMTS1 , Proteína ADAMTS5 , Glipicanos , Corazón , Proteolisis , Versicanos , Animales , Ratones , Versicanos/metabolismo , Versicanos/genética , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Proteína ADAMTS1/metabolismo , Proteína ADAMTS1/genética , Glipicanos/metabolismo , Glipicanos/genética , Corazón/crecimiento & desarrollo , Ratones Noqueados , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología
5.
Exp Cell Res ; 433(2): 113852, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37951335

RESUMEN

In the study of tumorigenesis, the involvement of molecules within the extracellular matrix (ECM) is crucial. ADAMTSs (A Disintegrin and Metalloproteinase with Thrombospondin motifs), a group of secreted proteases known for their role in ECM remodeling, were primarily considered to be extracellular proteases. However, our research specifically detected ADAMTS-1, a member of this family, predominantly within the nucleus of mammary cells. Our main objective was to understand the mechanism of ADAMTS-1 translocation to the nucleus and its functional significance in this cellular compartment. Our investigation uncovered that nuclear ADAMTS-1 was present in cells exhibiting an epithelial phenotype, while cells of mesenchymal origin contained the protease in the cytoplasm. Moreover, disruption of ADAMTS-1 secretion, induced by Monensin treatment, resulted in its accumulation in the cytoplasm. Notably, our research indicated that alterations in the secretory pathways could influence the protease's compartmentalization. Additionally, experiments with conditioned medium from cells containing nuclear ADAMTS-1 demonstrated its internalization into the nucleus by HT-1080 cells and fibroblasts. Furthermore, heightened levels of ADAMTS-1 within the ECM reduced the migratory potential of mesenchymal cells. This highlights the potential significance of nuclear ADAMTS-1 as a critical component within the tumor microenvironment due to its functional activity in this specific cellular compartment.


Asunto(s)
Proteína ADAMTS1 , Movimiento Celular , Núcleo Celular , Matriz Extracelular , Trombospondinas , Humanos , Proteína ADAMTS1/genética , Proteína ADAMTS1/metabolismo , Carcinogénesis/metabolismo , Endopeptidasas/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Trombospondinas/metabolismo , Microambiente Tumoral , Núcleo Celular/metabolismo
6.
Aging (Albany NY) ; 15(6): 2097-2114, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36947712

RESUMEN

Non-small cell lung cancer (NSCLC) accounts for approximately 80% of all lung cancers. Identifying key molecular targets related to the initiation, development, and metastasis of lung cancer is important for its diagnosis and target therapy. The ADAMTS families of multidomain extracellular protease enzymes have been reported to be involved in many physiological processes. In this study, we found that ADAMTS1 was highly expressed in NSCLC tissues, which promoted cell proliferation, migration, invasion, and epithelial to mesenchymal transition (EMT) of NSCLC cells. In the NSCLC tumor metastasis model involving nude mice, overexpression of ADAMTS1 promoted EMT and lung metastasis of tumor cells. Moreover, ADAMTS1 positively regulated TGF-ß expression, and TGF-ß was highly expressed in NSCLC tumor tissues. si-TGF-ß or inhibition of TGF-ß expression through the short peptide KTFR on ADAMTS1 protein could reverse the oncogenic effects of ADAMTS1 on lung cancer cells. Taken together, ADAMTS1 functioned as an oncogene in NSCLC cells by promoting TGF-ß expression, indicating that ADAMTS1 has important regulatory roles in the progression of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Transición Epitelial-Mesenquimal/genética , Factor de Crecimiento Transformador beta/metabolismo , Ratones Desnudos , Proteína ADAMTS1/genética , Proteína ADAMTS1/metabolismo , MicroARNs/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
7.
J Biol Chem ; 299(4): 103048, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813235

RESUMEN

A disintegrin-like and metalloproteinase with thrombospondin type 1 motifs (ADAMTS1) is a protease involved in fertilization, cancer, cardiovascular development, and thoracic aneurysms. Proteoglycans such as versican and aggrecan have been identified as ADAMTS1 substrates, and Adamts1 ablation in mice typically results in versican accumulation; however, previous qualitative studies have suggested that ADAMTS1 proteoglycanase activity is weaker than that of other family members such as ADAMTS4 and ADAMTS5. Here, we investigated the functional determinants of ADAMTS1 proteoglycanase activity. We found that ADAMTS1 versicanase activity is approximately 1000-fold lower than ADAMTS5 and 50-fold lower than ADAMTS4 with a kinetic constant (kcat/Km) of 3.6 × 103 M-1 s-1 against full-length versican. Studies on domain-deletion variants identified the spacer and cysteine-rich domains as major determinants of ADAMTS1 versicanase activity. Additionally, we confirmed that these C-terminal domains are involved in the proteolysis of aggrecan as well as biglycan, a small leucine-rich proteoglycan. Glutamine scanning mutagenesis of exposed positively charged residues on the spacer domain loops and loop substitution with ADAMTS4 identified clusters of substrate-binding residues (exosites) in ß3-ß4 (R756Q/R759Q/R762Q), ß9-ß10 (residues 828-835), and ß6-ß7 (K795Q) loops. This study provides a mechanistic foundation for understanding the interactions between ADAMTS1 and its proteoglycan substrates and paves the way for development of selective exosite modulators of ADAMTS1 proteoglycanase activity.


Asunto(s)
Proteína ADAMTS1 , Animales , Ratones , Proteína ADAMTS1/química , Proteína ADAMTS1/metabolismo , Proteína ADAMTS4/metabolismo , Proteína ADAMTS5/metabolismo , Agrecanos/metabolismo , Versicanos/metabolismo
8.
Int J Clin Oncol ; 28(1): 52-68, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36371587

RESUMEN

BACKGROUND: Glioma is the most common intracranial malignancy in adults with a high degree of malignancy and poor prognosis, which is largely attributed to the existence of glioma stem cells (GSCs). Previous evidence indicated that the matrix metalloproteinase ADAMTS1 was implicated in the process of tumor invasion, but the involvement of ADAMTS1 in glioma malignant invasion remains poorly understood. METHODS: The expression and prognosis values of ADAMTS1 were investigated in patients with glioma based on ONCOMINE and GEPIA databases. ADAMTS1 expression of different malignancy grade tissues was determined by immunohistochemistry. The effects of ADAMTS1 on cell proliferation and invasion were determined by clone formation assay and Transwell migration assay. The animal experiment was performed in an intracranial orthotopic xenograft model by knockout of ADAMTS1. Stemness properties and Notch1-SOX2 pathway were examined in stable ADAMTS1 knockdown GSCs. RESULTS: The expression levels of ADAMTS1 were significantly higher in glioma tissues and significantly correlated with the grade of malignancy and prognosis of glioma. Elevated ADAMTS1 expression was associated with SOX2, N-cadherin and the resistance of chemoradiotherapy of glioma patients. ADAMTS1 knockout suppressed the intracranial orthotopic xenograft growth and prolonged the survival of xenograft mice in vivo. Mechanistically, we found a blockade of the migration and invasiveness of GSCs and the expression levels of Notch1 and SOX2 in absence of ADAMTS1. CONCLUSION: As a biomarker for prediction of prognosis, ADAMTS1 may affect the invasive phenotype of GSCs by regulating Notch1-SOX2 signaling pathway, thereby promoting the invasive growth of glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Ratones , Animales , Pronóstico , Línea Celular Tumoral , Glioma/patología , Neoplasias Encefálicas/patología , Transducción de Señal , Proliferación Celular/genética , Células Madre Neoplásicas/patología , Regulación Neoplásica de la Expresión Génica , Proteína ADAMTS1/genética , Proteína ADAMTS1/metabolismo
9.
Eur J Hum Genet ; 30(1): 22-33, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34135477

RESUMEN

Hearing impairment (HI) is a common disorder of sensorineural function with a highly heterogeneous genetic background. Although substantial progress has been made in the understanding of the genetic etiology of hereditary HI, many genes implicated in HI remain undiscovered. Via exome and Sanger sequencing of DNA samples obtained from consanguineous Pakistani families that segregate profound prelingual sensorineural HI, we identified rare homozygous missense variants in four genes (ADAMTS1, MPDZ, MVD, and SEZ6) that are likely the underlying cause of HI. Linkage analysis provided statistical evidence that these variants are associated with autosomal recessive nonsyndromic HI. In silico analysis of the mutant proteins encoded by these genes predicted structural, conformational or interaction changes. RNAseq data analysis revealed expression of these genes in the sensory epithelium of the mouse inner ear during embryonic, postnatal, and adult stages. Immunohistochemistry of the mouse cochlear tissue, further confirmed the expression of ADAMTS1, SEZ6, and MPDZ in the neurosensory hair cells of the organ of Corti, while MVD expression was more prominent in the spiral ganglion cells. Overall, supported by in silico mutant protein analysis, animal models, linkage analysis, and spatiotemporal expression profiling in the mouse inner ear, we propose four new candidate genes for HI and expand our understanding of the etiology of HI.


Asunto(s)
Proteína ADAMTS1/genética , Carboxiliasas/genética , Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Proteína ADAMTS1/química , Proteína ADAMTS1/metabolismo , Animales , Carboxiliasas/química , Carboxiliasas/metabolismo , Femenino , Genes Recesivos , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva Sensorineural/patología , Humanos , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Mutación , Linaje , Dominios Proteicos
10.
Eur J Pharmacol ; 914: 174681, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34871556

RESUMEN

Secreted protein acidic and rich in cysteine (SPARC), an extracellular matrix (ECM) protein, was recently shown to induce collagen deposition through the production of a disintegrin and metalloproteinase with thrombospondin type 1 motif (ADAMTS1) in the aging heart. ADAMTS1 regulates ECM turnover by degrading ECM components, and its excessive activation contributes to various pathological states, including fibrosis. The present study investigated the pathophysiological regulation and role of SPARC and ADAMTS1 in renal fibrosis using uninephrectomized rats treated with deoxycorticosterone acetate (DOCA, 40 mg/kg/week, subcutaneously) and salt (1% in drinking water). The administration of DOCA and salt gradually and significantly elevated systolic blood pressure during the 3-week treatment period, induced proteinuria, decreased creatinine clearance, and increased NADPH oxidase-derived superoxide production, malondialdehyde concentrations, and monocyte chemoattractant protein-1 and osteopontin expression in the kidneys. Glomerulosclerosis, fibrillar collagen deposition, and transforming growth factor-ß expression increased in a time-dependent manner, and SPARC and ADAMTS1 expression showed a similar pattern to these changes. The angiotensin II type-1 receptor blocker losartan suppressed the overexpression of SPARC and ADAMTS1, and an in vitro exposure to angiotensin II induced the production of both SPARC and ADAMTS1 in renal fibroblast NRK-49F cells. Knockdown of the SPARC gene with small interfering RNA reduced all forms (the 110-kDa latent and 87- and 65-kDa bioactive forms) of ADAMTS1 expression as well as collagen production. These results suggest that SPARC is induced by the renin-angiotensin system and may be a fibrogenic factor, at least in part, by producing ADAMTS1 in hypertensive renal disease.


Asunto(s)
Proteína ADAMTS1/metabolismo , Colágenos Fibrilares , Riñón , Losartán/farmacología , Osteonectina/metabolismo , Sistema Renina-Angiotensina , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Acetato de Desoxicorticosterona/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Colágenos Fibrilares/biosíntesis , Colágenos Fibrilares/metabolismo , Fibrosis/metabolismo , Glomeruloesclerosis Focal y Segmentaria/etiología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/fisiopatología , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Riñón/metabolismo , Riñón/patología , Mineralocorticoides/farmacología , Ratas , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología , Cloruro de Sodio Dietético/administración & dosificación
11.
Turk Neurosurg ; 31(5): 731-739, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34169995

RESUMEN

AIM: To analyze the expression of ADAMTS-1, NF-?B, and STAT3 in human pleomorphic xanthoastrocytoma specimens, and their correlation with glioma advancement. MATERIAL AND METHODS: Pleomorphic xanthoastrocytoma tumor cell lines were treated with low and high doses of cytokines at 24 and 48 hours (h) to replicate the inflammatory environment. The effects of IL-1 were assessed with the scratch wound-healing assay, and the expression levels of ADAMTS-1, NF-?B, and STAT3 of the groups were determined by western blot analysis. RESULTS: Cytokine treatment significantly increased the migration of PXA glioma cells after scratching at 24h and 48h time points. Similarly, 10 and 30 ng/mL IL-1 induced 1.86 and 1.94 fold increases, respectively, in ADAMTS-1 expression after 24h, and 3 and 3.27 fold increases, respectively, after 48h, compared with the non-treatment control group.10 and 30 ng/mL IL-1 doses caused 2.5 and 2.6 fold increase, in NF-?B protein levels after 24h, and 3.16 and 3.41 fold increases after 48h, compared with the non-treatment group. The protein levels of STAT3 after 24h were 2.62 and 2.43 fold higher, and 3.78 and 3.84 fold higher after 48 hours, with 10 and 30 ng/mL IL-1, compared with the non-treatment group. CONCLUSION: The proliferation and progression of glioma cells were proportional to the increased expression levels of ADAMTS-1, NF-?B, and STAT3. Our findings indicate that the proteolytic function of ADAMTS-1 may be associated with the malignant transformation of low-grade gliomas.


Asunto(s)
Proteína ADAMTS1/metabolismo , Astrocitoma , Glioma , Transformación Celular Neoplásica , Citocinas , Humanos
12.
Life Sci ; 281: 119756, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34175316

RESUMEN

Duchenne Muscular Dystrophy (DMD) is caused by mutations in the dystrophin gene, accompanied by aberrant extracellular matrix synthesis and muscle damage. ADAMTS1 metalloproteinase was reported increased in dystrophin-deficient mdx mouse. The aim of this study was to explore the role of ADAMTS1 in muscle function, fibrosis and damage, and respiratory function of mdx mice. 102 DMD patients and their mothers were included in this study. Multiplex ligation dependent probe amplification (MLPA) assay and Next-generation sequencing (NGS) were adopted to do genetic diagnosis. Dystrophin-deficient mdx mice were treated with anti-ADAMTS1 antibody (anti-ADAMTS1) for three weeks. The results showed that ADAMTS1 was increased in gastrocnemius muscle of mdx mice and serum of DMD patients. Anti-ADAMTS1 treatment increased Versican transcription but suppressed versican protein expression. Besides, we found anti-ADAMTS1 improved muscle strength, diaphragm and extensor digitorum longus muscles functions in mdx mice. Meanwhile, muscle fibrosis and damage were attenuated in anti-ADAMTS1 treated dystrophic mice. In summary, anti-ADAMTS1 antibody relieved muscle dysfunction and fibrosis in dystrophic mice. It is suggested that ADAMTS1 is a potential target for developing new biological therapies for DMD.


Asunto(s)
Proteína ADAMTS1/antagonistas & inhibidores , Anticuerpos Monoclonales/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/terapia , Proteína ADAMTS1/genética , Proteína ADAMTS1/inmunología , Proteína ADAMTS1/metabolismo , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Fibrosis/terapia , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Proteínas Musculares/metabolismo , Fuerza Muscular/inmunología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/genética , ARN Mensajero/metabolismo , Versicanos/inmunología
13.
Gen Comp Endocrinol ; 311: 113835, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34181931

RESUMEN

Prostaglandins (PGs) are a class of fatty-acid derived hormones that are essential in ovulation of teleosts, but their exact role remains unknown. One putative target of PGs in ovulation is regulation of the expression of members of the A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) family, which are implicated in follicular rupture. This study investigated the regulation of ADAMTS, other proteases, and their inhibitors in response to treatment with PGE2 or PGF2α. Four members of the ADAMTS family, ADAMTS1, ADAMTS5, ADAMTS9, and ADAMTS16 were shown to be expressed in the ovary of zebrafish, but only adamts1 was upregulated in full-grown follicles following treatment with PGE2. Inhibitors of the PG receptors EP1 and EP2 had no effect on PGE2-stimulated adamts1 expression, while treatment of full-grown follicles with both PGE2 and GW627368x, an inhibitor of EP4 function, prevented the PGE2-induced increase in adamts1 expression. Treatment of full-grown follicles with the maturation-inducing hormone 17α,20ß-dihydroxy-4-pregnen-3-one (17,20ß-P) in vitro had no effect on the expression of adamts1 mRNA. These findings suggest that expression of ADAMTS1 in zebrafish ovarian follicles is regulated by the prostaglandin PGE2 via the EP4 series prostaglandin receptor.


Asunto(s)
Ovario , Pez Cebra , Proteína ADAMTS1/metabolismo , Animales , Femenino , Folículo Ovárico/metabolismo , Ovulación/fisiología , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Pez Cebra/genética
14.
JCI Insight ; 6(9)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33986190

RESUMEN

White adipose tissue not only serves as a reservoir for energy storage but also secretes a variety of hormonal signals and modulates systemic metabolism. A substantial amount of adipose tissue develops in early postnatal life, providing exceptional access to the formation of this important tissue. Although a number of factors have been identified that can modulate the differentiation of progenitor cells into mature adipocytes in cell-autonomous assays, it remains unclear which are connected to physiological extracellular inputs and are most relevant to tissue formation in vivo. Here, we elucidate that mature adipocytes themselves signal to adipose depot-resident progenitor cells to direct depot formation in early postnatal life and gate adipogenesis when the tissue matures. Our studies revealed that as the adipose depot matures, a signal generated in mature adipocytes is produced, converges on progenitor cells to regulate the cytoskeletal protein MYH9, and attenuates the rate of adipogenesis in vivo.


Asunto(s)
Proteína ADAMTS1/genética , Adipocitos/metabolismo , Adipogénesis/genética , Tejido Adiposo Blanco/metabolismo , Homeostasis/genética , Cadenas Pesadas de Miosina/genética , Células Madre/metabolismo , Proteína ADAMTS1/metabolismo , Tejido Adiposo/metabolismo , Animales , Masculino , Ratones , Ratones Transgénicos , Cadenas Pesadas de Miosina/metabolismo
15.
J Mol Neurosci ; 71(1): 28-41, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32567007

RESUMEN

This study was designed to test whether the Cronobacter sakazakii infection-impaired contextual learning and memory are mediated by the activation of the complement system; subsequent activation of inflammatory signals leads to alternations in serotonin transporter (SERT). To test this, rat pups (postnatal day, PND 15) were treated with either C. sakazakii (107 CFU) or Escherichia coli OP50 (107 CFU) or Luria bertani broth (100 µL) through oral gavage and allowed to stay with their mothers until PND 24. Experimental groups' rats were allowed to explore (PNDs 31-35) and then trained in contextual learning task (PNDs 36-43). Five days after training, individuals were tested for memory retention (PNDs 49-56). Observed behavioural data showed that C. sakazakii infection impaired contextual-associative learning and memory. Furthermore, our analysis showed that C. sakazakii infection activates complement system complement anaphylatoxin (C5a) (a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS1)) and mitogen-activated protein kinase kinase1 (MEKK1). Subsequently, MEKK1 induces pro-inflammatory signals possibly through apoptosis signal-regulating kinase-1 (ASK-1), c-Jun N-terminal kinase (JNK1/3) and protein kinase B gamma (AKT-3). In parallel, activated nuclear factor kappa-light-chain-enhancer B cells (NF-κB) induces interleukin-6 (IL-6) and IFNα-1, which may alter the level of serotonin transporter (SERT). Observed results suggest that impaired contextual learning and memory could be correlated with C5a-mediated NF-κß and ASK1 pathways.


Asunto(s)
Aprendizaje por Asociación/fisiología , Activación de Complemento , Complemento C5a/fisiología , Cronobacter sakazakii/patogenicidad , Infecciones por Enterobacteriaceae/complicaciones , Discapacidades para el Aprendizaje/etiología , MAP Quinasa Quinasa Quinasa 5/fisiología , Trastornos de la Memoria/etiología , FN-kappa B/fisiología , Proteínas del Tejido Nervioso/fisiología , Serotonina/metabolismo , Transducción de Señal/fisiología , Proteína ADAMTS1/metabolismo , Animales , Animales Lactantes , Corteza Cerebral/metabolismo , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Escherichia coli/complicaciones , Infecciones por Escherichia coli/inmunología , Regulación de la Expresión Génica/inmunología , Inflamación , Interferón-alfa/metabolismo , Interleucina-6/metabolismo , Quinasas Janus/metabolismo , Discapacidades para el Aprendizaje/inmunología , Discapacidades para el Aprendizaje/microbiología , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Trastornos de la Memoria/inmunología , Trastornos de la Memoria/microbiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
16.
Cell Signal ; 77: 109827, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33161094

RESUMEN

ADAMTSs (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) are secreted proteases dependent on Zn2+/Ca2+, involved in physiological and pathological processes and are part of the extracellular matrix (ECM). Here, we investigated if ADAMTS-1 is required for invasion and migration of cells and the possible mechanism involved. In order to test ADAMTS-1's role in ovarian cancer cells (CHO, NIH-OVCAR-3 and ES2) and NIH-3 T3 fibroblasts, we modified the levels of ADAMTS-1 and compared those to parental. Cells exposed to ADAMTS-1-enriched medium exhibited a decline in cell migration and invasion when compared to controls with or without a functional metalloproteinase domain. The opposite was observed in cells when ADAMTS-1 was deleted via the CRISPR/Cas9 approach. The decline in ADAMTS-1 levels enhanced the phosphorylated form of Src and FAK. We also evaluated the activities of cellular Rho GTPases from cell lysates using the GLISA® kit. The Cdc42-GTP signal was significantly increased in the CRISPR ADAMTS-1 ES-2 cells. By a Förster resonance energy transfer (FRET) biosensor for Cdc42 activity in ES-2 cells we demonstrated that Cdc42 activity was strongly polarized at the leading edge of migrating cells with ADAMTS-1 deletion, compared to the wild type cells. As conclusion, ADAMTS-1 inhibits proliferation, polarization and migration.


Asunto(s)
Proteína ADAMTS1/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína ADAMTS1/deficiencia , Proteína ADAMTS1/genética , Sistemas CRISPR-Cas/genética , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Femenino , Quinasa 1 de Adhesión Focal/metabolismo , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Fosforilación , ARN Guía de Kinetoplastida/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo
17.
Elife ; 92020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32909945

RESUMEN

The umbilical artery lumen closes rapidly at birth, preventing neonatal blood loss, whereas the umbilical vein remains patent longer. Here, analysis of umbilical cords from humans and other mammals identified differential arterial-venous proteoglycan dynamics as a determinant of these contrasting vascular responses. The umbilical artery, but not the vein, has an inner layer enriched in the hydrated proteoglycan aggrecan, external to which lie contraction-primed smooth muscle cells (SMC). At birth, SMC contraction drives inner layer buckling and centripetal displacement to occlude the arterial lumen, a mechanism revealed by biomechanical observations and confirmed by computational analyses. This vascular dimorphism arises from spatially regulated proteoglycan expression and breakdown. Mice lacking aggrecan or the metalloprotease ADAMTS1, which degrades proteoglycans, demonstrate their opposing roles in umbilical vascular dimorphism, including effects on SMC differentiation. Umbilical vessel dimorphism is conserved in mammals, suggesting that differential proteoglycan dynamics and inner layer buckling were positively selected during evolution.


Asunto(s)
Agrecanos/metabolismo , Miocitos del Músculo Liso , Arterias Umbilicales , Proteína ADAMTS1/metabolismo , Animales , Diferenciación Celular/fisiología , Femenino , Humanos , Ratones Transgénicos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología , Parto/fisiología , Embarazo , Arterias Umbilicales/citología , Arterias Umbilicales/metabolismo , Arterias Umbilicales/fisiología
18.
J Exp Med ; 217(10)2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32648916

RESUMEN

Cerebral cavernous malformations (CCMs) form following loss of the CCM protein complex in brain endothelial cells due to increased endothelial MEKK3 signaling and KLF2/4 transcription factor expression, but the downstream events that drive lesion formation remain undefined. Recent studies have revealed that CCM lesions expand by incorporating neighboring wild-type endothelial cells, indicative of a cell nonautonomous mechanism. Here we find that endothelial loss of ADAMTS5 reduced CCM formation in the neonatal mouse model. Conversely, endothelial gain of ADAMTS5 conferred early lesion genesis in the absence of increased KLF2/4 expression and synergized with KRIT1 loss of function to create large malformations. Lowering versican expression reduced CCM burden, indicating that versican is the relevant ADAMTS5 substrate and that lesion formation requires proteolysis but not loss of this extracellular matrix protein. These findings identify endothelial secretion of ADAMTS5 and cleavage of versican as downstream mechanisms of CCM pathogenesis and provide a basis for the participation of wild-type endothelial cells in lesion formation.


Asunto(s)
Proteína ADAMTS5/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/etiología , Versicanos/metabolismo , Proteína ADAMTS1/metabolismo , Proteína ADAMTS4/metabolismo , Animales , Modelos Animales de Enfermedad , Endotelio Vascular/metabolismo , Femenino , Estudios de Asociación Genética , Hemangioma Cavernoso del Sistema Nervioso Central/embriología , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Proteolisis , Sustancia Blanca/metabolismo
19.
Vet Med Sci ; 6(4): 775-787, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32529744

RESUMEN

Prolificacy of most local goat breeds in China is low. Jining Grey goat is one of the most prolific goat breeds in China, it is an important goat breed for the rural economy. ASMT (acetylserotonin O-methyltransferase) and ADAMTS1 (ADAM metallopeptidase with thrombospondin type 1 motif) are essential for animal reproduction. Single nucleotide polymorphisms (SNPs) of ASMT and ADAMTS1 genes in the highly prolific breed (Jining Grey goats), medium prolific breed (Boer goats and Guizhou White goats) and low prolific breeds (Angora goats, Liaoning Cashmere goats and Inner Mongolia Cashmere goats) were detected by polymerase chain reaction-restriction fragment length polymorphism and sequencing. Two SNPs (g.158122T>C, g.158700G>A) of ASMT gene and two SNPs (g.7979798A>G, g.7979477C>T) of ADAMTS1 gene were identified. For g.158122T>C of ASMT gene, further analysis revealed that genotype TC or CC had 0.66 (p < 0.05) or 0.75 (p < 0.05) kids more than those with genotype TT in Jining Grey goats. No significant difference (p > 0.05) was found in litter size between TC and CC genotypes. The SNP (g.158122T>C) caused a p.Tyr298His change and this SNP mutation resulted in changes in protein binding sites and macromolecule-binding sites. The improvement in reproductive performance may be due to changes in the structure of ASMT protein. For g.7979477C>T of ADAMTS1 gene, Jining Grey does with genotype CT or TT had 0.82 (p < 0.05) or 0.86 (p < 0.05) more kids than those with genotype CC. No significant difference (p > 0.05) was found in litter size between CT or TT genotypes. These results preliminarily indicated that C allele (g.158122T>C) of ASMT gene and T allele (g.7979477C>T) of ADAMTS1 gene are potential molecular markers which could improve litter size of Jining Grey goats and be used in goat breeding.


Asunto(s)
Proteína ADAMTS1/genética , Acetilserotonina O-Metiltransferasa/genética , Cabras/fisiología , Tamaño de la Camada/genética , Polimorfismo de Nucleótido Simple , Proteína ADAMTS1/metabolismo , Acetilserotonina O-Metiltransferasa/metabolismo , Animales , Femenino , Cabras/genética , Reacción en Cadena de la Polimerasa/veterinaria , Polimorfismo de Longitud del Fragmento de Restricción
20.
J Pineal Res ; 69(2): e12668, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32408377

RESUMEN

A disintegrin and metalloprotease with thrombospondin motifs (ADAMTS) family are widely implicated in tissue remodeling events manifested in cancer development. ADAMTS1, the most fully characterized ADAMTS, plays conflicting roles in different cancer types; however, the role of ADAMTS1 in renal cell carcinoma (RCC) remains unclear. Herein, we found that ADAMTS1 is highly expressed in RCC tissues compared to normal renal tissues, and its expression was correlated with an advanced stage and a poor prognosis of RCC patients. In vitro, we observed higher expression of ADAMTS1 in metastatic (m)RCC cells compared to primary cells, and manipulation of ADAMTS1 expression affected cell invasion and clonogenicity. Results from protease array showed that ADAMTS1 is modulated by melatonin through mechanisms independent of the MT1 receptor in mRCC cells, and overexpression of ADAMTS1 relieved the invasion/clonogenicity and growth/metastasis inhibition imposed by melatonin treatment in vitro and in an orthotopic xenograft model. The human microRNA (miR) OneArray showed that miR-181d and miR-let-7f were induced by melatonin and, respectively, targeted the 3'-UTR and non-3'-UTR of ADAMTS1 to suppress its expression and mRCC invasive ability. Clinically, RCC patients with high levels of miR-181d or miR-let-7f and a low level of ADAMTS1 had the most favorable prognoses. In addition, ubiquitin/proteasome-mediated degradation of ADAMTS1 can also be triggered by melatonin. Together, our study indicates that ADAMTS1 may be a useful biomarker for predicting RCC progression. The novel convergence between melatonin and ADAMTS1 post-transcriptional and post-translational regulation provides new insights into the role of melatonin-induced molecular regulation in suppressing RCC progression.


Asunto(s)
Proteína ADAMTS1/metabolismo , Carcinogénesis/metabolismo , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , Melatonina/farmacología , Proteínas de Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteína ADAMTS1/genética , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA