Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 380(6651): 1287-1292, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37228182

RESUMEN

The barbed and pointed ends of the actin filament (F-actin) are the sites of growth and shrinkage and the targets of capping proteins that block subunit exchange, including CapZ at the barbed end and tropomodulin at the pointed end. We describe cryo-electron microscopy structures of the free and capped ends of F-actin. Terminal subunits at the free barbed end adopt a "flat" F-actin conformation. CapZ binds with minor changes to the barbed end but with major changes to itself. By contrast, subunits at the free pointed end adopt a "twisted" monomeric actin (G-actin) conformation. Tropomodulin binding forces the second subunit into an F-actin conformation. The structures reveal how the ends differ from the middle in F-actin and how these differences control subunit addition, dissociation, capping, and interactions with end-binding proteins.


Asunto(s)
Actinas , Proteína CapZ , Citoesqueleto de Actina/química , Actinas/química , Microscopía por Crioelectrón , Tropomodulina/química , Proteína CapZ/química , Unión Proteica , Imagen Individual de Molécula , Conformación Proteica
2.
Biochemistry ; 59(11): 1202-1215, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32133840

RESUMEN

The heterodimeric actin capping protein (CP) is regulated by a set of proteins that contain CP-interacting (CPI) motifs. Outside of the CPI motif, the sequences of these proteins are unrelated and distinct. The CPI motif and surrounding sequences are conserved within a given protein family, when compared to those of other CPI-motif protein families. Using biochemical assays with purified proteins, we compared the ability of CPI-motif-containing peptides from different protein families (a) to bind to CP, (b) to allosterically inhibit barbed-end capping by CP, and (c) to allosterically inhibit interaction of CP with V-1, another regulator of CP. We found large differences in potency among the different CPI-motif-containing peptides, and the different functional assays showed different orders of potency. These biochemical differences among the CPI-motif peptides presumably reflect interactions between CP and CPI-motif peptides involving amino acid residues that are conserved but are not part of the strictly defined consensus, as it was originally identified in comparisons of sequences of CPI motifs across all protein families [Hernandez-Valladares, M., et al. (2010) Structural characterization of a capping protein interaction motif defines a family of actin filament regulators. Nat. Struct. Mol. Biol. 17, 497-503; Bruck, S., et al. (2006) Identification of a Novel Inhibitory Actin-capping Protein Binding Motif in CD2-associated Protein. J. Biol. Chem. 281, 19196-19203]. These biochemical differences may be important for conserved distinct functions of CPI-motif protein families in cells with respect to the regulation of CP activity and actin assembly near membranes.


Asunto(s)
Proteína CapZ/química , Proteína CapZ/metabolismo , Actinas/química , Actinas/metabolismo , Regulación Alostérica , Secuencias de Aminoácidos , Animales , Proteína CapZ/genética , Dimerización , Eucariontes/clasificación , Eucariontes/genética , Eucariontes/metabolismo , Humanos , Cinética , Péptidos/química , Péptidos/metabolismo , Filogenia , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas
3.
J Cell Sci ; 132(4)2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30659118

RESUMEN

The actin cytoskeleton is subjected to dynamic mechanical forces over time and the history of force loading may serve as mechanical preconditioning. While the actin cytoskeleton is known to be mechanosensitive, the mechanisms underlying force regulation of actin dynamics still need to be elucidated. Here, we investigated actin depolymerization under a range of dynamic tensile forces using atomic force microscopy. Mechanical loading by cyclic tensile forces induced significantly enhanced bond lifetimes and different force-loading histories resulted in different dissociation kinetics in G-actin-G-actin and G-actin-F-actin interactions. Actin subunits at the two ends of filaments formed bonds with distinct kinetics under dynamic force, with cyclic mechanical reinforcement more effective at the pointed end compared to that at the barbed end. Our data demonstrate force-history dependent reinforcement in actin-actin bonds and polarity of the actin depolymerization kinetics under cyclic tensile forces. These properties of actin may be important clues to understanding regulatory mechanisms underlying actin-dependent mechanotransduction and mechanosensitive cytoskeletal dynamics.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Actinas/química , Proteínas Aviares/química , Proteína CapZ/química , Mecanotransducción Celular , Imagen Individual de Molécula/métodos , Tropomodulina/química , Citoesqueleto de Actina , Actinas/genética , Actinas/metabolismo , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Proteína CapZ/genética , Proteína CapZ/metabolismo , Pollos , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Microscopía de Fuerza Atómica , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imagen Individual de Molécula/instrumentación , Estrés Mecánico , Tropomodulina/genética , Tropomodulina/metabolismo
4.
Cell Signal ; 28(8): 1015-24, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27185186

RESUMEN

The mechanotransduction signaling pathways initiated in heart muscle by increased mechanical loading are known to lead to long-term transcriptional changes and hypertrophy, but the rapid events for adaptation at the sarcomeric level are not fully understood. The goal of this study was to test the hypothesis that actin filament assembly during cardiomyocyte growth is regulated by post-translational modifications (PTMs) of CapZß1. In rapidly hypertrophying neonatal rat ventricular myocytes (NRVMs) stimulated by phenylephrine (PE), two-dimensional gel electrophoresis (2DGE) of CapZß1 revealed a shift toward more negative charge. Consistent with this, mass spectrometry identified CapZß1 phosphorylation on serine-204 and acetylation on lysine-199, two residues which are near the actin binding surface of CapZß1. Ectopic expression of dominant negative PKCɛ (dnPKCɛ) in NRVMs blunted the PE-induced increase in CapZ dynamics, as evidenced by the kinetic constant (Kfrap) of fluorescence recovery after photobleaching (FRAP), and concomitantly reduced phosphorylation and acetylation of CapZß1. Furthermore, inhibition of class I histone deacetylases (HDACs) increased lysine-199 acetylation on CapZß1, which increased Kfrap of CapZ and stimulated actin dynamics. Finally, we show that PE treatment of NRVMs results in decreased binding of HDAC3 to myofibrils, suggesting a signal-dependent mechanism for the regulation of sarcomere-associated CapZß1 acetylation. Taken together, this dual regulation through phosphorylation and acetylation of CapZß1 provides a novel model for the regulation of myofibril growth during cardiac hypertrophy.


Asunto(s)
Proteína CapZ/metabolismo , Cardiomegalia/metabolismo , Miofibrillas/metabolismo , Acetilación/efectos de los fármacos , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Proteína CapZ/química , Cardiomegalia/patología , Tamaño de la Célula/efectos de los fármacos , Ventrículos Cardíacos/patología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miofibrillas/efectos de los fármacos , Fenilefrina/farmacología , Fosforilación/efectos de los fármacos , Proteína Quinasa C-epsilon/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas Sprague-Dawley , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo
5.
Proteins ; 84(7): 948-56, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27028786

RESUMEN

The actin capping protein (CP) binds to actin filaments to block further elongation. The capping activity is inhibited by proteins V-1 and CARMIL interacting with CP via steric and allosteric mechanisms, respectively. The crystal structures of free CP, CP/V-1, and CP/CARMIL complexes suggest that the binding of CARMIL alters the flexibility of CP rather than the overall structure of CP, and this is an allosteric inhibition mechanism. Here, we performed molecular dynamics (MD) simulations of CP in the free form, and in complex with CARMIL or V-1. The resulting trajectories were analyzed exhaustively using Motion Tree, which identifies various rigid-body motions ranging from small local motions to large domain motions. After enumerating all the motions, CP flexibilities with different ligands were characterized by a list of frequencies for 20 dominant rigid-body motions, some of which were not identified in previous studies. The comparative analysis highlights the influence of the binding of the CARMIL peptide to CP flexibility. In free CP and the CP/V-1 complex, domain motions around a large crevice between the N-stalk and the CP-S domain occur frequently. The CARMIL peptide binds the crevice and suppresses the motions effectively. In addition, the binding of the CARMIL peptide enhances and alters local motions around the pocket that participates in V-1 binding. These newly identified motions are likely to suppress the binding of V-1 to CP. The observed changes in CP motion provide insights that describe the mechanism of allosteric regulation by CARMIL through modulating CP flexibility. Proteins 2016; 84:948-956. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas de Capping de la Actina/química , Proteínas de Capping de la Actina/metabolismo , Regulación Alostérica , Animales , Proteína CapZ/química , Proteína CapZ/metabolismo , Pollos , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Mapas de Interacción de Proteínas
6.
Nat Commun ; 6: 8707, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26566078

RESUMEN

Precise control of actin filament length is essential to many cellular processes. Formins processively elongate filaments, whereas capping protein (CP) binds to barbed ends and arrests polymerization. While genetic and biochemical evidence has indicated that these two proteins function antagonistically, the mechanism underlying the antagonism has remained unresolved. Here we use multi-wavelength single-molecule fluorescence microscopy to observe the fully reversible formation of a long-lived 'decision complex' in which a CP dimer and a dimer of the formin mDia1 simultaneously bind the barbed end. Further, mDia1 displaced from the barbed end by CP can randomly slide along the filament and later return to the barbed end to re-form the complex. Quantitative kinetic analysis reveals that the CP-mDia1 antagonism that we observe in vitro occurs through the decision complex. Our observations suggest new molecular mechanisms for the control of actin filament length and for the capture of filament barbed ends in cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína CapZ/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteína CapZ/química , Proteína CapZ/genética , Forminas , Humanos , Cinética , Microscopía Fluorescente , Profilinas/química , Profilinas/genética , Profilinas/metabolismo , Unión Proteica , Multimerización de Proteína
7.
Protein Sci ; 23(9): 1247-61, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24947426

RESUMEN

Calmodulin (CaM) is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells in a calcium-dependent manner. CaM has been proposed to be functionally distinct from the S100 proteins, a related family of eukaryotic calcium-binding proteins. Previously, it was demonstrated that peptides derived from the actin-capping protein, TRTK12, and the tumor-suppressor protein, p53, interact with multiple members of the S100 proteins. To test the specificity of these peptides, they were screened using isothermal titration calorimetry against 16 members of the human S100 protein family, as well as CaM, which served as a negative control. Interestingly, both the TRTK12 and p53 peptides were found to interact with CaM. These interactions were further confirmed by both fluorescence and nuclear magnetic resonance spectroscopies. These peptides have distinct sequences from the known CaM target sequences. The TRTK12 peptide was found to independently interact with both CaM domains and bind with a stoichiometry of 2:1 and dissociations constants Kd,C-term = 2 ± 1 µM and Kd,N-term = 14 ± 1 µM. In contrast, the p53 peptide was found to interact only with the C-terminal domain of CaM, Kd,C-term = 2 ± 1 µM, 25°C. Using NMR spectroscopy, the locations of the peptide binding sites were mapped onto the structure of CaM. The binding sites for both peptides were found to overlap with the binding interface for previously identified targets on both domains of CaM. This study demonstrates the plasticity of CaM in target binding and may suggest a possible overlap in target specificity between CaM and the S100 proteins.


Asunto(s)
Calmodulina/metabolismo , Proteína CapZ/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas S100/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Calmodulina/química , Proteína CapZ/química , Humanos , Modelos Moleculares , Fragmentos de Péptidos/química , Conformación Proteica , Termodinámica , Proteína p53 Supresora de Tumor/química
8.
Biopolymers ; 102(4): 344-58, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24839139

RESUMEN

Protein-protein interactions are part of a large number of signaling networks and potential targets for drug development. However, discovering molecules that can specifically inhibit such interactions is a major challenge. S100B, a calcium-regulated protein, plays a crucial role in the proliferation of melanoma cells through protein-protein interactions. In this article, we report the design and development of a bidentate conformationally constrained peptide against dimeric S100B based on a natural tight-binding peptide, TRTK-12. The helical conformation of the peptide was constrained by the substitution of α-amino isobutyric acid--an amino acid having high helical propensity--in positions which do not interact with S100B. A branched bidentate version of the peptide was bound to S100B tightly with a dissociation constant of 8 nM. When conjugated to a cell-penetrating peptide, it caused growth inhibition and rapid apoptosis in melanoma cells. The molecule exerts antiproliferative action through simultaneous inhibition of key growth pathways, including reactivation of wild-type p53 and inhibition of Akt and STAT3 phosphorylation. The apoptosis induced by the bidentate constrained helix is caused by direct migration of p53 to mitochondria. At moderate intravenous dose, the peptide completely inhibits melanoma growth in a mouse model without any significant observable toxicity. The specificity was shown by lack of ability of a double mutant peptide to cause tumor regression at the same dose level. The methodology described here for direct protein-protein interaction inhibition may be effective for rapid development of inhibitors against relatively weak protein-protein interactions for de novo drug development.


Asunto(s)
Proteína CapZ/química , Proteína CapZ/farmacología , Melanoma/patología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Secuencia de Aminoácidos , Animales , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Microscopía de Contraste de Fase , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Inducción de Remisión , Transducción de Señal/efectos de los fármacos , Temperatura , Proteína p53 Supresora de Tumor/metabolismo
9.
Curr Top Membr ; 72: 39-88, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24210427

RESUMEN

The mammalian erythrocyte, or red blood cell (RBC), is a unique experiment of nature: a cell with no intracellular organelles, nucleus or transcellular cytoskeleton, and a plasma membrane with uniform structure across its entire surface. By virtue of these specialized properties, the RBC membrane has provided a template for discovery of the fundamental actin filament network machine of the membrane skeleton, now known to confer mechanical resilience, anchor membrane proteins, and organize membrane domains in all cells. This chapter provides a historical perspective and critical analysis of the biochemistry, structure, and physiological functions of this actin filament network in RBCs. The core units of this network are nodes of ~35-37 nm-long actin filaments, interconnected by long strands of (α1ß1)2-spectrin tetramers, forming a 2D isotropic lattice with quasi-hexagonal symmetry. Actin filament length and stability is critical for network formation, relying upon filament capping at both ends: tropomodulin-1 at pointed ends and αß-adducin at barbed ends. Tropomodulin-1 capping is essential for precise filament lengths, and is enhanced by tropomyosin, which binds along the short actin filaments. αß-adducin capping recruits spectrins to sites near barbed ends, promoting network formation. Accessory proteins, 4.1R and dematin, also promote spectrin binding to actin and, with αß-adducin, link to membrane proteins, targeting actin nodes to the membrane. Dissection of the molecular organization within the RBC membrane skeleton is one of the paramount achievements of cell biological research in the past century. Future studies will reveal the structure and dynamics of actin filament capping, mechanisms of precise length regulation, and spectrin-actin lattice symmetry.


Asunto(s)
Membrana Celular/química , Citoesqueleto/química , Eritrocitos/metabolismo , Actinas/química , Actinas/metabolismo , Proteínas de Unión a Calmodulina/química , Proteínas de Unión a Calmodulina/metabolismo , Proteína CapZ/química , Proteína CapZ/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Eritrocitos/química , Humanos , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Estructura Cuaternaria de Proteína , Espectrina/metabolismo , Tropomodulina/química , Tropomodulina/metabolismo , Tropomiosina/química , Tropomiosina/metabolismo
10.
J Biol Chem ; 288(19): 13897-905, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23558679

RESUMEN

BACKGROUND: Vertebrate APC collaborates with Dia through its Basic domain to assemble actin filaments. RESULTS: Despite limited sequence homology between the vertebrate and Drosophila APC Basic domains, Drosophila APC1 collaborates with Dia to stimulate actin assembly in vitro. CONCLUSION: The mechanism of actin assembly is highly conserved over evolution. SIGNIFICANCE: APC-Dia collaborations may be crucial in a wide range of animal cells. Adenomatous polyposis coli (APC) is a large multidomain protein that regulates the cytoskeleton. Recently, it was shown that vertebrate APC through its Basic domain directly collaborates with the formin mDia1 to stimulate actin filament assembly in the presence of nucleation barriers. However, it has been unclear whether these activities extend to homologues of APC and Dia in other organisms. Drosophila APC and Dia are each required to promote actin furrow formation in the syncytial embryo, suggesting a potential collaboration in actin assembly, but low sequence homology between the Basic domains of Drosophila and vertebrate APC has left their functional and mechanistic parallels uncertain. To address this question, we purified Drosophila APC1 and Dia and determined their individual and combined effects on actin assembly using both bulk fluorescence assays and total internal reflection fluorescence microscopy. Our data show that APC1, similar to its vertebrate homologue, bound to actin monomers and nucleated and bundled filaments. Further, Drosophila Dia nucleated actin assembly and protected growing filament barbed ends from capping protein. Drosophila APC1 and Dia directly interacted and collaborated to promote actin assembly in the combined presence of profilin and capping protein. Thus, despite limited sequence homology, Drosophila and vertebrate APCs exhibit highly related activities and mechanisms and directly collaborate with formins. These results suggest that APC-Dia interactions in actin assembly are conserved and may underlie important in vivo functions in a broad range of animal phyla.


Asunto(s)
Actinas/química , Proteínas Portadoras/química , Proteínas de Drosophila/química , Drosophila melanogaster , Multimerización de Proteína , Proteínas Supresoras de Tumor/química , Animales , Proteína CapZ/química , Proteínas del Citoesqueleto , Forminas , Cinética , Fragmentos de Péptidos/química , Profilinas/química , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
11.
Biochemistry ; 51(36): 7189-201, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22913742

RESUMEN

S100B is a member of the S100 subfamily of EF-hand proteins that has been implicated in malignant melanoma and neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease. Calcium-induced conformational changes expose a hydrophobic binding cleft, facilitating interactions with a wide variety of nuclear, cytoplasmic, and extracellular target proteins. Previously, peptides derived from CapZ, p53, NDR, HDM2, and HDM4 have been shown to interact with S100B in a calcium-dependent manner. However, the thermodynamic and kinetic basis of these interactions remains largely unknown. To gain further insight, we screened these peptides against the S100B protein using isothermal titration calorimetry and nuclear magnetic resonance. All peptides were found to have binding affinities in the low micromolar to nanomolar range. Binding-induced changes in the line shapes of S100B backbone (1)H and (15)N resonances were monitored to obtain the dissociation constants and the kinetic binding parameters. The large microscopic K(on) rate constants observed in this study (≥1 × 10(7) M(-1) s(-1)) suggest that S100B utilizes a "fly casting mechanism" in the recognition of these peptide targets.


Asunto(s)
Factores de Crecimiento Nervioso/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas S100/metabolismo , Secuencia de Aminoácidos , Proteína CapZ/química , Proteína CapZ/metabolismo , Proteínas de Ciclo Celular , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Factores de Crecimiento Nervioso/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/química , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/química , Termodinámica , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo
12.
BMC Struct Biol ; 12: 12, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22657106

RESUMEN

BACKGROUND: Capping protein (CP), also known as CapZ in muscle cells and Cap32/34 in Dictyostelium discoideum, plays a major role in regulating actin filament dynamics. CP is a ubiquitously expressed heterodimer comprising an α- and ß-subunit. It tightly binds to the fast growing end of actin filaments, thereby functioning as a "cap" by blocking the addition and loss of actin subunits. Vertebrates contain two somatic variants of CP, one being primarily found at the cell periphery of non-muscle tissues while the other is mainly localized at the Z-discs of skeletal muscles. RESULTS: To elucidate structural and functional differences between cytoplasmic and sarcomercic CP variants, we have solved the atomic structure of Cap32/34 (32=ß- and 34=α-subunit) from the cellular slime mold Dictyostelium at 2.2 Å resolution and compared it to that of chicken muscle CapZ. The two homologs display a similar overall arrangement including the attached α-subunit C-terminus (α-tentacle) and the flexible ß-tentacle. Nevertheless, the structures exhibit marked differences suggesting considerable structural flexibility within the α-subunit. In the α-subunit we observed a bending motion of the ß-sheet region located opposite to the position of the C-terminal ß-tentacle towards the antiparallel helices that interconnect the heterodimer. Recently, a two domain twisting attributed mainly to the ß-subunit has been reported. At the hinge of these two domains Cap32/34 contains an elongated and highly flexible loop, which has been reported to be important for the interaction of cytoplasmic CP with actin and might contribute to the more dynamic actin-binding of cytoplasmic compared to sarcomeric CP (CapZ). CONCLUSIONS: The structure of Cap32/34 from Dictyostelium discoideum allowed a detailed analysis and comparison between the cytoplasmic and sarcomeric variants of CP. Significant structural flexibility could particularly be found within the α-subunit, a loop region in the ß-subunit, and the surface of the α-globule where the amino acid differences between the cytoplasmic and sarcomeric mammalian CP are located. Hence, the crystal structure of Cap32/34 raises the possibility of different binding behaviours of the CP variants toward the barbed end of actin filaments, a feature, which might have arisen from adaptation to different environments.


Asunto(s)
Proteínas de Capping de la Actina/química , Secuencia Conservada , Citoplasma/metabolismo , Dictyostelium/química , Proteínas de Microfilamentos/química , Músculos/metabolismo , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteína CapZ/química , Pollos , Cristalografía por Rayos X , Lípidos , Modelos Moleculares , Datos de Secuencia Molecular , Especificidad de Órganos , Unión Proteica , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Alineación de Secuencia
13.
J Biol Chem ; 285(40): 30615-21, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20659894

RESUMEN

During bacterial conjugation, genetic material from one cell is transferred to another as single-stranded DNA. The introduction of single-stranded DNA into the recipient cell would ordinarily trigger a potentially deleterious transcriptional response called SOS, which is initiated by RecA protein filaments formed on the DNA. During F plasmid conjugation, however, the SOS response is suppressed by PsiB, an F-plasmid-encoded protein that binds and sequesters free RecA to prevent filament formation. Among the many characterized RecA modulator proteins, PsiB is unique in using sequestration as an inhibitory mechanism. We describe the crystal structure of PsiB from the Escherichia coli F plasmid. The stucture of PsiB is surprisingly similar to CapZ, a eukaryotic actin filament capping protein. Structure-directed neutralization of electronegative surfaces on PsiB abrogates RecA inhibition whereas neutralization of an electropositive surface element enhances PsiB inhibition of RecA. Together, these studies provide a first molecular view of PsiB and highlight its use as a reagent in studies of RecA activity.


Asunto(s)
Proteínas Bacterianas/química , Escherichia coli/química , Rec A Recombinasas , Proteínas Bacterianas/metabolismo , Proteína CapZ/química , Conjugación Genética/fisiología , Cristalografía por Rayos X , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Escherichia coli/metabolismo , Factor F/química , Factor F/metabolismo , Estructura Terciaria de Proteína , Respuesta SOS en Genética/fisiología , Homología Estructural de Proteína
14.
Protein Sci ; 18(12): 2528-36, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19827097

RESUMEN

S100B and S100A10 are dimeric, EF-hand proteins. S100B undergoes a calcium-dependent conformational change allowing it to interact with a short contiguous sequence from the actin-capping protein CapZ (TRTK12). S100A10 does not bind calcium but is able to recruit the N-terminus of annexin A2 important for membrane fusion events, and to form larger multiprotein complexes such as that with the cation channel proteins TRPV5/6. In this work, we have designed, expressed, purified, and characterized two S100-target peptide hybrid proteins comprised of S100A10 and S100B linked in tandem to annexin A2 (residues 1-15) and CapZ (TRTK12), respectively. Different protease cleavage sites (tobacco etch virus, PreScission) were incorporated into the linkers of the hybrid proteins. In situ proteolytic cleavage monitored by (1)H-(15)N HSQC spectra showed the linker did not perturb the structures of the S100A10-annexin A2 or S100B-TRTK12 complexes. Furthermore, the analysis of the chemical shift assignments ((1)H, (15)N, and (13)C) showed that residues T102-S108 of annexin A2 formed a well-defined alpha-helix in the S100A10 hybrid while the TRTK12 region was unstructured at the N-terminus with a single turn of alpha-helix from D108-K111 in the S100B hybrid protein. The two S100 hybrid proteins provide a simple yet extremely efficient method for obtaining high yields of intact S100 target peptides. Since cleavage of the S100 hybrid protein is not necessary for structural characterization, this approach may be useful as a scaffold for larger S100 complexes.


Asunto(s)
Anexina A2/genética , Proteína CapZ/genética , Proteínas Mutantes Quiméricas/genética , Proteínas S100/genética , Secuencia de Aminoácidos , Animales , Anexina A2/química , Anexina A2/aislamiento & purificación , Proteína CapZ/química , Proteína CapZ/aislamiento & purificación , Motivos EF Hand , Escherichia coli/genética , Expresión Génica , Datos de Secuencia Molecular , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/aislamiento & purificación , Factores de Crecimiento Nervioso/química , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/aislamiento & purificación , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Péptidos/genética , Conformación Proteica , Conejos , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/química , Proteínas S100/aislamiento & purificación
15.
J Neurosci Res ; 87(9): 1980-5, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19267422

RESUMEN

NAP-22 is a neuronal protein localized in the presynaptic membrane and synaptic vesicles and recovered in a Triton-insoluble low-density microdomain fraction after biochemical fractionation of the synaptic plasma membrane. NAP-22 organizes membrane microdomains through binding to membrane lipids such as cholesterol, phosphatidylethanolamine, and phosphatidylinositol 4,5-bisphosphate. In this study, NAP-22-binding proteins were screened through the pull-down assay using brain-derived NAP-22 bound to Sepharose 4B. An actin-capping protein, CapZ, was identified in the precipitate through mass spectrometry and Western blotting. CapZ was then expressed in E. coli and the purified protein-bound NAP-22 directly. Because bacterially expressed NAP-22 bound CapZ, it was determined that the N-terminal myristoyl moiety of NAP-22 is not necessary for the binding. The binding of NAP-22 showed no effect on the actin nucleation activity of CapZ measured with centrifugation and viscometric assays. Hence, the CapZ-NAP-22 complex could work as the nucleation site of actin polymerization or as the actin filament-anchoring site on the membrane microdomain.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Unión a Calmodulina/química , Proteínas de Unión a Calmodulina/metabolismo , Proteína CapZ/química , Proteína CapZ/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Membranas Sinápticas/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Actinas/biosíntesis , Animales , Encéfalo/ultraestructura , Química Encefálica/fisiología , Lípidos de la Membrana/metabolismo , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Ratas , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/ultraestructura , Membranas Sinápticas/ultraestructura
16.
Mol Biol Cell ; 19(5): 1837-47, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18272787

RESUMEN

The barbed ends of actin filaments in striated muscle are anchored within the Z-disc and capped by CapZ; this protein blocks actin polymerization and depolymerization in vitro. The mature lengths of the thin filaments are likely specified by the giant "molecular ruler" nebulin, which spans the length of the thin filament. Here, we report that CapZ specifically interacts with the C terminus of nebulin (modules 160-164) in blot overlay, solid-phase binding, tryptophan fluorescence, and SPOTs membrane assays. Binding of nebulin modules 160-164 to CapZ does not affect the ability of CapZ to cap actin filaments in vitro, consistent with our observation that neither of the two C-terminal actin binding regions of CapZ is necessary for its interaction with nebulin. Knockdown of nebulin in chick skeletal myotubes using small interfering RNA results in a reduction of assembled CapZ, and, strikingly, a loss of the uniform alignment of the barbed ends of the actin filaments. These data suggest that nebulin restricts the position of thin filament barbed ends to the Z-disc via a direct interaction with CapZ. We propose a novel molecular model of Z-disc architecture in which nebulin interacts with CapZ from a thin filament of an adjacent sarcomere, thus providing a structural link between sarcomeres.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteína CapZ/metabolismo , Proteínas Musculares/metabolismo , Sarcómeros/metabolismo , Secuencia de Aminoácidos , Animales , Unión Competitiva , Bioensayo , Proteína CapZ/química , Proteína CapZ/genética , Pollos , Fluorescencia , Regulación de la Expresión Génica , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/química , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas
17.
EMBO J ; 25(23): 5626-33, 2006 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-17110933

RESUMEN

The intracellular distribution and migration of many protein complexes and organelles is regulated by the dynamics of the actin filament. Many actin filament end-binding proteins play crucial roles in actin dynamics, since polymerization and depolymerization of actin protomers occur only at the filament ends. We present here an EM structure of the complex of the actin filament and hetero-dimeric capping protein (CP) bound to the barbed-end at 23 A resolution, by applying a newly developed methods of image analysis to cryo-electron micrographs. This structure was fitted by the crystal structure of CP and the proposed actin filament structure, allowing us to construct a model that depicts two major binding regions between CP and the barbed-end. This binding scheme accounted for the results of newly performed and previously published mutation experiments, and led us to propose a two-step binding model. This is the first determination of an actin filament end structure.


Asunto(s)
Citoesqueleto de Actina/química , Proteínas Aviares/química , Proteína CapZ/química , Actinas/química , Secuencia de Aminoácidos , Animales , Proteínas Aviares/genética , Proteína CapZ/genética , Pollos , Microscopía por Crioelectrón , Dimerización , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica
18.
Theor Biol Med Model ; 3: 30, 2006 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-16914033

RESUMEN

BACKGROUND: CapZ is a calcium-insensitive and lipid-dependent actin filament capping protein, the main function of which is to regulate the assembly of the actin cytoskeleton. CapZ is associated with membranes in cells and it is generally assumed that this interaction is mediated by polyphosphoinositides (PPI) particularly PIP2, which has been characterized in vitro. RESULTS: We propose that non-PPI lipids also bind CapZ. Data from computer-aided sequence and structure analyses further suggest that CapZ could become partially buried in the lipid bilayer probably under mildly acidic conditions, in a manner that is not only dependent on the presence of PPIs. We show that lipid binding could involve a number of sites that are spread throughout the CapZ molecule i.e., alpha- and beta-subunits. However, a beta-subunit segment between residues 134-151 is most likely to be involved in interacting with and inserting into lipid membrane due to a slighly higher ratio of positively to negatively charged residues and also due to the presence of a small hydrophobic helix. CONCLUSION: CapZ may therefore play an essential role in providing a stable membrane anchor for actin filaments.


Asunto(s)
Proteína CapZ/metabolismo , Simulación por Computador , Lípidos de la Membrana/metabolismo , Actinas/metabolismo , Algoritmos , Proteína CapZ/química , Citoesqueleto , Modelos Químicos , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...