Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
PeerJ ; 12: e17619, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952980

RESUMEN

Background: Andrographolide (Andro), an extract of Andrographis paniculate (Burm.f.) Wall. ex Nees (Acanthaceae), possesses diverse biologically active properties. However, the precise mechanisms and effects of Andro on pancreatic cancer (PC) remain unclear. Methods: The cytotoxic potential of Andro and underlying mechanism towards PC cells was investigated through in vitro experiments and a xenograft mouse model. PC cells were first subjected to varying concentrations of Andro. The reactive oxygen species (ROS) was assessed using flow cytometry and DCFH-DA staining. The apoptosis rate was detected by flow cytometry. Additionally, western blot was applied to evaluate the expression levels of cleaved-caspase-3, DJ-1, LC3-I, LC3-II, and p62. To further elucidate the involvement of ROS accumulation and autophagy, we employed N-acetylcysteine as a scavenger of ROS and 3-Methyladenine as an inhibitor of autophagy. Results: Andro demonstrated potent anti-proliferative effects on PC cells and induced apoptosis, both in vitro and in vivo. The cytotoxicity of Andro on PC cells was counteracted by DJ-1 overexpression. The reduction in DJ-1 expression caused by Andro led to ROS accumulation, subsequently inhibiting the growth of PC cells. Furthermore, Andro stimulated cytoprotective autophagy, thus weakening the antitumor effect. Pharmacological blockade of autophagy further enhanced the antitumor efficacy of Andro. Conclusion: Our study indicated that ROS accumulation induced by the DJ-1 reduction played a key role in Andro-mediated PC cell inhibition. Furthermore, the protective autophagy induced by the Andro in PC cells is a mechanism that needs to be addressed in future studies.


Asunto(s)
Apoptosis , Autofagia , Diterpenos , Neoplasias Pancreáticas , Proteína Desglicasa DJ-1 , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Diterpenos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Autofagia/efectos de los fármacos , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/genética , Animales , Humanos , Ratones , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos
2.
J Neuroinflammation ; 21(1): 174, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014482

RESUMEN

BACKGROUND: Specific microglia responses are thought to contribute to the development and progression of neurodegenerative diseases, including Parkinson's disease (PD). However, the phenotypic acquisition of microglial cells and their role during the underlying neuroinflammatory processes remain largely elusive. Here, according to the multiple-hit hypothesis, which stipulates that PD etiology is determined by a combination of genetics and various environmental risk factors, we investigate microglial transcriptional programs and morphological adaptations under PARK7/DJ-1 deficiency, a genetic cause of PD, during lipopolysaccharide (LPS)-induced inflammation. METHODS: Using a combination of single-cell RNA-sequencing, bulk RNA-sequencing, multicolor flow cytometry and immunofluorescence analyses, we comprehensively compared microglial cell phenotypic characteristics in PARK7/DJ-1 knock-out (KO) with wildtype littermate mice following 6- or 24-h intraperitoneal injection with LPS. For translational perspectives, we conducted corresponding analyses in human PARK7/DJ-1 mutant induced pluripotent stem cell (iPSC)-derived microglia and murine bone marrow-derived macrophages (BMDMs). RESULTS: By excluding the contribution of other immune brain resident and peripheral cells, we show that microglia acutely isolated from PARK7/DJ-1 KO mice display a distinct phenotype, specially related to type II interferon and DNA damage response signaling, when compared with wildtype microglia, in response to LPS. We also detected discrete signatures in human PARK7/DJ-1 mutant iPSC-derived microglia and BMDMs from PARK7/DJ-1 KO mice. These specific transcriptional signatures were reflected at the morphological level, with microglia in LPS-treated PARK7/DJ-1 KO mice showing a less amoeboid cell shape compared to wildtype mice, both at 6 and 24 h after acute inflammation, as also observed in BMDMs. CONCLUSIONS: Taken together, our results show that, under inflammatory conditions, PARK7/DJ-1 deficiency skews microglia towards a distinct phenotype characterized by downregulation of genes involved in type II interferon signaling and a less prominent amoeboid morphology compared to wildtype microglia. These findings suggest that the underlying oxidative stress associated with the lack of PARK7/DJ-1 affects microglia neuroinflammatory responses, which may play a causative role in PD onset and progression.


Asunto(s)
Inflamación , Lipopolisacáridos , Ratones Noqueados , Microglía , Proteína Desglicasa DJ-1 , Animales , Proteína Desglicasa DJ-1/deficiencia , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo , Microglía/metabolismo , Microglía/patología , Microglía/efectos de los fármacos , Ratones , Lipopolisacáridos/toxicidad , Lipopolisacáridos/farmacología , Inflamación/patología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/genética , Humanos , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/genética
3.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38760174

RESUMEN

Amyotrophic lateral sclerosis (ALS) leads to death within 2-5 yr. Currently, available drugs only slightly prolong survival. We present novel insights into the pathophysiology of Superoxide Dismutase 1 (SOD1)- and in particular Fused In Sarcoma (FUS)-ALS by revealing a supposedly central role of glycolic acid (GA) and D-lactic acid (DL)-both putative products of the Parkinson's disease associated glyoxylase DJ-1. Combined, not single, treatment with GA/DL restored axonal organelle phenotypes of mitochondria and lysosomes in FUS- and SOD1-ALS patient-derived motoneurons (MNs). This was not only accompanied by restoration of mitochondrial membrane potential but even dependent on it. Despite presenting an axonal transport deficiency as well, TDP43 patient-derived MNs did not share mitochondrial depolarization and did not respond to GA/DL treatment. GA and DL also restored cytoplasmic mislocalization of FUS and FUS recruitment to DNA damage sites, recently reported being upstream of the mitochondrial phenotypes in FUS-ALS. Whereas these data point towards the necessity of individualized (gene-) specific therapy stratification, it also suggests common therapeutic targets across different neurodegenerative diseases characterized by mitochondrial depolarization.


Asunto(s)
Esclerosis Amiotrófica Lateral , Glicolatos , Ácido Láctico , Mitocondrias , Proteína Desglicasa DJ-1 , Proteína FUS de Unión a ARN , Superóxido Dismutasa-1 , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Glicolatos/metabolismo , Glicolatos/farmacología , Mitocondrias/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/genética , Ácido Láctico/metabolismo , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa-1/genética , Potencial de la Membrana Mitocondrial , Neuronas Motoras/metabolismo , Lisosomas/metabolismo
4.
Cell Commun Signal ; 22(1): 252, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698453

RESUMEN

BACKGROUND: Ischemic postconditioning (IPostC) has been reported as a promising method for protecting against myocardial ischemia-reperfusion (MI/R) injury. Our previous study found that the infarct-limiting effect of IPostC is abolished in the heart of diabetes whose cardiac expression of DJ-1 (also called PARK7, Parkinsonism associated deglycase) is reduced. However, the role and in particular the underlying mechanism of DJ-1 in the loss of sensitivity to IPostC-induced cardioprotection in diabetic hearts remains unclear. METHODS: Streptozotocin-induced type 1 diabetic rats were subjected to MI/R injury by occluding the left anterior descending artery (LAD) and followed by reperfusion. IPostC was induced by three cycles of 10s of reperfusion and ischemia at the onset of reperfusion. AAV9-CMV-DJ-1, AAV9-CMV-C106S-DJ-1 or AAV9-DJ-1 siRNA were injected via tail vein to either over-express or knock-down DJ-1 three weeks before inducing MI/R. RESULTS: Diabetic rats subjected to MI/R exhibited larger infarct area, more severe oxidative injury concomitant with significantly reduced cardiac DJ-1 expression and increased PTEN expression as compared to non-diabetic rats. AAV9-mediated cardiac DJ-1 overexpression, but not the cardiac overexpression of DJ-1 mutant C106S, restored IPostC-induced cardioprotection and this effect was accompanied by increased cytoplasmic DJ-1 translocation toward nuclear and mitochondrial, reduced PTEN expression, and increased Nrf-2/HO-1 transcription. Our further study showed that AAV9-mediated targeted DJ-1 gene knockdown aggravated MI/R injury in diabetic hearts, and this exacerbation of MI/R injury was partially reversed by IPostC in the presence of PTEN inhibition or Nrf-2 activation. CONCLUSIONS: These findings suggest that DJ-1 preserves the cardioprotective effect of IPostC against MI/R injury in diabetic rats through nuclear and mitochondrial DJ-1 translocation and that inhibition of cardiac PTEN and activation of Nrf-2/HO-1 may represent the major downstream mechanisms whereby DJ-1 preserves the cardioprotective effect of IPostC in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Poscondicionamiento Isquémico , Daño por Reperfusión Miocárdica , Fosfohidrolasa PTEN , Proteína Desglicasa DJ-1 , Ratas Sprague-Dawley , Animales , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/genética , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratas , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Transporte de Proteínas , Estreptozocina , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología
5.
Am J Physiol Renal Physiol ; 327(1): F128-F136, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38695076

RESUMEN

Acute kidney injury (AKI) is extremely prevalent among hospitalizations and presents a significant risk for the development of chronic kidney disease and increased mortality. Ischemia caused by shock, trauma, and transplant are common causes of AKI. To attenuate ischemic AKI therapeutically, we need a better understanding of the physiological and cellular mechanisms underlying damage. Instances of ischemia are most damaging in proximal tubule epithelial cells (PTECs) where hypoxic signaling cascades, and perhaps more rapidly, posttranslational modifications (PTMs), act in concert to change cellular metabolism. Here, we focus on the effects of the understudied PTM, lysine succinylation. We have previously shown a protective effect of protein hypersuccinylation on PTECs after depletion of the desuccinylase sirtuin5. General trends in the results suggested that hypersuccinylation led to upregulation of peroxisomal activity and was protective against kidney injury. Included in the list of changes was the Parkinson's-related deglycase Park7. There is little known about any links between peroxisome activity and Park7. In this study, we show in vitro and in vivo that Park7 has a crucial role in protection from AKI and upregulated peroxisome activity. These data in combination with published results of Park7's protective role in cardiovascular damage and chronic kidney disease lead us to hypothesize that succinylation of Park7 may ameliorate oxidative damage resulting from AKI and prevent disease progression. This novel mechanism provides a potential therapeutic mechanism that can be targeted.NEW & NOTEWORTHY Succinylation is an understudied posttranslational modification that has been shown to increase peroxisomal activity. Furthermore, increased peroxisomal activity has been shown to reduce oxidative stress and protect proximal tubules after acute kidney injury. Analysis of mass spectrometry succinylomic and proteomic data reveals a novel role for Parkinson's related Park7 in mediating Nrf2 antioxidant response after kidney injury. This novel protection pathway provides new insights for kidney injury prevention and development of novel therapeutics.


Asunto(s)
Lesión Renal Aguda , Túbulos Renales Proximales , Proteína Desglicasa DJ-1 , Animales , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/patología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/genética , Procesamiento Proteico-Postraduccional , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Masculino , Sirtuinas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Ratones , Estrés Oxidativo , Lisina/metabolismo
6.
Redox Biol ; 72: 103156, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38640584

RESUMEN

Regulation of the oxidative stress response is crucial for the management and prognosis of traumatic brain injury (TBI). The copper chaperone Antioxidant 1 (Atox1) plays a crucial role in regulating intracellular copper ion balance and impacting the antioxidant capacity of mitochondria, as well as the oxidative stress state of cells. However, it remains unknown whether Atox1 is involved in modulating oxidative stress following TBI. Here, we investigated the regulatory role of Atox1 in oxidative stress on neurons both in vivo and in vitro, and elucidated the underlying mechanism through culturing hippocampal HT-22 cells with Atox1 mutation. The expression of Atox1 was significantly diminished following TBI, while mice with overexpressed Atox1 exhibited a more preserved hippocampal structure and reduced levels of oxidative stress post-TBI. Furthermore, the mice displayed notable impairments in learning and memory functions after TBI, which were ameliorated by the overexpression of Atox1. In the stretch injury model of HT-22 cells, overexpression of Atox1 mitigated oxidative stress by preserving the normal morphology and network connectivity of mitochondria, as well as facilitating the elimination of damaged mitochondria. Mechanistically, co-immunoprecipitation and mass spectrometry revealed the binding of Atox1 to DJ-1. Knockdown of DJ-1 in HT-22 cells significantly impaired the antioxidant capacity of Atox1. Mutations in the copper-binding motif or sequestration of free copper led to a substantial decrease in the interaction between Atox1 and DJ-1, with overexpression of DJ-1 failing to restore the antioxidant capacity of Atox1 mutants. The findings suggest that DJ-1 mediates the ability of Atox1 to withstand oxidative stress. And targeting Atox1 could be a potential therapeutic approach for addressing post-traumatic neurological dysfunction.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Proteínas Transportadoras de Cobre , Hipocampo , Mitofagia , Neuronas , Estrés Oxidativo , Proteína Desglicasa DJ-1 , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/genética , Ratones , Hipocampo/metabolismo , Hipocampo/patología , Neuronas/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/genética , Proteínas Transportadoras de Cobre/metabolismo , Proteínas Transportadoras de Cobre/genética , Mitocondrias/metabolismo , Modelos Animales de Enfermedad , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Masculino , Antioxidantes/metabolismo , Línea Celular , Humanos
7.
Science ; 384(6697): 808-814, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38662916

RESUMEN

Genome editing with CRISPR RNA-guided endonucleases generates DNA breaks that are resolved by cellular DNA repair machinery. However, analogous methods to manipulate RNA remain unavailable. We show that site-specific RNA breaks generated with type-III CRISPR complexes are repaired in human cells and that this repair can be used for programmable deletions in human transcripts to restore gene function. Collectively, this work establishes a technology for precise RNA manipulation with potential therapeutic applications.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Edición Génica , ARN Guía de Sistemas CRISPR-Cas , ARN , Humanos , Reparación del ADN , Endonucleasas/metabolismo , Edición Génica/métodos , Células HEK293 , ARN/genética , ARN Guía de Sistemas CRISPR-Cas/genética , Proteína Desglicasa DJ-1/genética , Ciclofilinas/genética , Streptococcus thermophilus
8.
Environ Toxicol ; 39(8): 4105-4119, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38642008

RESUMEN

Diallyl disulfide (DADS), an organic component of allicin abstracted from garlic, possesses multi-target antitumor activity. DJ-1 performs a vital function in promoting AKT aberrant activation via down-regulating phosphatase and tensin homologue (PTEN) in tumors. It is unknown the involvement of DJ-1 in epithelial-mesenchymal transition (EMT) of gastric cancer (GC) cells. The purpose of this study is to investigate whether diallyl disulfide (DADS) intervenes in the role of DJ-1 in GC. Based on the identification that the correlation between high DJ-1 and low PTEN expression in GC was implicated in clinical progression, we illuminated that down-regulation of DJ-1 by DADS aided in an increase in PTEN expression and a decrease in phosphorylated AKT levels, which was in line with the results manifested in the DJ-1 knockdown and overexpressed cells, concurrently inhibiting proliferation, EMT, migration, and invasion. Furthermore, the antagonistic effects of DADS on DJ-1 were observed in in vivo experiments. Additionally, DADS mitigated the DJ-1-associated drug resistance. The current study revealed that DJ-1 is one of potential targets for DADS, which hopefully provides a promising strategy for prevention and adjuvant chemotherapy of GC.


Asunto(s)
Compuestos Alílicos , Proliferación Celular , Disulfuros , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Proteína Desglicasa DJ-1 , Neoplasias Gástricas , Disulfuros/farmacología , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Compuestos Alílicos/farmacología , Humanos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Animales , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Movimiento Celular/efectos de los fármacos , Ratones , Ratones Desnudos , Ratones Endogámicos BALB C
9.
Genes Genomics ; 46(5): 519-529, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460098

RESUMEN

BACKGROUND: GBA1 mutations are the most common genetic risk factor for development of Parkinson's disease (PD). The loss of catalytic activity in GBA1, as well as the reduction of the GBA1 protein in certain cellular compartment, may increase disease progression. However, the mechanisms underlying cellular dysfunction caused by GBA1 deficiency are still mostly unknown. OBJECTIVE: In this study, we focus on the genetic interaction between GBA1 deficiency and PD-causing genes, such as DJ-1, in mitochondrial dysfunction. METHODS: GBA1 knockout (KO) SH-SY5Y cells were used to assess DJ-1 functions against oxidative stress in vitro. The levels of cellular reactive oxygen species were monitored with MitoSOX reagent. The expression of the PARK7 gene was analyzed using the quantitative real-time PCR (qRT-PCR). To understand the mechanism underlying DJ-1 upregulation in GBA1 KO cells, we assess ROS levels, antioxidant protein, and cell viability in GBA1 KO cells with treatment of ROS inhibitor N-acetyl-cysteine or miglustat, which is an inhibitor of glucosylceramide synthase. Dopaminergic degeneration was assessed from Gba1 L444P heterozygous mice mated with Park7 knockout mice. RESULTS: We find that DJ-1 is significantly upregulated in GBA1 KO cells. Elevated levels of DJ-1 are attributed to the transcriptional expression of PARK7 mRNA, but not the inhibition of DJ-1 protein degradation. Because DJ-1 expression is highly linked to oxidative stress, we observe cellular reactive oxygen species (ROS) in GBA1 KO cells. Moreover, several antioxidant gene expressions and protein levels are increased in GBA1 KO cells. To this end, GBA1 KO cells are more susceptible to H2O2-induced cell death. Importantly, there is a significant reduction in dopaminergic neurons in the midbrain from Gba1 L444P heterozygous mice mated with Park7 knockout mice, followed by mild motor dysfunction. CONCLUSION: Taken together, our results suggest that DJ-1 upregulation due to GBA1 deficiency has a protective role against oxidative stress. It may be supposed that mutations or malfunctions in the DJ-1 protein may have disadvantages in the survival of dopaminergic neurons in the brains of patients harboring GBA1 mutations.


Asunto(s)
Antioxidantes , Neuroblastoma , Enfermedad de Parkinson , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrógeno , Estrés Oxidativo , Muerte Celular/fisiología , Ratones Noqueados , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo
10.
J Gastroenterol ; 59(3): 229-249, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310161

RESUMEN

BACKGROUND: Liver fibrosis can progress to cirrhosis and hepatic carcinoma without treatment. CircDCBLD2 was found to be downregulated in liver fibrosis. However, the precise underlying mechanism requires further investigation. METHODS: qRT-PCR, Western blot, and immunohistochemistry assays were used to detect the related molecule levels. HE, Masson's trichrome, and Sirius Red staining were used to assess the pathological changes in mice's liver tissues. Flow cytometric analysis and commercial kit were used to assess the levels of lipid reactive oxygen species (ROS), malonaldehyde (MDA), glutathione (GSH), and iron. Cell viability was assessed by MTT. Immunoprecipitation was used to study the ubiquitination of PARK7. Mitophagy was determined by immunostaining and confocal imaging. RIP and Co-IP assays were used to assess the interactions of circDCBLD2/HuR, HuR/STUB1, and STUB1/PARK7. Fluorescence in situ hybridization and immunofluorescence staining were used to assess the co-localization of circDCBLD2 and HuR. RESULTS: CircDCBLD2 was downregulated, whereas PARK7 was upregulated in liver fibrosis. Ferroptosis activators increased circDCBLD2 while decreasing PARK7 in hepatic stellate cells (HSCs) and mice with liver fibrosis. CircDCBLD2 overexpression reduced cell viability and GSH, PARK7, and GPX4 expression in erastin-treated HSCs while increasing MDA and iron levels, whereas circDCBLD2 knockdown had the opposite effect. CircDCBLD2 overexpression increased STUB1-mediated PARK7 ubiquitination by promoting HuR-STUB1 binding and thus increasing STUB1 mRNA stability. PARK7 overexpression or HuR knockdown reversed the effects of circDCBLD2 overexpression on HSC activation and ferroptosis. CircDCBLD2 reduced liver fibrosis in mice by inhibiting PARK7. CONCLUSION: CircDCBLD2 overexpression increased PARK7 ubiquitination degradation by upregulating STUB1 through its interaction with HuR, inhibiting HSC activation and promoting HSC ferroptosis, ultimately enhancing liver fibrosis.


Asunto(s)
Ferroptosis , Neoplasias Hepáticas , Animales , Ratones , Células Estrelladas Hepáticas/metabolismo , Hibridación Fluorescente in Situ , Hierro/metabolismo , Hierro/farmacología , Cirrosis Hepática/patología , Neoplasias Hepáticas/patología , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/farmacología , Ubiquitinación
11.
Aging Cell ; 23(5): e14124, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38380563

RESUMEN

DJ-1, also known as Parkinson's disease protein 7 (Park7), is a multifunctional protein that regulates oxidative stress and mitochondrial function. Dysfunction of DJ-1 is implicated in the pathogenesis of Parkinson's disease (PD). Hyperhomocysteinemia is associated with an increased risk of PD. Here we show that homocysteine thiolactone (HTL), a reactive thioester of homocysteine (Hcy), covalently modifies DJ-1 on the lysine 182 (K182) residue in an age-dependent manner. The N-homocysteinylation (N-hcy) of DJ-1 abolishes its neuroprotective effect against oxidative stress and mitochondrial dysfunction, exacerbating cell toxicity. Blocking the N-hcy of DJ-1 restores its protective effect. These results indicate that the N-hcy of DJ-1 abolishes its neuroprotective effect and promotes the progression of PD. Inhibiting the N-hcy of DJ-1 may exert neuroprotective effect against PD.


Asunto(s)
Homocisteína , Enfermedad de Parkinson , Proteína Desglicasa DJ-1 , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Homocisteína/metabolismo , Homocisteína/análogos & derivados , Humanos , Animales , Estrés Oxidativo/efectos de los fármacos , Ratones , Mitocondrias/metabolismo
12.
Cells ; 13(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391909

RESUMEN

Parkinson's disease (PD) is a common movement disorder associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Mutations in the PD-associated gene PARK7 alter the structure and function of the encoded protein DJ-1, and the resulting autosomal recessively inherited disease increases the risk of developing PD. DJ-1 was first discovered in 1997 as an oncogene and was associated with early-onset PD in 2003. Mutations in DJ-1 account for approximately 1% of all recessively inherited early-onset PD occurrences, and the functions of the protein have been studied extensively. In healthy subjects, DJ-1 acts as an antioxidant and oxidative stress sensor in several neuroprotective mechanisms. It is also involved in mitochondrial homeostasis, regulation of apoptosis, chaperone-mediated autophagy (CMA), and dopamine homeostasis by regulating various signaling pathways, transcription factors, and molecular chaperone functions. While DJ-1 protects neurons against damaging reactive oxygen species, neurotoxins, and mutant α-synuclein, mutations in the protein may lead to inefficient neuroprotection and the progression of PD. As current therapies treat only the symptoms of PD, the development of therapies that directly inhibit oxidative stress-induced neuronal cell death is critical. DJ-1 has been proposed as a potential therapeutic target, while oxidized DJ-1 could operate as a biomarker for PD. In this paper, we review the role of DJ-1 in the pathogenesis of PD by highlighting some of its key neuroprotective functions and the consequences of its dysfunction.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Estrés Oxidativo/genética , Antioxidantes/metabolismo , Neuronas Dopaminérgicas/metabolismo , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo
13.
J Cell Mol Med ; 28(1): e18041, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37987202

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is difficult to treat due to the high recurrence rate and therapy intolerance, so finding potential therapeutic targets for DLBCL is critical. FK506-binding protein 3 (FKBP3) contributes to the progression of various cancers and is highly expressed in DLBCL, but the role of FKBP3 in DLBCL and its mechanism are not clear. Our study demonstrated that FKBP3 aggravated the proliferation and stemness of DLBCL cells, and tumour growth in a xenograft mouse model. The interaction between FKBP3 and parkinsonism associated deglycase (PARK7) in DB cells was found using co-immunoprecipitation assay. Knockdown of FKBP3 enhanced the degradation of PARK7 through increasing its ubiquitination modification. Forkhead Box O3 (FOXO3) belongs to the forkhead family of transcription factors and inhibits DLBCL, but the underlying mechanism has not been reported. We found that FOXO3 bound the promoter of FKBP3 and then suppressed its transcription, eventually weakening DLBCL. Mechanically, FKBP3 activated Wnt/ß-catenin signalling pathway mediated by PARK7. Together, FKBP3 increased PARK7 and then facilitated the malignant phenotype of DLBCL through activating Wnt/ß-catenin pathway. These results indicated that FKBP3 might be a potential therapeutic target for the treatment of DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , beta Catenina , Humanos , Ratones , Animales , beta Catenina/metabolismo , Proteína Desglicasa DJ-1/genética , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Wnt/genética , Fenotipo , Linfoma de Células B Grandes Difuso/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Unión a Tacrolimus/metabolismo
14.
Biochem Biophys Res Commun ; 682: 359-364, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37839104

RESUMEN

Association between cancer risk and Parkinson's disease is still debated. DJ-1, a Parkinson's disease (PD)-related gene, is encoded by PARK-7 gene and its deficiency causes early-onset PD. In our last studies, it was found that the immunosuppressive microenvironment established in DJ-1 knockout (KO) mice can enhance metastasis of melanoma cells to lungs. Therefore, we wanted to further examine whether there were some niche in other organs of DJ-1-deficiency mouse to facilitate cell growth of tumors. We used in vivo tissue-specific models of tumor growth and in vitro cellular model to verify the hypothesis. We also used protein blot assay, cell-adhesion assay and bioinformatic tools to conduct experiments. In the mouse model of subcutaneous injection, there was no difference on tumor growth between WT and DJ-1 KO mice. Moreover, the results of experimental liver metastasis by intrasplenic injection model showed that there was no difference of nodules number in both mice, but a dramatic enhancement of nodule formation and increased mucin4 levels were found in pancreas of DJ-1 KO mice. In cell cultures, we further found that B16F10 cells indeed tended to adhere well to primary DJ-1-deficiency pancreatic epithelial cells, which had higher protein levels of mucin4. Notably, a human database also showed the inverse relationship in human pancreas between DJ-1 and mucin4, and mucin4 down-regulation can reverse the enhanced cellular adhesion in DJ-1 KO pancreatic epithelial cells. These results indicated that DJ-1 KO pancreatic tissue creating an appropriate microenvironment benefited development of the cancer cells.


Asunto(s)
Neoplasias , Enfermedad de Parkinson , Animales , Humanos , Ratones , Pulmón/metabolismo , Ratones Noqueados , Páncreas/metabolismo , Enfermedad de Parkinson/metabolismo , Proteína Desglicasa DJ-1/genética , Microambiente Tumoral
15.
ACS Chem Neurosci ; 14(12): 2294-2301, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37289979

RESUMEN

Parkinson's disease (PD) is an incurable neurodegenerative disorder caused by the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Current therapies are only symptomatic and are not able to stop or delay its progression. In order to search for new and more effective therapies, our group carried out a high-throughput screening assay, identifying several candidate compounds that are able to improve locomotor ability in DJ-1ß mutant flies (a Drosophila model of familial PD) and reduce oxidative stress (OS)-induced lethality in DJ-1-deficient SH-SY5Y human cells. One of them was vincamine (VIN), a natural alkaloid obtained from the leaves of Vinca minor. Our results showed that VIN is able to suppress PD-related phenotypes in both Drosophila and human cell PD models. Specifically, VIN reduced OS levels in PD model flies. Besides, VIN diminished OS-induced lethality by decreasing apoptosis, increased mitochondrial viability, and reduced OS levels in DJ-1-deficient human cells. In addition, our results show that VIN might be exerting its beneficial role, at least partially, by the inhibition of voltage-gated sodium channels. Therefore, we propose that these channels might be a promising target in the search for new compounds to treat PD and that VIN represents a potential therapeutic treatment for the disease.


Asunto(s)
Proteínas de Drosophila , Neuroblastoma , Enfermedad de Parkinson , Vincamina , Animales , Humanos , Suplementos Dietéticos , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas del Tejido Nervioso/genética , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/farmacología , Proteína Desglicasa DJ-1/uso terapéutico , Vincamina/farmacología , Vincamina/uso terapéutico
16.
Acta Pharmacol Sin ; 44(10): 1948-1961, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37225849

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative motor disorder characterized by a dramatic reduction in pars compacta of substantia nigra dopaminergic neurons and striatal dopamine (DA) levels. Mutations or deletions in the PARK7/DJ-1 gene are associated with an early-onset familial form of PD. DJ-1 protein prevents neurodegeneration via its regulation of oxidative stress and mitochondrial function as well as its roles in transcription and signal transduction. In this study, we investigated how loss of DJ-1 function affected DA degradation, ROS generation and mitochondrial dysfunction in neuronal cells. We showed that loss of DJ-1 significantly increased the expression of monoamine oxidase (MAO)-B but not MAO-A in both neuronal cells and primary astrocytes. In DJ-1-knockout (KO) mice, MAO-B protein levels in the substantia nigra (SN) and striatal regions were significantly increased. We demonstrated that the induction of MAO-B expression by DJ-1 deficiency depended on early growth response 1 (EGR1) in N2a cells. By coimmunoprecipitation omics analysis, we found that DJ-1 interacted with receptor of activated protein C kinase 1 (RACK1), a scaffolding protein, and thus inhibited the activity of the PKC/JNK/AP-1/EGR1 cascade. The PKC inhibitor sotrastaurin or the JNK inhibitor SP600125 completely inhibited DJ-1 deficiency-induced EGR1 and MAO-B expression in N2a cells. Moreover, the MAO-B inhibitor rasagiline inhibited mitochondrial ROS generation and rescued neuronal cell death caused by DJ-1 deficiency, especially in response to MPTP stimulation in vitro and in vivo. These results suggest that DJ-1 exerts neuroprotective effects by inhibiting the expression of MAO-B distributed at the mitochondrial outer membrane, which mediates DA degradation, ROS generation and mitochondrial dysfunction. This study reveals a mechanistic link between DJ-1 and MAO-B expression and contributes to understanding the crosslinks among pathogenic factors, mitochondrial dysfunction and oxidative stress in PD pathogenesis.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Monoaminooxidasa/farmacología , Regulación hacia Arriba , Especies Reactivas de Oxígeno/metabolismo , Neuronas Dopaminérgicas/metabolismo , Transducción de Señal , Enfermedades Neurodegenerativas/metabolismo , Receptores de Cinasa C Activada/genética , Receptores de Cinasa C Activada/metabolismo , Receptores de Cinasa C Activada/farmacología , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo
17.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108835

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an adult-onset disease which causes the progressive degeneration of cortical and spinal motoneurons, leading to death a few years after the first symptom onset. ALS is mainly a sporadic disorder, and its causative mechanisms are mostly unclear. About 5-10% of cases have a genetic inheritance, and the study of ALS-associated genes has been fundamental in defining the pathological pathways likely also involved in the sporadic forms of the disease. Mutations affecting the DJ-1 gene appear to explain a subset of familial ALS forms. DJ-1 is involved in multiple molecular mechanisms, acting primarily as a protective agent against oxidative stress. Here, we focus on the involvement of DJ-1 in interconnected cellular functions related to mitochondrial homeostasis, reactive oxygen species (ROS) levels, energy metabolism, and hypoxia response, in both physiological and pathological conditions. We discuss the possibility that impairments in one of these pathways may affect the others, contributing to a pathological background in which additional environmental or genetic factors may act in favor of the onset and/or progression of ALS. These pathways may represent potential therapeutic targets to reduce the likelihood of developing ALS and/or slow disease progression.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Adulto , Esclerosis Amiotrófica Lateral/metabolismo , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo , Neuronas Motoras/metabolismo , Mutación , Estrés Oxidativo/fisiología
18.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37047429

RESUMEN

DJ-1 is a redox sensitive protein with a wide range of functions related to oxidative stress protection. Mutations in the park7 gene, which codes for DJ-1 are associated with early onset familial Parkinson's disease and increased astrocytic DJ-1 levels are found in pathologic tissues from idiopathic Parkinson's disease. We have previously established a DJ-1 knockout zebrafish line that developed normally, but with aging the DJ-1 null fish had a lowered level of tyrosine hydroxylase, respiratory mitochondrial failure and a lower body mass. Here we have examined the DJ-1 knockout from the early adult stage and show that loss of DJ-1 results in a progressive, age-dependent increase in both motoric and non-motoric symptoms associated to Parkinson's disease. These changes coincide with changes in mitochondrial and mitochondrial associated proteins. Recent studies have suggested that a decline in NAD+ can contribute to Parkinson's disease and that supplementation of NAD+ precursors may delay disease progression. We found that the brain NAD+/NADH ratio decreased in aging zebrafish but did not correlate with DJ-1 induced altered behavior. Differences were first observed at the late adult stage in which NAD+ and NADPH levels were decreased in DJ-1 knockouts. Considering the experimental power of zebrafish and the development of Parkinson's disease-related symptoms in the DJ-1 null fish, this model can serve as a useful tool both to understand the progression of the disease and the effect of suggested treatments.


Asunto(s)
Enfermedad de Parkinson , Animales , Enfermedad de Parkinson/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , NAD/metabolismo , Encéfalo/metabolismo , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo
19.
J Neuroinflammation ; 20(1): 95, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072827

RESUMEN

Microglia are the immune effector cells of the brain playing critical roles in immune surveillance and neuroprotection in healthy conditions, while they can sustain neuroinflammatory and neurotoxic processes in neurodegenerative diseases, including Parkinson's disease (PD). Although the precise triggers of PD remain obscure, causative genetic mutations, which aid in the identification of molecular pathways underlying the pathogenesis of idiopathic forms, represent 10% of the patients. Among the inherited forms, loss of function of PARK7, which encodes the protein DJ-1, results in autosomal recessive early-onset PD. Yet, although protection against oxidative stress is the most prominent task ascribed to DJ-1, the underlying mechanisms linking DJ-1 deficiency to the onset of PD are a current matter of investigation. This review provides an overview of the role of DJ-1 in neuroinflammation, with a special focus on its functions in microglia genetic programs and immunological traits. Furthermore, it discusses the relevance of targeting dysregulated pathways in microglia under DJ-1 deficiency and their importance as therapeutic targets in PD. Lastly, it addresses the prospect to consider DJ-1, detected in its oxidized form in idiopathic PD, as a biomarker and to take into account DJ-1-enhancing compounds as therapeutics dampening oxidative stress and neuroinflammation.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Enfermedades Neurodegenerativas/metabolismo , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo , Estrés Oxidativo/genética
20.
Protein Sci ; 32(5): e4641, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37060572

RESUMEN

DJ-1, a protein encoded by PARK7 plays a protective role against neurodegeneration. Since its glyoxalase III activity catalyzing methylglyoxal (MG) to lactate was discovered, DJ-1 has been re-established as a deglycase decomposing the MG-intermediates with amino acids and nucleotides (hemithioacetal and hemiaminal) rather than MG itself, but it is still debatable. Here, we have clarified that human DJ-1 directly recognizes MG, and not MG-intermediates, by monitoring the detailed catalytic processes and enantiomeric lactate products. The hemithioacetal intermediate between C106 of 15 N-labeled DJ-1 (15N DJ-1) and MG was also monitored by NMR. TRIS molecule formed stable diastereotopic complexes with MG (Kd , 1.57 ± 0.27 mM) by utilizing its three OH groups, which likely disturbed the assay of deglycase activity. The low kcat of DJ-1 for MG and its MG-induced structural perturbation may suggest that DJ-1 has a regulatory function as an in vivo sensor of reactive carbonyl stress.


Asunto(s)
Enfermedad de Parkinson , Humanos , Aldehído Oxidorreductasas , Ácido Láctico/metabolismo , Enfermedad de Parkinson/metabolismo , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo , Piruvaldehído/química , Piruvaldehído/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...