Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Science ; 384(6693): eadk6742, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38669575

RESUMEN

Drugs of abuse are thought to promote addiction in part by "hijacking" brain reward systems, but the underlying mechanisms remain undefined. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we found that drugs of abuse augment dopaminoceptive ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell type-specific manner. Combining FOS-Seq, CRISPR-perturbation, and single-nucleus RNA sequencing, we identified Rheb as a molecular substrate that regulates cell type-specific signal transduction in NAc while enabling drugs to suppress natural reward consumption. Mapping NAc-projecting regions activated by drugs of abuse revealed input-specific effects on natural reward consumption. These findings characterize the dynamic, molecular and circuit basis of a common reward pathway, wherein drugs of abuse interfere with the fulfillment of innate needs.


Asunto(s)
Homeostasis , Núcleo Accumbens , Recompensa , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Animales , Ratones , Neuronas/metabolismo , Drogas Ilícitas/efectos adversos , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Masculino , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Transducción de Señal , Trastornos Relacionados con Sustancias , Análisis de la Célula Individual , Cocaína/farmacología , Calcio/metabolismo
2.
J Cell Mol Med ; 28(9): e18349, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686493

RESUMEN

The pathogenesis of trauma-induced heterotopic ossification (HO) in the tendon remains unclear, posing a challenging hurdle in treatment. Recognizing inflammation as the root cause of HO, anti-inflammatory agents hold promise for its management. Malvidin (MA), possessing anti-inflammatory properties, emerges as a potential agent to impede HO progression. This study aimed to investigate the effect of MA in treating trauma-induced HO and unravel its underlying mechanisms. Herein, the effectiveness of MA in preventing HO formation was assessed through local injection in a rat model. The potential mechanism underlying MA's treatment was investigated in the tendon-resident progenitor cells of tendon-derived stem cells (TDSCs), exploring its pathway in HO formation. The findings demonstrated that MA effectively hindered the osteogenic differentiation of TDSCs by inhibiting the mTORC1 signalling pathway, consequently impeding the progression of trauma-induced HO of Achilles tendon in rats. Specifically, MA facilitated the degradation of Rheb through the K48-linked ubiquitination-proteasome pathway by modulating USP4 and intercepted the interaction between Rheb and the mTORC1 complex, thus inhibiting the mTORC1 signalling pathway. Hence, MA presents itself as a promising candidate for treating trauma-induced HO in the Achilles tendon, acting by targeting Rheb for degradation through the ubiquitin-proteasome pathway.


Asunto(s)
Osificación Heterotópica , Complejo de la Endopetidasa Proteasomal , Proteína Homóloga de Ras Enriquecida en el Cerebro , Transducción de Señal , Ubiquitina , Animales , Ratas , Complejo de la Endopetidasa Proteasomal/metabolismo , Osificación Heterotópica/metabolismo , Osificación Heterotópica/etiología , Osificación Heterotópica/patología , Transducción de Señal/efectos de los fármacos , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Ubiquitina/metabolismo , Masculino , Osteogénesis/efectos de los fármacos , Tendones/metabolismo , Tendones/patología , Ratas Sprague-Dawley , Traumatismos de los Tendones/metabolismo , Traumatismos de los Tendones/patología , Traumatismos de los Tendones/complicaciones , Proteolisis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Tendón Calcáneo/metabolismo , Tendón Calcáneo/patología , Tendón Calcáneo/lesiones , Modelos Animales de Enfermedad , Ubiquitinación , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células Madre/metabolismo , Células Madre/efectos de los fármacos
3.
Front Biosci (Landmark Ed) ; 29(3): 116, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38538289

RESUMEN

BACKGROUND: The Mammalian Target of Rapamycin (mTOR) signaling pathway regulates protein phosphorylation and exerts control over major cellular processes. mTOR is activated by the small G-protein Ras Homolog Enriched in Brain (Rheb), which is encoded by the Rheb1 and Rheb-like-1 (RhebL1) genes. There is currently a paucity of information on the role of RhebL1, and specifically its involvement in viral infection. In the present study we investigated the role of RhebL1 during human influenza A/NWS/33 (NWS/33) (H1N1) virus infection of rhesus monkey-kidney (LLC-MK2) cells and human type II alveolar epithelial (A549) cells. METHODS: To assess the efficiency of NWS/33 virus replication, the expression of viral nucleoprotein was examined by indirect immunofluorescence (IIF) and the viral yield by fifty percent tissue culture infectious dose assay. An RNA-mediated RNA interference approach was used to investigate the role of RhebL1 during NWS/33 infection. RhebL1 expression was evaluated by IIF, Western blotting, and enzyme-linked immunosorbent assays. A two-tailed Student's t-test was applied to evaluate differences between groups. RESULTS: RhebL1 was differentially expressed in the cell models used in this study. Silencing of the RhebL1 gene led to increased NWS/33 virus infection in A549 cells, but not in LLC-MK2 cells. Moreover, the expression of hyperphosphorylated cytokeratin 8, a marker of NWS/33 virus infection efficiency, increased in A549 cells depleted of RhebL1 but remained almost unchanged in LLC-MK2 cells. CONCLUSIONS: These are the first results showing involvement of the endogenous RhebL1 protein during viral infection. Our data suggests that RhebL1 exerts a host cell-dependent modulatory role during influenza virus infection. RhebL1 appears to be a restrictive factor against NWS/33 virus replication in A549 cells, but not in LLC-MK2.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Humanos , Encéfalo/metabolismo , Virus de la Influenza A/fisiología , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Macaca mulatta , Animales
4.
Cell Res ; 34(5): 355-369, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38448650

RESUMEN

Rheb is a small G protein that functions as the direct activator of the mechanistic target of rapamycin complex 1 (mTORC1) to coordinate signaling cascades in response to nutrients and growth factors. Despite extensive studies, the guanine nucleotide exchange factor (GEF) that directly activates Rheb remains unclear, at least in part due to the dynamic and transient nature of protein-protein interactions (PPIs) that are the hallmarks of signal transduction. Here, we report the development of a rapid and robust proximity labeling system named Pyrococcus horikoshii biotin protein ligase (PhBPL)-assisted biotin identification (PhastID) and detail the insulin-stimulated changes in Rheb-proximity protein networks that were identified using PhastID. In particular, we found that the lysosomal V-ATPase subunit ATP6AP1 could dynamically interact with Rheb. ATP6AP1 could directly bind to Rheb through its last 12 amino acids and utilizes a tri-aspartate motif in its highly conserved C-tail to enhance Rheb GTP loading. In fact, targeting the ATP6AP1 C-tail could block Rheb activation and inhibit cancer cell proliferation and migration. Our findings highlight the versatility of PhastID in mapping transient PPIs in live cells, reveal ATP6AP1's role as an unconventional GEF for Rheb, and underscore the importance of ATP6AP1 in integrating mTORC1 activation signals through Rheb, filling in the missing link in Rheb/mTORC1 activation.


Asunto(s)
Proteína Homóloga de Ras Enriquecida en el Cerebro , Humanos , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células HEK293 , Factores de Intercambio de Guanina Nucleótido/metabolismo , Unión Proteica , Transducción de Señal , Línea Celular Tumoral
5.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338768

RESUMEN

Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina , Neoplasias , Proteína Homóloga de Ras Enriquecida en el Cerebro , Encéfalo/metabolismo , Neoplasias/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Sirolimus , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
6.
Curr Med Sci ; 43(6): 1195-1200, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38153629

RESUMEN

OBJECTIVE: This study aimed to investigate the potential mechanisms by which lysyl oxidase like 3 (LOXL3) affects the autophagy in chondrocytes in osteoarthritis (OA), specifically through the activation of mammalian target of rapamycin complex 1 (mTORC1). METHODS: To establish an OA model, rats underwent anterior cruciate ligament transection (ACLT). Chondrocytes were isolated from cartilage tissues and cultured. Western blotting was performed to assess the expression of LOXL3, Rheb, phosphorylation of p70S6K (p-p70S6K, a downstream marker of mTORC1), and autophagy markers. The autophagy of chondrocytes was observed using an immunofluorescence assay. RESULTS: The expression levels of both LOXL3 and Rheb proteins were upregulated in chondrocytes isolated from the OA model cartilage, in comparison to those from the normal cartilage. The silencing of LOXL3 resulted in a decrease in the protein levels of Rheb and p-p70S6K, as well as an increase in the expression of autophagy-related proteins. Additionally, the effect of LOXL3 could be reversed through the silencing of Rheb. The results of the immunofluorescence assay confirmed the impact of LOXL3 and Rheb on chondrocyte autophagy. CONCLUSION: LOXL3 inhibits chondrocyte autophagy by activating the Rheb and mTORC1 signaling pathways.


Asunto(s)
Aminoácido Oxidorreductasas , Condrocitos , Osteoartritis , Animales , Ratas , Autofagia/genética , Mamíferos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Osteoartritis/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Aminoácido Oxidorreductasas/genética
7.
J Biol Chem ; 299(12): 105455, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949232

RESUMEN

The Akt-Rheb-mTORC1 pathway plays a crucial role in regulating cell growth, but the mechanisms underlying the activation of Rheb-mTORC1 by Akt remain unclear. In our previous study, we found that CBAP was highly expressed in human T-ALL cells and primary tumors, and its deficiency led to reduced phosphorylation of TSC2/S6K1 signaling proteins as well as impaired cell proliferation and leukemogenicity. We also demonstrated that CBAP was required for Akt-mediated TSC2 phosphorylation in vitro. In response to insulin, CBAP was also necessary for the phosphorylation of TSC2/S6K1 and the dissociation of TSC2 from the lysosomal membrane. Here we report that CBAP interacts with AKT and TSC2, and knockout of CBAP or serum starvation leads to an increase in TSC1 in the Akt/TSC2 immunoprecipitation complexes. Lysosomal-anchored CBAP was found to override serum starvation and promote S6K1 and 4EBP1 phosphorylation and c-Myc expression in a TSC2-dependent manner. Additionally, recombinant CBAP inhibited the GAP activity of TSC2 complexes in vitro, leading to increased Rheb-GTP loading, likely due to the competition between TSC1 and CBAP for binding to the HBD domain of TSC2. Overexpression of the N26 region of CBAP, which is crucial for binding to TSC2, resulted in a decrease in mTORC1 signaling and an increase in TSC1 association with the TSC2/AKT complex, ultimately leading to increased GAP activity toward Rheb and impaired cell proliferation. Thus, we propose that CBAP can modulate the stability of TSC1-TSC2 as well as promote the translocation of TSC1/TSC2 complexes away from lysosomes to regulate Rheb-mTORC1 signaling.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Membrana , Proteínas Proto-Oncogénicas c-akt , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Humanos , Proliferación Celular , Guanosina Trifosfato/metabolismo , Inmunoprecipitación , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
8.
Protein Sci ; 32(8): e4731, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37462942

RESUMEN

The mTORC1 signaling pathway regulates cell growth and metabolism in a variety of organisms from yeast to human, and inhibition of the mTORC1 pathway has the prospect to treat cancer or achieve longevity. The tuberous sclerosis protein complex (TSCC) is a master negative regulator of the mTORC1 signaling pathway through hydrolyzing the GTP loaded on the small GTPase Rheb, which is a key activator of mTOR. However, the large size (~700 kDa) and complex structural organization of TSCC render it vulnerable to degradation and inactivation, thus limiting its potential application. In this work, based on thorough analysis and understanding of the structural mechanism of how the stabilization domain of TSC2 secures the association of TSC2-GAP with Rheb and thus enhances its GAP activity, we designed two proteins, namely SSG-MTM (short stabilization domain and GAP domain-membrane targeting motif) and SSG-TSC1N, which were able to function like TSCC to negatively regulate Rheb and mTORC1, but with much-reduced sizes (~1/15 and ~ 1/9 of the size of TSCC, respectively). Biochemical and cell biological assays demonstrated that these designed proteins indeed could promote the GTPase activity of Rheb to hydrolyze GTP, inhibit the kinase activity of mTORC1, and prevent mTORC1 from down-regulating catabolism and autophagy.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina , Neuropéptidos , Proteína 2 del Complejo de la Esclerosis Tuberosa , Esclerosis Tuberosa , Humanos , Guanosina Trifosfato , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Complejos Multiproteicos/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteínas Supresoras de Tumor
9.
Cell Rep ; 42(7): 112801, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37463107

RESUMEN

How neuronal signaling affects brain myelination remains poorly understood. We show dysregulated neuronal RHEB-mTORC1-DLK1 axis impairs brain myelination. Neuronal Rheb cKO impairs oligodendrocyte differentiation/myelination, with activated neuronal expression of the imprinted gene Dlk1. Neuronal Dlk1 cKO ameliorates myelination deficit in neuronal Rheb cKO mice, indicating that activated neuronal Dlk1 expression contributes to impaired myelination caused by Rheb cKO. The effect of Rheb cKO on Dlk1 expression is mediated by mTORC1; neuronal mTor cKO and Raptor cKO and pharmacological inhibition of mTORC1 recapitulate elevated neuronal Dlk1 expression. We demonstrate that both a secreted form of DLK1 and a membrane-bound DLK1 inhibit the differentiation of cultured oligodendrocyte precursor cells into oligodendrocytes expressing myelin proteins. Finally, neuronal expression of Dlk1 in transgenic mice reduces the formation of mature oligodendrocytes and myelination. This study identifies Dlk1 as an inhibitor of oligodendrocyte myelination and a mechanism linking altered neuronal signaling with oligodendrocyte dysfunction.


Asunto(s)
Vaina de Mielina , Proteína Homóloga de Ras Enriquecida en el Cerebro , Transducción de Señal , Animales , Ratones , Diferenciación Celular/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Transgénicos , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal/fisiología , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo
10.
Neurology ; 101(2): 78-82, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37015817

RESUMEN

OBJECTIVE: To describe a child meeting diagnostic criteria for tuberous sclerosis complex (TSC) carrying a pathogenic somatic variant in RHEB, but no pathogenic variants in the 2 known TSC genes, TSC1 or TSC2. METHODS: We present the clinical and imaging findings in a child presenting with drug-resistant focal seizures and multiple cortical tubers, a subependymal giant cell astrocytoma and multiple subependymal nodules in 1 cerebral hemisphere. Targeted panel sequencing and exome sequencing were performed on genomic DNA derived from blood and resected tuber tissue. RESULTS: The child satisfied clinical diagnostic criteria for TSC, having 3 major features, only 2 of which are required for diagnosis. Genetic testing did not identify pathogenic variants or copy number variations in TSC1 or TSC2 but identified a pathogenic somatic RHEB variant (NM_005614.4:c.104_105delACinsTA [p.Tyr35Leu]) in the cortical tuber. DISCUSSION: RHEB is a partner of the TSC1/2 complex in the mechanistic target of rapamycin pathway. Somatic variants in RHEB are associated with focal cortical dysplasia and hemimegalencephaly. We propose that variants in RHEB may explain some of the genetically undiagnosed TSC cases and may be the third gene for TSC, or TSC3.


Asunto(s)
Esclerosis Tuberosa , Proteínas Supresoras de Tumor , Humanos , Niño , Proteínas Supresoras de Tumor/genética , Mutación/genética , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/diagnóstico por imagen , Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Variaciones en el Número de Copia de ADN , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética
11.
Mol Biol Cell ; 34(4): ar23, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36735494

RESUMEN

The mechanistic target of rapamycin (mTOR) kinase regulates a major signaling pathway in eukaryotic cells. In addition to regulation of mTORC1 at lysosomes, mTORC1 is also localized at other locations. However, little is known about the recruitment and activation of mTORC1 at nonlysosomal sites. To identify regulators of mTORC1 recruitment to nonlysosomal compartments, novel interacting partners with the mTORC1 subunit, Raptor, were identified using immunoprecipitation and mass spectrometry. We show that one of the interacting partners, Arf5, is a novel regulator of mTORC1 signaling at plasma membrane ruffles. Arf5-GFP localizes with endogenous mTOR at PI3,4P2-enriched membrane ruffles together with the GTPase required for mTORC1 activation, Rheb. Knockdown of Arf5 reduced the recruitment of mTOR to membrane ruffles. The activation of mTORC1 at membrane ruffles was directly demonstrated using a plasma membrane-targeted mTORC1 biosensor, and Arf5 was shown to enhance the phosphorylation of the mTORC1 biosensor substrate. In addition, endogenous Arf5 was shown to be required for rapid activation of mTORC1-mediated S6 phosphorylation following nutrient starvation and refeeding. Our findings reveal a novel Arf5-dependent pathway for recruitment and activation of mTORC1 at plasma membrane ruffles, a process relevant for spatial and temporal regulation of mTORC1 by receptor and nutrient stimuli.


Asunto(s)
Complejos Multiproteicos , Neuropéptidos , Membrana Celular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Complejos Multiproteicos/metabolismo , Neuropéptidos/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factores de Ribosilacion-ADP/metabolismo
12.
Cell Death Dis ; 13(11): 1003, 2022 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-36435842

RESUMEN

The oncoprotein GOLPH3 (Golgi phosphoprotein 3) is an evolutionarily conserved phosphatidylinositol 4-phosphate effector, mainly localized to the Golgi apparatus, where it supports organelle architecture and vesicular trafficking. Overexpression of human GOLPH3 correlates with poor prognosis in several cancer types and is associated with enhanced signaling downstream of mTOR (mechanistic target of rapamycin). However, the molecular link between GOLPH3 and mTOR remains elusive. Studies in Drosophila melanogaster have shown that Translationally controlled tumor protein (Tctp) and 14-3-3 proteins are required for organ growth by supporting the function of the small GTPase Ras homolog enriched in the brain (Rheb) during mTORC1 (mTOR complex 1) signaling. Here we demonstrate that Drosophila GOLPH3 (dGOLPH3) physically interacts with Tctp and 14-3-3ζ. RNAi-mediated knockdown of dGOLPH3 reduces wing and eye size and enhances the phenotypes of Tctp RNAi. This phenotype is partially rescued by overexpression of Tctp, 14-3-3ζ, or Rheb. We also show that the Golgi localization of Rheb in Drosophila cells depends on dGOLPH3. Consistent with dGOLPH3 involvement in Rheb-mediated mTORC1 activation, depletion of dGOLPH3 also reduces levels of phosphorylated ribosomal S6 kinase, a downstream target of mTORC1. Finally, the autophagy flux and the expression of autophagic transcription factors of the TFEB family, which anti correlates with mTOR signaling, are compromised upon reduction of dGOLPH3. Overall, our data provide the first in vivo demonstration that GOLPH3 regulates organ growth by directly associating with mTOR signaling proteins.


Asunto(s)
Drosophila , Neuropéptidos , Animales , Humanos , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Proteínas 14-3-3/metabolismo , Neuropéptidos/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
13.
PLoS Genet ; 18(11): e1010483, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36374919

RESUMEN

The target of the rapamycin (TOR) signaling pathway plays a negative role in controlling virulence in phytopathogenic fungi. However, the actual targets involved in virulence are currently unknown. Using the corn smut fungus Ustilago maydis, we tried to address the effects of the ectopic activation of TOR on virulence. We obtained gain-of-function mutations in the Rheb GTPase, one of the conserved TOR kinase regulators. We have found that unscheduled activation of Rheb resulted in the alteration of the proper localization of the pheromone receptor, Pra1, and thereby pheromone insensitivity. Since pheromone signaling triggers virulence in Ustilaginales, we believe that the Rheb-induced pheromone blindness was responsible for the associated lack of virulence. Strikingly, although these effects required the concourse of the Rsp5 ubiquitin ligase and the Art3 α-arrestin, the TOR kinase was not involved. Several eukaryotic organisms have shown that Rheb transmits environmental information through TOR-dependent and -independent pathways. Therefore, our results expand the range of signaling manners at which environmental conditions could impinge on the virulence of phytopathogenic fungi.


Asunto(s)
Ustilago , Ustilago/genética , Feromonas/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Zea mays/metabolismo , Hongos/metabolismo , Ceguera , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
14.
Methods Enzymol ; 675: 131-158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36220268

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient levels in the cell and based on the availability, regulates cellular growth and proliferation. Its activity is tightly modulated by two GTPase units, the Rag GTPases and the Rheb GTPase. The Rag GTPases are the central hub of amino acid sensing as they summarize the amino acid signals from upstream regulators and control the subcellular localization of mTORC1. Unique from canonical signaling GTPases, the Rag GTPases are obligatory heterodimers, and the two subunits coordinate their nucleotide loading states to regulate their functional states. Robust biochemical analysis is indispensable to understanding the molecular mechanism governing the GTPase cycle. This chapter discusses protocols for purifying and biochemically characterizing the Rag GTPase heterodimer. We described two purification protocols to recombinantly produce the Rag GTPase heterodimer in large quantities. We then described assays to quantitatively measure the nucleotide binding and hydrolysis by the Rag GTPases. These assays allow for a thorough investigation of this unique heterodimeric GTPase, and they could be applicable to investigations of other noncanonical GTPases.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Aminoácidos/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/química , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Nucleótidos/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo
15.
Biochem Biophys Res Commun ; 621: 74-79, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-35810594

RESUMEN

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature T lymphocytes. Although various therapeutic approaches have been developed, refractoriness of chemotherapy and relapse cause a poor prognosis of the disease and further therapeutic strategies are required. Here, we report that Ras homolog enriched in brain (RHEB), a critical regulator of mTOR complex 1 activity, is a potential target for T-ALL therapy. In this study, we established an sgRNA library that comprehensively targeted mTOR upstream and downstream pathways, including autophagy. CRISPR/Cas9 dropout screening revealed critical roles of mTOR-related molecules in T-ALL cell survival. Among the regulators, we focused on RHEB because we previously found that it is dispensable for normal hematopoiesis in mice. Transcriptome and metabolic analyses revealed that RHEB deficiency suppressed de novo nucleotide biosynthesis, leading to human T-ALL cell death. Importantly, RHEB deficiency suppressed tumor growth in both mouse and xenograft models. Our data provide a potential strategy for efficient therapy of T-ALL by RHEB-specific inhibition.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteína Homóloga de Ras Enriquecida en el Cerebro , Animales , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
16.
Int J Biol Sci ; 18(10): 4187-4202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844793

RESUMEN

Lung cancer is one of the deadliest cancers, in which non-small cell lung cancer (NSCLC) accounting for 85% and has a low survival rate of 5 years. Dysregulation of microRNAs (miRNAs) can participate in tumor regulation and many major diseases. In this study, we found that miR-199a-3p/5p were down-expressed in NSCLC tissue samples, cell lines, and the patient sample database. MiR-199a-3p/5p overexpression could significantly suppress cell proliferation, migration ability and promote apoptosis. Through software prediction, ras homolog enriched in brain (Rheb) was identified as a common target of miR-199a-3p and miR-199a-5p, which participated in regulating mTOR signaling pathway. The same effect of inhibiting NSCLC appeared after down-regulating the expression of Rheb. Furthermore, our findings revealed that miR-199a can significantly inhibit tumor growth and metastasis in vivo, which fully demonstrates that miR-199a plays a tumor suppressive role in NSCLC. In addition, miR-199a-3p/5p has been shown to enhance the sensitivity of gefitinib to EGFR-T790M in NSCLC. Collectively, these results prove that miR-199a-3p/5p can act as cancer suppressor genes to inhibit the mTOR signaling pathway by targeting Rheb, which in turn inhibits the regulatory process of NSCLC. Thus, to investigate the anti-cancer effect of pre-miR-199a/Rheb/mTOR axis in NSCLC, miR-199a-3p and miR-199a-5p have the potential to become an early diagnostic marker or therapeutic target for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Encéfalo/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
17.
DNA Cell Biol ; 41(7): 683-690, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35687365

RESUMEN

Ras homologue enriched in brain 1 (Rheb1), an upstream activator of the mechanistic target of rapamycin complex 1 (mTORC1), is known to modulate various cellular processes. However, its impact on bone metabolism in vivo remains unknown. The study aimed at understanding the role of Rheb1 on bone homeostasis. We measured the serum parameters and performed histomorphometry, quantitative real-time polymerase chain reaction, and Western blotting, along with the generation of mouse gene knockout (KO) model, and conducted a microcomputed tomography analysis and tartrate-resistant acid phosphatase staining, to delineate the impacts of Rheb1 on bone homeostasis. In the Rheb1 KO mice, the results showed that Rheb1 KO caused significant damage to the bone microarchitecture, indicating that mTORC1 activity was essential for the regulation of bone homeostasis. Specifically, suppressed mineralization activity in primary osteoblasts and a decreased osteoblast number were observed in the Rheb1 KO mice, demonstrating that loss of Rheb1 led to impaired osteoblastic differentiation. Furthermore, the higher apoptotic ratio in Rheb1-null osteocytes could promote Tnfsf11 expression and lead to an increase in osteoclasts, indicating increased bone resorption activity in the KO mice. The findings confirmed that Rheb1 deletion in osteoblasts/osteocytes led to osteopenia due to impaired bone formation and enhanced bone resorption.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Osteocitos , Proteína Homóloga de Ras Enriquecida en el Cerebro , Animales , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/patología , Resorción Ósea/genética , Resorción Ósea/metabolismo , Diferenciación Celular , Eliminación de Gen , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteoblastos/patología , Osteocitos/metabolismo , Osteocitos/patología , Osteogénesis/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Microtomografía por Rayos X
18.
J Biol Chem ; 298(7): 102044, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35595099

RESUMEN

Eukaryotic translation initiation factor 3 subunit A (eIF3a), the largest subunit of the eIF3 complex, has been shown to be overexpressed in malignant cancer cells, potentially making it a proto-oncogene. eIF3a overexpression can drive cancer cell proliferation but contributes to better prognosis. While its contribution to prognosis was previously shown to be due to its function in suppressing synthesis of DNA damage repair proteins, it remains unclear how eIF3a regulates cancer cell proliferation. In this study, we show using genetic approaches that eIF3a controls cell proliferation by regulating glucose metabolism via the phosphorylation and activation of AMP-activated protein kinase alpha (AMPKα) at Thr172 in its kinase activation loop. We demonstrate that eIF3a regulates AMPK activation mainly by controlling synthesis of the small GTPase Rheb, largely independent of the well-known AMPK upstream liver kinase B1 and Ca2+/calmodulin-dependent protein kinase kinase 2, and also independent of mammalian target of rapamycin signaling and glucose levels. Our findings suggest that glucose metabolism in and proliferation of cancer cells may be translationally regulated via a novel eIF3a-Rheb-AMPK signaling axis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Factor 3 de Iniciación Eucariótica , Glucosa , Proteína Homóloga de Ras Enriquecida en el Cerebro , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Proliferación Celular , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Glucosa/metabolismo , Humanos , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo
19.
Cell Chem Biol ; 29(6): 1037-1045.e4, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35294906

RESUMEN

The small GTPase Ras homolog enriched in brain (Rheb) plays a critical role in activating the mechanistic target of rapamycin complex 1 (mTORC1), a signaling hub that regulates various cellular functions. We recently observed nuclear mTORC1 activity, raising an intriguing question as to how Rheb, which is known to be farnesylated and localized to intracellular membranes, regulates nuclear mTORC1. In this study, we found that active Rheb is present in the nucleus and required for nuclear mTORC1 activity. We showed that inhibition of farnesyltransferase reduced cytosolic, but not nuclear, mTORC1 activity. Furthermore, a farnesylation-deficient Rheb mutant, with preferential nuclear localization and specific lysosome tethering, enables nuclear and cytosolic mTORC1 activities, respectively. These data suggest that non-farnesylated Rheb is capable of interacting with and activating mTORC1, providing mechanistic insights into the molecular functioning of Rheb as well as regulation of the recently observed, active pool of nuclear mTORC1.


Asunto(s)
Neuropéptidos , Serina-Treonina Quinasas TOR , Encéfalo/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Complejos Multiproteicos/metabolismo , Neuropéptidos/metabolismo , Prenilación , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
20.
Oxid Med Cell Longev ; 2022: 8603427, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222806

RESUMEN

Ischemic stroke is a common disease of the central nervous system, and ischemic brain injury (IBI) is its main manifestation. Recently, extracellular vesicles (EVs) have been strongly related to the diagnosis and treatment of IBI. However, the underlying mechanism of their effects remains enigmatic. In the present study, we aimed to study how miR-155-5p plays a role in choroid plexus epithelial (CPE) cell-derived EVs in IBI pathology. We found that miR-155-5p expression was enriched in CPE cell-derived EVs, which were subsequently internalized by neurons, enabling the delivery of miR-155-5p into neurons. An inducible oxygen and glucose deprivation and reoxygenation (OGD/R) cell model was developed to mimic ischemic neuronal injury in vitro. miR-155-5p overexpression led to reduced neuron viability, promoted apoptosis, elevated autophagic proteins' expression, and activated NLR family pyrin domain-containing 3- (NLRP3-) related inflammasomes, thereby aggravating OGD-induced neuronal injury. A dual-luciferase reporter assay exhibited that miR-155-5p could inhibit the Ras homolog enriched in brain (Rheb) expression, a mechanism critical for miR-155-5p-mediated neuronal injury. Furthermore, a mouse IBI model was developed using the transient middle cerebral artery occlusion (tMCAO) method. Animal experiments verified that miR-155p delivery via CPE cell-derived EVs aggravated IBI by suppressing Rheb expression. In conclusion, miR-155-5p in CPE-derived EVs can aggravate IBI pathology by suppressing Rheb expression and promoting NLRP3-mediated inflammasomes, suggesting its role as a potential therapeutic target in IBI.


Asunto(s)
Autofagia , Isquemia Encefálica/patología , Plexo Coroideo/metabolismo , Células Epiteliales/metabolismo , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Animales , Apoptosis , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Vesículas Extracelulares/genética , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Inflamasomas/metabolismo , Inflamación , Ratones , MicroARNs/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuronas/metabolismo , Neuronas/patología , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...