Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 893
Filtrar
1.
Sci Rep ; 14(1): 8938, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637629

RESUMEN

Heart failure is a serious medical condition with a poor prognosis. Current treatments can only help manage the symptoms and slow the progression of heart failure. However, there is currently no cure to prevent and reverse cardiac remodeling. Transcription factors are in a central role in various cellular processes, and in the heart, GATA4 and NKX2-5 transcription factors mediate hypertrophic responses and remodeling. We have identified compounds that modulate the synergistic interaction of GATA4 and NKX2-5 and shown that the most promising compound (1, 3i-1000) is cardioprotective in vitro and in vivo. However, direct evidence of its binding site and mechanism of action has not been available. Due to the disordered nature of transcription factors, classical target engagement approaches cannot be utilized. Here, we synthesized a small-molecule ligand-binding pulldown probe of compound 1 to utilize affinity chromatography alongside CETSA, AlphaScreen, and molecular modeling to study ligand binding. These results provide the first evidence of direct physical binding of compound 1 selectively to GATA4. While developing drugs that target transcription factors presents challenges, advances in technologies and knowledge of intrinsically disordered proteins enable the identification of small molecules that can selectively target transcription factors.


Asunto(s)
Insuficiencia Cardíaca , Factores de Transcripción , Humanos , Proteína Homeótica Nkx-2.5/metabolismo , Ligandos , Factores de Transcripción/metabolismo , Cromatografía de Afinidad , Factor de Transcripción GATA4/metabolismo , Proteínas de Homeodominio/metabolismo
2.
Stem Cell Res ; 74: 103262, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38100908

RESUMEN

The transcription factor NKX2-5 is a highly conserved master regulator of heart development which is widely expressed in cardiac progenitors and cardiomyocytes. Fluorescent reporters of NKX2-5 that minimally perturb normal protein expression can enable the identification, quantification and isolation of NKX2-5-expressing cells in a normal physiological state. Here we report the generation of two new hESC lines with eGFP inserted upstream (5') or downstream (3') of NKX2-5, linked by a cleavable T2A peptide. These complementary reporters produce a robust fluorescent signal in cardiac cells and have wide utility particularly for research on developmental biology and disease modelling.


Asunto(s)
Células Madre Embrionarias Humanas , Humanos , Células Madre Embrionarias Humanas/metabolismo , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Miocitos Cardíacos/metabolismo , Línea Celular , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo
3.
J Biol Chem ; 299(12): 105423, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926287

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death worldwide and are heavily influenced by genetic factors. Genome-wide association studies have mapped >90% of CVD-associated variants within the noncoding genome, which can alter the function of regulatory proteins, such as transcription factors (TFs). However, due to the overwhelming number of single-nucleotide polymorphisms (SNPs) (>500,000) in genome-wide association studies, prioritizing variants for in vitro analysis remains challenging. In this work, we implemented a computational approach that considers support vector machine (SVM)-based TF binding site classification and cardiac expression quantitative trait loci (eQTL) analysis to identify and prioritize potential CVD-causing SNPs. We identified 1535 CVD-associated SNPs within TF footprints and putative cardiac enhancers plus 14,218 variants in linkage disequilibrium with genotype-dependent gene expression in cardiac tissues. Using ChIP-seq data from two cardiac TFs (NKX2-5 and TBX5) in human-induced pluripotent stem cell-derived cardiomyocytes, we trained a large-scale gapped k-mer SVM model to identify CVD-associated SNPs that altered NKX2-5 and TBX5 binding. The model was tested by scoring human heart TF genomic footprints within putative enhancers and measuring in vitro binding through electrophoretic mobility shift assay. Five variants predicted to alter NKX2-5 (rs59310144, rs6715570, and rs61872084) and TBX5 (rs7612445 and rs7790964) binding were prioritized for in vitro validation based on the magnitude of the predicted change in binding and are in cardiac tissue eQTLs. All five variants altered NKX2-5 and TBX5 DNA binding. We present a bioinformatic approach that considers tissue-specific eQTL analysis and SVM-based TF binding site classification to prioritize CVD-associated variants for in vitro analysis.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Miocitos Cardíacos/metabolismo , Polimorfismo de Nucleótido Simple , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Stem Cell Reports ; 18(11): 2138-2153, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37863045

RESUMEN

Congenital heart disease often arises from perturbations of transcription factors (TFs) that guide cardiac development. ISLET1 (ISL1) is a TF that influences early cardiac cell fate, as well as differentiation of other cell types including motor neuron progenitors (MNPs) and pancreatic islet cells. While lineage specificity of ISL1 function is likely achieved through combinatorial interactions, its essential cardiac interacting partners are unknown. By assaying ISL1 genomic occupancy in human induced pluripotent stem cell-derived cardiac progenitors (CPs) or MNPs and leveraging the deep learning approach BPNet, we identified motifs of other TFs that predicted ISL1 occupancy in each lineage, with NKX2.5 and GATA motifs being most closely associated to ISL1 in CPs. Experimentally, nearly two-thirds of ISL1-bound loci were co-occupied by NKX2.5 and/or GATA4. Removal of NKX2.5 from CPs led to widespread ISL1 redistribution, and overexpression of NKX2.5 in MNPs led to ISL1 occupancy of CP-specific loci. These results reveal how ISL1 guides lineage choices through a combinatorial code that dictates genomic occupancy and transcription.


Asunto(s)
Células Madre Pluripotentes Inducidas , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Miocitos Cardíacos , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
5.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686171

RESUMEN

The human heart controls blood flow, and therewith enables the adequate supply of oxygen and nutrients to the body. The correct function of the heart is coordinated by the interplay of different cardiac cell types. Thereby, one can distinguish between cells of the working myocardium, the pace-making cells in the sinoatrial node (SAN) and the conduction system cells in the AV-node, the His-bundle or the Purkinje fibres. Tissue-engineering approaches aim to generate hiPSC-derived cardiac tissues for disease modelling and therapeutic usage with a significant improvement in the differentiation quality of myocardium and pace-making cells. The differentiation of cells with cardiac conduction system properties is still challenging, and the produced cell mass and quality is poor. Here, we describe the generation of cardiac cells with properties of the cardiac conduction system, called conduction system-like cells (CSLC). As a primary approach, we introduced a CrispR-Cas9-directed knockout of the NKX2-5 gene in hiPSC. NKX2-5-deficient hiPSC showed altered connexin expression patterns characteristic for the cardiac conduction system with strong connexin 40 and connexin 43 expression and suppressed connexin 45 expression. Application of differentiation protocols for ventricular- or SAN-like cells could not reverse this connexin expression pattern, indicating a stable regulation by NKX2-5 on connexin expression. The contraction behaviour of the hiPSC-derived CSLCs was compared to hiPSC-derived ventricular- and SAN-like cells. We found that the contraction speed of CSLCs resembled the expected contraction rate of human conduction system cells. Overall contraction was reduced in differentiated cells derived from NKX2-5 knockout hiPSC. Comparative transcriptomic data suggest a specification of the cardiac subtype of CSLC that is distinctly different from ventricular or pacemaker-like cells with reduced myocardial gene expression and enhanced extracellular matrix formation for improved electrical insulation. In summary, knockout of NKX2-5 in hiPSC leads to enhanced differentiation of cells with cardiac conduction system features, including connexin expression and contraction behaviour.


Asunto(s)
Proteína Homeótica Nkx-2.5 , Células de Purkinje , Factores de Transcripción , Humanos , Trastorno del Sistema de Conducción Cardíaco , Proteína Homeótica Nkx-2.5/genética , Ramos Subendocárdicos , Transducción de Señal , Nodo Sinoatrial , Células Madre , Factores de Transcripción/genética , Células Madre Pluripotentes Inducidas/metabolismo
6.
Circulation ; 148(21): 1705-1722, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37772400

RESUMEN

BACKGROUND: Conotruncal defects due to developmental abnormalities of the outflow tract (OFT) are an important cause of cyanotic congenital heart disease. Dysregulation of transcriptional programs tuned by NKX2-5 (NK2 homeobox 5), GATA6 (GATA binding protein 6), and TBX1 (T-box transcription factor 1) have been implicated in abnormal OFT morphogenesis. However, there remains no consensus on how these transcriptional programs function in a unified gene regulatory network within the OFT. METHODS: We generated mice harboring a 226-nucleotide deletion of a highly conserved cardiac enhancer containing 2 GATA-binding sites located ≈9.4 kb upstream of the transcription start site of Nkx2-5 (Nkx2-5∆enh) using CRISPR-Cas9 gene editing and assessed phenotypes. Cardiac defects in Nkx2-5∆enh/∆enh mice were structurally characterized using histology and scanning electron microscopy, and physiologically assessed using electrocardiography, echocardiography, and optical mapping. Transcriptome analyses were performed using RNA sequencing and single-cell RNA sequencing data sets. Endogenous GATA6 interaction with and activity on the NKX2-5 enhancer was studied using chromatin immunoprecipitation sequencing and transposase-accessible chromatin sequencing in human induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Nkx2-5∆enh/∆enh mice recapitulated cyanotic conotruncal defects seen in patients with NKX2-5, GATA6, and TBX1 mutations. Nkx2-5∆enh/∆enh mice also exhibited defects in right Purkinje fiber network formation, resulting in right bundle-branch block. Enhancer deletion reduced embryonic Nkx2-5 expression selectively in the right ventricle and OFT of mutant hearts, indicating that enhancer activity is localized to the anterior second heart field. Transcriptional profiling of the mutant OFT revealed downregulation of important genes involved in OFT rotation and septation, such as Tbx1, Pitx2, and Sema3c. Endogenous GATA6 interacted with the highly conserved enhancer in human induced pluripotent stem cell-derived cardiomyocytes and in wild-type mouse hearts. We found critical dose dependency of cardiac enhancer accessibility on GATA6 gene dosage in human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: Our results using human and mouse models reveal an essential gene regulatory network of the OFT that requires an anterior second heart field enhancer to link GATA6 with NKX2-5-dependent rotation and septation gene programs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Factores de Transcripción , Humanos , Ratones , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/genética , Redes Reguladoras de Genes , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Ratones Transgénicos , Células Madre Pluripotentes Inducidas/metabolismo , Corazón , Miocitos Cardíacos/metabolismo , Regulación del Desarrollo de la Expresión Génica
7.
Am J Physiol Heart Circ Physiol ; 325(2): H293-H310, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37326999

RESUMEN

The comprehensive characterization of cardiac structure and function is critical to better understanding various murine models of cardiac disease. We demonstrate here a multimodal analysis approach using high-frequency four-dimensional ultrasound (4DUS) imaging and proteomics to explore the relationship between regional function and tissue composition in a murine model of metabolic cardiomyopathy (Nkx2-5183P/+). The presented 4DUS analysis outlines a novel approach to mapping both circumferential and longitudinal strain profiles through a standardized framework. We then demonstrate how this approach allows for spatiotemporal comparisons of cardiac function and improved localization of regional left ventricular dysfunction. Guided by observed trends in regional dysfunction, our targeted Ingenuity Pathway Analysis (IPA) results highlight metabolic dysregulation in the Nkx2-5183P/+ model, including altered mitochondrial function and energy metabolism (i.e., oxidative phosphorylation and fatty acid/lipid handling). Finally, we present a combined 4DUS-proteomics z-score-based analysis that highlights IPA canonical pathways showing strong linear relationships with 4DUS biomarkers of regional cardiac dysfunction. The presented multimodal analysis methods aim to help future studies more comprehensively assess regional structure-function relationships in other preclinical models of cardiomyopathy.NEW & NOTEWORTHY A multimodal approach using both four-dimensional ultrasound (4DUS) and regional proteomics can help enhance our investigations of murine cardiomyopathy models. We present unique 4DUS-derived strain maps that provide a framework for both cross-sectional and longitudinal analysis of spatiotemporal cardiac function. We further detail and demonstrate an innovative 4DUS-proteomics z-score-based linear regression method, aimed at characterizing relationships between regional cardiac dysfunction and underlying mechanisms of disease.


Asunto(s)
Cardiomiopatías , Disfunción Ventricular Izquierda , Masculino , Animales , Ratones , Estudios Transversales , Proteómica , Ultrasonografía , Disfunción Ventricular Izquierda/diagnóstico por imagen , Cardiomiopatías/diagnóstico por imagen , Proteína Homeótica Nkx-2.5
8.
Elife ; 122023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184369

RESUMEN

Maintenance of cardiomyocyte identity is vital for normal heart development and function. However, our understanding of cardiomyocyte plasticity remains incomplete. Here, we show that sustained expression of the zebrafish transcription factor Nr2f1a prevents the progressive acquisition of ventricular cardiomyocyte (VC) and pacemaker cardiomyocyte (PC) identities within distinct regions of the atrium. Transcriptomic analysis of flow-sorted atrial cardiomyocytes (ACs) from nr2f1a mutant zebrafish embryos showed increased VC marker gene expression and altered expression of core PC regulatory genes, including decreased expression of nkx2.5, a critical repressor of PC differentiation. At the arterial (outflow) pole of the atrium in nr2f1a mutants, cardiomyocytes resolve to VC identity within the expanded atrioventricular canal. However, at the venous (inflow) pole of the atrium, there is a progressive wave of AC transdifferentiation into PCs across the atrium toward the arterial pole. Restoring Nkx2.5 is sufficient to repress PC marker identity in nr2f1a mutant atria and analysis of chromatin accessibility identified an Nr2f1a-dependent nkx2.5 enhancer expressed in the atrial myocardium directly adjacent to PCs. CRISPR/Cas9-mediated deletion of the putative nkx2.5 enhancer leads to a loss of Nkx2.5-expressing ACs and expansion of a PC reporter, supporting that Nr2f1a limits PC differentiation within venous ACs via maintaining nkx2.5 expression. The Nr2f-dependent maintenance of AC identity within discrete atrial compartments may provide insights into the molecular etiology of concurrent structural congenital heart defects and associated arrhythmias.


Asunto(s)
Fibrilación Atrial , Pez Cebra , Animales , Regulación del Desarrollo de la Expresión Génica , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Proteínas de Homeodominio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Mol Biol Rep ; 50(6): 5013-5020, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37097539

RESUMEN

BACKGROUND: Globally, congenital heart defect (CHD) is the most common congenital malformation, responsible for higher morbidity and mortality in the pediatric population. It is a complex multifactorial disease influenced by gene-environment and gene-gene interactions. The current study was the first attempt to study these polymorphisms in common clinical phenotypes of CHD in Pakistan and the association between maternal hypertension and diabetes with single nucleotide polymorphisms (SNPs) in children. METHODS: A total of 376 subjects were recruited in this current case-control study. Six variants from three genes were analyzed by cost-effective multiplex PCR and genotyped by minisequencing. Statistical analysis was done by GraphPad prism and Haploview. The association of SNPs and CHD was determined using logistic regression. RESULTS: The risk allele frequency was higher in cases as compared to healthy subjects, but the results were not significant for rs703752. However, stratification analysis suggested that rs703752 was significantly associated with the tetralogy of Fallot. The rs2295418 was significantly associated with maternal hypertension (OR = 16.41, p = 0.003), while a weak association was present between maternal diabetes and rs360057 (p = 0.08). CONCLUSION: In conclusion, variants in transcriptional and signaling genes were associated with Pakistani pediatric CHD patients that showed varied susceptibility between different clinical phenotypes of CHD. In addition, this study was the first report regarding the significant association between maternal hypertension and the LEFTY2 gene variant.


Asunto(s)
Diabetes Mellitus , Cardiopatías Congénitas , Hipertensión , Niño , Humanos , Pakistán , Estudios de Casos y Controles , Proteína Homeótica Nkx-2.5/genética , Cardiopatías Congénitas/genética , Diabetes Mellitus/genética , Hipertensión/genética , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad , Factores de Determinación Derecha-Izquierda/genética
10.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194906, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36690178

RESUMEN

Genome-wide association studies (GWAS) have mapped over 90 % of disease- or trait-associated variants within the non-coding genome, like cis-regulatory elements (CREs). Non-coding single nucleotide polymorphisms (SNPs) are genomic variants that can change how DNA-binding regulatory proteins, like transcription factors (TFs), interact with the genome and regulate gene expression. NKX2-5 is a TF essential for proper heart development, and mutations affecting its function have been associated with congenital heart diseases (CHDs). However, establishing a causal mechanism between non-coding genomic variants and human disease remains challenging. To address this challenge, we identified 8475 SNPs predicted to alter NKX2-5 DNA-binding using a position weight matrix (PWM)-based predictive model. Five variants were prioritized for in vitro validation; four of them are associated with traits and diseases that impact cardiovascular health. The impact of these variants on NKX2-5 binding was evaluated with electrophoretic mobility shift assay (EMSA) using purified recombinant NKX2-5 homeodomain. Binding curves were constructed to determine changes in binding between variant and reference alleles. Variants rs7350789, rs7719885, rs747334, and rs3892630 increased binding affinity, whereas rs61216514 decreased binding by NKX2-5 when compared to the reference genome. Our findings suggest that differential TF-DNA binding affinity can be key in establishing a causal mechanism of pathogenic variants.


Asunto(s)
Estudio de Asociación del Genoma Completo , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , ADN/genética , Proteína Homeótica Nkx-2.5/genética
11.
BMJ Case Rep ; 16(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609421

RESUMEN

A woman in her 40s was admitted following syncope. The 12-lead ECG showed atrial fibrillation with slow ventricular response and suspected complete atrioventricular (AV) block. Cardiac monitoring demonstrated non-sustained monomorphic ventricular tachycardia (VT). Her medical history included surgical repair of an atrial septal defect (ASD) aged 4 years. The patient's mother died suddenly in her early 50s and also had an ASD. Given the patient's syncope, background of familial sudden cardiac death (SCD), suspicion of complete AV block and non-sustained VT, she received an implantable cardiac defibrillator (ICD). She underwent genetic testing, revealing a heterozygous NKX2-5 genetic mutation. The signature phenotype in NKX2-5 mutations is ASD with AV conduction disturbance and an increased risk of SCD secondary to ventricular arrhythmias or severe bradycardia. SCD has been described in NKX2-5 mutation carriers despite functioning permanent pacemakers (PPMs). Therefore, we propose implantation of a preventive ICD, as opposed to a PPM.


Asunto(s)
Fibrilación Atrial , Bloqueo Atrioventricular , Desfibriladores Implantables , Defectos del Tabique Interatrial , Marcapaso Artificial , Femenino , Humanos , Bradicardia/genética , Bradicardia/terapia , Bloqueo Atrioventricular/genética , Bloqueo Atrioventricular/terapia , Mutación , Defectos del Tabique Interatrial/complicaciones , Defectos del Tabique Interatrial/genética , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/prevención & control , Síncope , Proteína Homeótica Nkx-2.5/genética
12.
Ir J Med Sci ; 192(2): 595-604, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35441975

RESUMEN

BACKGROUND: Congenital heart disease (CHD) is one of the most important birth defects caused by more than one mutated gene. Mutations in the genes could cause different types of congenital heart defects including atrial septal defect (ASD), tetralogy of Fallot (TOF), and ventricular septal defect (VSD). OBJECTIVES: Cardiac transcription factors are key players for heart development and are actively involved in controlling stress regulation of the heart. Transcription factors are sequence-specific DNA binding proteins that control the process of transcription and work in a synergistic manner. We aim to characterize core cardiac transcription factors including NKX2-5, TBX, SRF, GATA4, and MEF2, which encode homeobox and MADS domain and play a crucial role in heart development. METHODS: In this study, we have explored the important transcription factors involved in cardiac development and genes controlling the expression and regulation process by using the bioinformatics approach. RESULTS: We have predicted the orthologs and homologs based on their evolutionary history, conserved protein domains, functional sites, and 3D structures for better understanding and presentation of factors responsible for causing CHD. Results showed the importance of these transcription factors for normal heart functioning and development. CONCLUSION: Understanding the molecular pathways and genetic basis of CHD will help to open a new door for the treatment of patients with cardiac defects.


Asunto(s)
Cardiopatías Congénitas , Defectos del Tabique Interventricular , Humanos , Factores de Transcripción/genética , Proteína Homeótica Nkx-2.5/genética , Cardiopatías Congénitas/genética , Mutación , Expresión Génica
13.
Artículo en Inglés | MEDLINE | ID: mdl-36011517

RESUMEN

(1) Background globe. The etiology of CHDs is complex and involves both genetic and non-genetic factors. Although, significant progress has been made in deciphering the genetic components involved in CHDs, recent reports have revealed that mutations in Nk2 homeobox5 (NKX2-5) and actin alpha cardiac muscle1 (ACTC1) genes play a key role in CHDs such as atrial and ventricular septum defects. Therefore, the present study evaluates the role of key hotspot mutations in NKX2-5 and ACTC1 genes of congenital cardiac septal defect (CCSD) in ethnic Kashmiri population. (2) Methods: A total of 112 confirmed CHD patients were included in the current study, of which 30 patients were evaluated for mutational analysis for hotspot mutations of NKX2-5 and ACTC1 genes. The total genomic DNA was extracted from the samples (cardiac tissue/blood) and were subjected to amplification for NKX2-5 (exon 1 and 2), and ACTC1 (exon 2) genes by using PCR specific primers to analyze the hotspot mutations in respective exons. The amplified products obtained were sent to Macrogen Korea for sequencing by Sanger's method. (3) Results: Our results confirmed that not a single mutation was found in either hotspot exon 1 and 2 of NKX2-5 and exon 2 of ACTC1 in the patients included in the current study. Interestingly, a novel synonymous nucleotide variation leading to G > C transversion (GCG > GCC) was found in exon 2 of NKX2-5 gene of CCSD patient. (4) Conclusions: The current findings demonstrated the role of NKX2-5 and ACTC1 in cardiac development. The study will provide an insight in understanding the genetic etiology and highlights the role of newly identified mutations in patients with CDS's in ethnic Kashmiri population. In silico findings revealed amino acid changes, splice site variation and the creation of new site. Furthermore, the study warrants complete screening of genes involved in CCSDs.


Asunto(s)
Defectos del Tabique Interventricular , Defectos de los Tabiques Cardíacos , Actinas , Exones , Corazón , Defectos del Tabique Interventricular/genética , Proteína Homeótica Nkx-2.5/genética , Proteínas de Homeodominio/genética , Humanos , Mutación
14.
Stem Cell Rev Rep ; 18(8): 2646-2661, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35778654

RESUMEN

Mutations of NKX2-5 largely contribute to congenital heart diseases (CHDs), especially atrial septal defect (ASD). We identified a novel heterozygous splicing mutation c.335-1G > A in NKX2-5 gene in an ASD family via whole exome sequencing (WES) and linkage analysis. Utilizing the human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) as a disease model, we showed that haploinsufficiency of NKX2-5 contributed to aberrant orchestration of apoptosis and proliferation in ASD patient-derived hiPSC-CMs. RNA-seq profiling and dual-luciferase reporter assay revealed that NKX2-5 acts upstream of PYK2 via miR-19a and miR-19b (miR-19a/b) to regulate cardiomyocyte apoptosis. Meanwhile, miR-19a/b are also downstream mediators of NKX2-5 during cardiomyocyte proliferation. The novel splicing mutation c.335-1G > A in NKX2-5 and its potential pathogenic roles in ASD were demonstrated. Our work provides clues not only for deep understanding of NKX2-5 in cardia development, but also for better knowledge in the molecular mechanisms of CHDs.


Asunto(s)
Defectos del Tabique Interatrial , Células Madre Pluripotentes Inducidas , MicroARNs , Humanos , Factores de Transcripción/genética , Proteína Homeótica Nkx-2.5/genética , Quinasa 2 de Adhesión Focal/genética , Proteínas de Homeodominio/genética , Defectos del Tabique Interatrial/genética , Mutación/genética , MicroARNs/genética
15.
Nat Commun ; 13(1): 2970, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624100

RESUMEN

The cardiac developmental network has been associated with myocardial regenerative potential. However, the embryonic signals triggered following injury have yet to be fully elucidated. Nkx2.5 is a key causative transcription factor associated with human congenital heart disease and one of the earliest markers of cardiac progenitors, thus it serves as a promising candidate. Here, we show that cardiac-specific RNA-sequencing studies reveal a disrupted embryonic transcriptional profile in the adult Nkx2.5 loss-of-function myocardium. nkx2.5-/- fish exhibit an impaired ability to recover following ventricular apex amputation with diminished dedifferentiation and proliferation. Complex network analyses illuminate that Nkx2.5 is required to provoke proteolytic pathways necessary for sarcomere disassembly and to mount a proliferative response for cardiomyocyte renewal. Moreover, Nkx2.5 targets embedded in these distinct gene regulatory modules coordinate appropriate, multi-faceted injury responses. Altogether, our findings support a previously unrecognized, Nkx2.5-dependent regenerative circuit that invokes myocardial cell cycle re-entry, proteolysis, and mitochondrial metabolism to ensure effective regeneration in the teleost heart.


Asunto(s)
Miocardio , Miocitos Cardíacos , Animales , Ventrículos Cardíacos/metabolismo , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo
16.
BMC Med Genomics ; 15(1): 91, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459168

RESUMEN

BACKGROUND: NKX2-5 variant in atrial septal defect patients has been reported. However, it is not yet been described in the Southeast Asian population. Here, we screened the NKX2-5 variants in patients with atrial septal defect (ASD) in the Indonesian population. METHOD: We recruited 97 patients with ASD for genetic screening of the NKX2-5 variant using Sanger sequencing. RESULTS: We identified three variants of NKX2-5: NM_004387.4:c.63A>G at exon 1, NM_004387.4:c.413G>A, and NM_004387.4:c.561G>C at exon 2. The first variant is commonly found (85.6%) and benign. The last two variants are heterozygous at the same locus. These variants are rare (3.1%) and novel. Interestingly, these variants were discovered in familial atrial septal defects with a spectrum of arrhythmia and severe pulmonary hypertension. CONCLUSION: Our study is the first report of the NKX2-5 variant in ASD patients in the Southeast Asian population, including a novel heterozygous variant: NM_004387.4:c.413G>A and NM_004387.4:c.561G>C. These variants might contribute to familial ASD risk with arrhythmia and severe pulmonary hypertension. Functional studies are necessary to prove our findings.


Asunto(s)
Defectos del Tabique Interatrial , Proteína Homeótica Nkx-2.5 , Arritmias Cardíacas/genética , Defectos del Tabique Interatrial/genética , Proteína Homeótica Nkx-2.5/genética , Proteínas de Homeodominio/genética , Humanos , Hipertensión Pulmonar/genética , Indonesia
17.
Commun Biol ; 5(1): 399, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35488063

RESUMEN

Heart organoids have the potential to generate primary heart-like anatomical structures and hold great promise as in vitro models for cardiac disease. However, their properties have not yet been fully studied, which hinders their wide spread application. Here we report the development of differentiation systems for ventricular and atrial heart organoids, enabling the study of heart diseases with chamber defects. We show that our systems generate chamber-specific organoids comprising of the major cardiac cell types, and we use single cell RNA sequencing together with sample multiplexing to characterize the cells we generate. To that end, we developed a machine learning label transfer approach leveraging cell type, chamber, and laterality annotations available for primary human fetal heart cells. We then used this model to analyze organoid cells from an isogeneic line carrying an Ebstein's anomaly associated genetic variant in NKX2-5, and we successfully recapitulated the disease's atrialized ventricular defects. In summary, we have established a workflow integrating heart organoids and computational analysis to model heart development in normal and disease states.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Corazón , Ventrículos Cardíacos , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Organogénesis/genética , Organoides/metabolismo
18.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35328834

RESUMEN

Thyroid hemiagenesis (THA) is an inborn absence of one thyroid lobe of largely unknown etiopathogenesis. The aim of the study was to reveal genetic factors responsible for thyroid maldevelopment in two siblings with THA. None of the family members presented with congenital heart defect. The samples were subjected to whole-exome sequencing (WES) (Illumina, TruSeq Exome Enrichment Kit, San Diego, CA 92121, USA). An ultra-rare variant c.839C>T (p.Pro280Leu) in NKX2-5 gene (NM_004387.4) was identified in both affected children and an unaffected father. In the mother, the variant was not present. This variant is reported in population databases with 0.0000655 MAF (GnomAD v3, dbSNP rs761596254). The affected amino acid position is moderately conserved (positive scores in PhyloP: 1.364 and phastCons: 0.398). Functional prediction algorithms showed deleterious impact (dbNSFP v4.1, FATHMM, SIFT) or benign (CADD, PolyPhen-2, Mutation Assessor). According to ACMG criteria, variant is classified as having uncertain clinical significance. For the first time, NKX2-5 gene variants were found in two siblings with THA, providing evidence for its potential contribution to the pathogenesis of this type of thyroid dysgenesis. The presence of the variant in an unaffected parent, carrier of p.Pro280Leu variant, suggests potential contribution of yet unidentified additional factors determining the final penetrance and expression.


Asunto(s)
Hermanos , Disgenesias Tiroideas , Niño , Exoma , Proteína Homeótica Nkx-2.5/genética , Humanos , Mutación , Disgenesias Tiroideas/genética , Disgenesias Tiroideas/patología
19.
Nat Commun ; 13(1): 441, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064145

RESUMEN

Genome-wide association studies (GWAS) for atrial fibrillation (AF) have uncovered numerous disease-associated variants. Their underlying molecular mechanisms, especially consequences for mRNA and protein expression remain largely elusive. Thus, refined multi-omics approaches are needed for deciphering the underlying molecular networks. Here, we integrate genomics, transcriptomics, and proteomics of human atrial tissue in a cross-sectional study to identify widespread effects of genetic variants on both transcript (cis-eQTL) and protein (cis-pQTL) abundance. We further establish a novel targeted trans-QTL approach based on polygenic risk scores to determine candidates for AF core genes. Using this approach, we identify two trans-eQTLs and five trans-pQTLs for AF GWAS hits, and elucidate the role of the transcription factor NKX2-5 as a link between the GWAS SNP rs9481842 and AF. Altogether, we present an integrative multi-omics method to uncover trans-acting networks in small datasets and provide a rich resource of atrial tissue-specific regulatory variants for transcript and protein levels for cardiovascular disease gene prioritization.


Asunto(s)
Fibrilación Atrial/genética , Genómica , Especificidad de Órganos , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
20.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35037942

RESUMEN

Generating comprehensive image maps, while preserving spatial three-dimensional (3D) context, is essential in order to locate and assess quantitatively specific cellular features and cell-cell interactions during organ development. Despite recent advances in 3D imaging approaches, our current knowledge of the spatial organization of distinct cell types in the embryonic pancreatic tissue is still largely based on two-dimensional histological sections. Here, we present a light-sheet fluorescence microscopy approach to image the pancreas in three dimensions and map tissue interactions at key time points in the mouse embryo. We demonstrate the utility of the approach by providing volumetric data, 3D distribution of three main cellular components (epithelial, mesenchymal and endothelial cells) within the developing pancreas, and quantification of their relative cellular abundance within the tissue. Interestingly, our 3D images show that endocrine cells are constantly and increasingly in contact with endothelial cells forming small vessels, whereas the interactions with mesenchymal cells decrease over time. These findings suggest distinct cell-cell interaction requirements for early endocrine cell specification and late differentiation. Lastly, we combine our image data in an open-source online repository (referred to as the Pancreas Embryonic Cell Atlas).


Asunto(s)
Imagenología Tridimensional/métodos , Páncreas/anatomía & histología , Animales , Embrión de Mamíferos/anatomía & histología , Desarrollo Embrionario , Células Endoteliales/citología , Células Endoteliales/metabolismo , Epitelio/anatomía & histología , Proteína Homeótica Nkx-2.5/deficiencia , Proteína Homeótica Nkx-2.5/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...