Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 158: 105479, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34390831

RESUMEN

Huntington disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HTT gene that codes for an elongated polyglutamine tract in the huntingtin (HTT) protein. HTT is subject to multiple post-translational modifications (PTMs) that regulate its cellular function. Mutating specific PTM sites within mutant HTT (mHTT) in HD mouse models can modulate disease phenotypes, highlighting the key role of HTT PTMs in the pathogenesis of HD. These findings have led to increased interest in developing small molecules to modulate HTT PTMs in order to decrease mHTT toxicity. However, the therapeutic efficacy of pharmacological modulation of HTT PTMs in preclinical HD models remains largely unknown. HTT is palmitoylated at cysteine 214 by the huntingtin-interacting protein 14 (HIP14 or ZDHHC17) and 14-like (HIP14L or ZDHHC13) acyltransferases. Here, we assessed if HTT palmitoylation should be regarded as a therapeutic target to treat HD by (1) investigating palmitoylation dysregulation in rodent and human HD model systems, (2) measuring the impact of mHTT-lowering therapy on brain palmitoylation, and (3) evaluating if HTT palmitoylation can be pharmacologically modulated. We show that palmitoylation of mHTT and some HIP14/HIP14L-substrates is decreased early in multiple HD mouse models, and that mHTT palmitoylation decreases further with aging. Lowering mHTT in the brain of YAC128 mice is not sufficient to rescue aberrant palmitoylation. However, we demonstrate that mHTT palmitoylation can be normalized in COS-7 cells, in YAC128 cortico-striatal primary neurons and HD patient-derived lymphoblasts using an acyl-protein thioesterase (APT) inhibitor. Moreover, we show that modulating palmitoylation reduces mHTT aggregation and mHTT-induced cytotoxicity in COS-7 cells and YAC128 neurons.


Asunto(s)
Proteína Huntingtina/genética , Proteína Huntingtina/toxicidad , Lipoilación/efectos de los fármacos , Lipoilación/genética , Aciltransferasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Cisteína/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Masculino , Ratones , Mutación , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas
2.
J Neurochem ; 158(2): 467-481, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33871049

RESUMEN

The endoplasmic reticulum (ER)-localized Sigma-1 receptor (S1R) is neuroprotective in models of neurodegenerative diseases, among them Huntington disease (HD). Recent clinical trials in HD patients and preclinical studies in cellular and mouse HD models suggest a therapeutic potential for the high-affinity S1R agonist pridopidine. However, the molecular mechanisms of the cytoprotective effect are unclear. We have previously reported strong induction of ER stress by toxic mutant huntingtin (mHtt) oligomers, which is reduced upon sequestration of these mHtt oligomers into large aggregates. Here, we show that pridopidine significantly ameliorates mHtt-induced ER stress in cellular HD models, starting at low nanomolar concentrations. Pridopidine reduced the levels of markers of the three branches of the unfolded protein response (UPR), showing the strongest effects on the PKR-like endoplasmic reticulum kinase (PERK) branch. The effect is S1R-dependent, as it is abolished in cells expressing mHtt in which the S1R was deleted using CRISPR/Cas9 technology. mHtt increased the level of the detergent-insoluble fraction of S1R, suggesting a compensatory cellular mechanism that responds to increased ER stress. Pridopidine further enhanced the levels of insoluble S1R, suggesting the stabilization of activated S1R oligomers. These S1R oligomeric species appeared in ER-localized patches, and not in the mitochondria-associated membranes nor the ER-derived quality control compartment. The colocalization of S1R with the chaperone BiP was significantly reduced by mHtt, and pridopidine restored this colocalization to normal, unstressed levels. Pridopidine increased toxic oligomeric mHtt recruitment into less toxic large sodium dodecyl sulfate-insoluble aggregates, suggesting that this in turn reduces ER stress and cytotoxicity.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteína Huntingtina/genética , Proteína Huntingtina/toxicidad , Piperidinas/farmacología , Receptores sigma/efectos de los fármacos , Células 3T3 , Animales , Sistemas CRISPR-Cas , Chaperón BiP del Retículo Endoplásmico , Técnicas de Inactivación de Genes , Células HEK293 , Proteínas de Choque Térmico , Humanos , Ratones , Membranas Mitocondriales/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Receptor Sigma-1
3.
Cell Rep ; 27(1): 59-70.e4, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30943415

RESUMEN

Neurodegenerative diseases commonly involve the disruption of circadian rhythms. Studies indicate that mutant Huntingtin (mHtt), the cause of Huntington's disease (HD), disrupts circadian rhythms often before motor symptoms are evident. Yet little is known about the molecular mechanisms by which mHtt impairs circadian rhythmicity and whether circadian clocks can modulate HD pathogenesis. To address this question, we used a Drosophila HD model. We found that both environmental and genetic perturbations of the circadian clock alter mHtt-mediated neurodegeneration. To identify potential genetic pathways that mediate these effects, we applied a behavioral platform to screen for clock-regulated HD suppressors, identifying a role for Heat Shock Protein 70/90 Organizing Protein (Hop). Hop knockdown paradoxically reduces mHtt aggregation and toxicity. These studies demonstrate a role for the circadian clock in a neurodegenerative disease model and reveal a clock-regulated molecular and cellular pathway that links clock function to neurodegenerative disease.


Asunto(s)
Relojes Circadianos/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Proteína Huntingtina/metabolismo , Proteína Huntingtina/toxicidad , Agregación Patológica de Proteínas , Animales , Animales Modificados Genéticamente , Relojes Circadianos/genética , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster , Embrión no Mamífero , Femenino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiología , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Masculino , Proteínas Mutantes/fisiología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología
4.
J Huntingtons Dis ; 8(2): 129-143, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30856117

RESUMEN

BACKGROUND: The potential benefit of cysteamine for Huntington's disease has been demonstrated in HD animal models. Cysteamine and its derivate cystamine were shown to reduce neuropathology and prolong lifespan. Human studies have demonstrated safety, and suggestive results regarding efficacy. Despite all the studies available in vivo, there are only few in vitro studies, and the mechanism of action of cysteamine remains unclear. OBJECTIVE: The objective of this study is to assess the capacity of cysteamine for neuroprotection against mutant Huntingtin in vitro using cellular models of HD, and to provide initial data regarding mechanism of action. METHODS: We tested the neuroprotective properties of cysteamine in vitro in our primary neuron and iPSC models of HD. RESULTS: Cysteamine showed a strong neuroprotective effect (EC50 = 7.1 nM) against mutant Htt-(aa-1-586 82Q) toxicity, in a nuclear condensation cell toxicity assay. Cysteamine also rescued mitochondrial changes induced by mutant Htt. Modulation of the levels of cysteine or glutathione failed to protect neurons, suggesting that cysteamine neuroprotection is not mediated through cysteine metabolism. Taurine and Hypotaurine, which are metabolites of cysteamine can protect neurons against Htt toxicity, but the inhibition of the enzyme converting cysteamine to hypotaurine does not block either protective activity, suggesting independent protective pathways. Cysteamine has been suggested to activate BDNF secretion; however, cysteamine protection was not blocked by BDNF pathway antagonists. CONCLUSIONS: Cysteamine was strongly neuroprotective with relatively high potency. We demonstrated that the main neuroprotective pathways that have been proposed to be the mechanism of protection by cysteamine can all be blocked and still not prevent the neuroprotective effect. The results suggest the involvement of other yet-to-be-determined neuroprotective pathways.


Asunto(s)
Cisteamina/farmacología , Proteína Huntingtina/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Animales , Células Cultivadas , Proteína Huntingtina/metabolismo , Proteína Huntingtina/toxicidad , Enfermedad de Huntington , Ratones , Mutación , Neuronas/patología
5.
Acta Neuropathol ; 137(6): 981-1001, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30788585

RESUMEN

In recent years, evidence has accumulated to suggest that mutant huntingtin protein (mHTT) can spread into healthy tissue in a prion-like fashion. This theory, however, remains controversial. To fully address this concept and to understand the possible consequences of mHTT spreading to Huntington's disease pathology, we investigated the effects of exogenous human fibrillar mHTT (Q48) and huntingtin (HTT) (Q25) N-terminal fragments in three cellular models and three distinct animal paradigms. For in vitro experiments, human neuronal cells [induced pluripotent stem cell-derived GABA neurons (iGABA) and (SH-SY5Y)] as well as human THP1-derived macrophages, were incubated with recombinant mHTT fibrils. Recombinant mHTT and HTT fibrils were taken up by all cell types, inducing cell morphology changes and death. Variations in HTT aggregation were further observed following incubation with fibrils in both THP1 and SH-SY5Y cells. For in vivo experiments, adult wild-type (WT) mice received a unilateral intracerebral cortical injection and R6/2 and WT pups were administered fibrils via bilateral intraventricular injections. In both protocols, the injection of Q48 fibrils resulted in cognitive deficits and increased anxiety-like behavior. Post-mortem analysis of adult WT mice indicated that most fibrils had been degraded/cleared from the brain by 14 months post-surgery. Despite the absence of fibrils at these later time points, a change in the staining pattern of endogenous HTT was detected. A similar change was revealed in post-mortem analysis of the R6/2 mice. These effects were specific to central administration of fibrils, as mice receiving intravenous injections were not characterized by behavioral changes. In fact, peripheral administration resulted in an immune response mounting against the fibrils. Together, the in vitro and in vivo data indicate that exogenously administered mHTT is capable of both causing and exacerbating disease pathology.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Proteína Huntingtina/genética , Agregado de Proteínas , Animales , Ansiedad/etiología , Encéfalo/patología , Línea Celular Tumoral , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/patología , Exones , Conducta Exploratoria , Femenino , Neuronas GABAérgicas/ultraestructura , Humanos , Proteína Huntingtina/administración & dosificación , Proteína Huntingtina/química , Proteína Huntingtina/toxicidad , Células Madre Pluripotentes Inducidas/citología , Inyecciones , Inyecciones Intraventriculares , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Monocitos , Actividad Motora , Neuroblastoma/patología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/toxicidad
6.
Cereb Cortex ; 28(1): 307-322, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29121220

RESUMEN

The vast majority of neurons within the striatum are GABAergic medium spiny neurons (MSNs), which receive glutamatergic input from the cortex and thalamus, and form two major efferent pathways: the direct pathway, expressing dopamine D1 receptor (D1R-MSNs), and the indirect pathway, expressing dopamine D2 receptor (D2R-MSNs). While molecular mechanisms of MSN degeneration have been identified in animal models of striatal damage, the molecular factors that dictate a selective vulnerability of D1R-MSNs or D2R-MSNs remain unknown. Here, we combined genetic, chemogenetic, and pharmacological strategies with behavioral and neurochemical analyses, and show that the pool of cannabinoid CB1 receptor (CB1R) located on corticostriatal terminals efficiently safeguards D1R-MSNs, but not D2R-MSNs, from different insults. This cell-specific response relies on the regulation of glutamatergic signaling, and is independent from the CB1R-dependent control of astroglial activity in the striatum. These findings define cortical CB1R as a pivotal synaptic player in dictating a differential vulnerability of D1R-MSNs versus D2R-MSNs, and increase our understanding of the role of coordinated cannabinergic-glutamatergic signaling in establishing corticostriatal circuits and its dysregulation in neurodegenerative diseases.


Asunto(s)
Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Vectores Genéticos , Ácido Glutámico/metabolismo , Humanos , Proteína Huntingtina/administración & dosificación , Proteína Huntingtina/genética , Proteína Huntingtina/toxicidad , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Masculino , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/patología , Receptor Cannabinoide CB1/genética , Transmisión Sináptica/fisiología
7.
PLoS One ; 12(5): e0177610, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28494017

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by CAG repeat expansion within exon1 of the HTT gene. The gene generates two mRNA variants that carry either a short or long 3' untranslated region (3'UTR) while encoding the same protein. It remains unknown whether the two mRNA variants play distinct roles in HD pathogenesis. We found that the long HTT 3'UTR was capable of guiding mRNA to neuronal dendrites, suggesting that some long-form HTT mRNA is transported to dendrites for local protein synthesis. To assay roles of two HTT mRNA variants in cell bodies, we expressed mRNA harboring HTT exon1 containing 23x or 145x CAGs with the short or long 3'UTR. We found that mutant mRNA containing the short 3'UTR produced more protein aggregates and caused more apoptosis in both cultured neurons and HEK293 cells, compared with mutant mRNA containing the long 3'UTR. Although the two 3'UTRs did not affect mRNA stability, we detected higher levels of protein synthesis from mRNA containing the short 3'UTR than from mRNA containing the long 3'UTR. These results indicate that the long HTT 3'UTR suppresses translation. Thus, short-form mutant HTT mRNA will be more efficient in producing toxic protein than its long-form counterpart.


Asunto(s)
Regulación de la Expresión Génica , Proteína Huntingtina/genética , Proteína Huntingtina/toxicidad , Proteínas Mutantes/genética , Proteínas Mutantes/toxicidad , Biosíntesis de Proteínas , Regiones no Traducidas 3'/genética , Animales , Células HEK293 , Humanos , Proteína Huntingtina/química , Proteínas Mutantes/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Agregado de Proteínas/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Multimerización de Proteína/efectos de los fármacos , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Solubilidad , Fracciones Subcelulares/metabolismo
8.
Nat Commun ; 8: 15462, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28537272

RESUMEN

Polyglutamine expansion in the huntingtin protein is the primary genetic cause of Huntington's disease (HD). Fragments coinciding with mutant huntingtin exon1 aggregate in vivo and induce HD-like pathology in mouse models. The resulting aggregates can have different structures that affect their biochemical behaviour and cytotoxic activity. Here we report our studies of the structure and functional characteristics of multiple mutant htt exon1 fibrils by complementary techniques, including infrared and solid-state NMR spectroscopies. Magic-angle-spinning NMR reveals that fibrillar exon1 has a partly mobile α-helix in its aggregation-accelerating N terminus, and semi-rigid polyproline II helices in the proline-rich flanking domain (PRD). The polyglutamine-proximal portions of these domains are immobilized and clustered, limiting access to aggregation-modulating antibodies. The polymorphic fibrils differ in their flanking domains rather than the polyglutamine amyloid structure. They are effective at seeding polyglutamine aggregation and exhibit cytotoxic effects when applied to neuronal cells.


Asunto(s)
Amiloide/química , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Péptidos/química , Agregación Patológica de Proteínas/genética , Amiloide/genética , Amiloide/metabolismo , Amiloide/toxicidad , Animales , Línea Celular , Exones/genética , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Proteína Huntingtina/toxicidad , Enfermedad de Huntington/patología , Espectroscopía de Resonancia Magnética , Ratones , Microscopía Electrónica de Transmisión , Mutación , Neuronas , Péptidos/genética , Péptidos/metabolismo , Péptidos/toxicidad , Agregación Patológica de Proteínas/patología , Estructura Secundaria de Proteína/genética
9.
FEMS Yeast Res ; 17(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27915242

RESUMEN

Expansion of polyglutamine stretches in several proteins causes neurodegenerative amyloidoses, including Huntington disease. In yeast, mutant huntingtin (mHtt) with a stretch of 103 glutamine residues (HttQ103) forms toxic aggregates. A range of yeast strains have been used to elucidate the mechanisms of mHtt toxicity, and have revealed perturbations of various unrelated processes. HttQ103 aggregates can induce aggregation of cellular proteins, many of which contain glutamine/asparagine-rich regions, including Sup35 and Def1. In the strain 74-D694 HttQ103, toxicity is related to aggregation-mediated depletion of soluble Sup35 and its interacting partner Sup45. Def1 was also implicated in mHtt toxicity, since its lack detoxified HttQ103 in another yeast strain, BY4741. Here we show that in BY4742, deletion of DEF1 lowers HttQ103 toxicity and decreases the amount of its polymers, but does not affect copolymerization of Sup35. Furthermore, in contrast to 74-D694, increasing the levels of soluble Sup35 and Sup45 does not alleviate toxicity of HttQ103 in BY4742. These data demonstrate a difference in the mechanisms underlying mHtt toxicity in different yeast strains and suggest that in humans with Huntington disease, neurons of different brain compartments and cells in other tissues can also be damaged by different mechanisms.


Asunto(s)
Proteína Huntingtina/toxicidad , Levaduras/efectos de los fármacos , Proteínas Cromosómicas no Histona/metabolismo , Humanos , Proteínas Mutantes/toxicidad , Factores de Terminación de Péptidos/metabolismo , Agregación Patológica de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Sci Rep ; 6: 31022, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27516062

RESUMEN

Although epigenetic abnormalities have been described in Huntington's disease (HD), the causal epigenetic mechanisms driving neurodegeneration in HD cortex and striatum remain undefined. Using an epigenetic pathway-targeted drug screen, we report that inhibitors of DNA methyltransferases (DNMTs), decitabine and FdCyd, block mutant huntingtin (Htt)-induced toxicity in primary cortical and striatal neurons. In addition, knockdown of DNMT3A or DNMT1 protected neurons against mutant Htt-induced toxicity, together demonstrating a requirement for DNMTs in mutant Htt-triggered neuronal death and suggesting a neurodegenerative mechanism based on DNA methylation-mediated transcriptional repression. Inhibition of DNMTs in HD model primary cortical or striatal neurons restored the expression of several key genes, including Bdnf, an important neurotrophic factor implicated in HD. Accordingly, the Bdnf promoter exhibited aberrant cytosine methylation in mutant Htt-expressing cortical neurons. In vivo, pharmacological inhibition of DNMTs in HD mouse brains restored the mRNA levels of key striatal genes known to be downregulated in HD. Thus, disturbances in DNA methylation play a critical role in mutant Htt-induced neuronal dysfunction and death, raising the possibility that epigenetic strategies targeting abnormal DNA methylation may have therapeutic utility in HD.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Proteína Huntingtina/toxicidad , Enfermedad de Huntington/prevención & control , Proteínas Mutantes/toxicidad , Animales , Encéfalo/patología , Células Cultivadas , ADN Metiltransferasa 3A , Modelos Animales de Enfermedad , Humanos , Enfermedad de Huntington/patología , Ratones , Neuronas/efectos de los fármacos , Neuronas/fisiología
11.
Neuromolecular Med ; 18(4): 581-592, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27225841

RESUMEN

Huntington's disease (HD) is a devastating neurodegenerative disease caused by the pathological elongation of the CAG repeats in the huntingtin gene. Caloric restriction (CR) has been the most reproducible environmental intervention to improve health and prolong life span. We have demonstrated that CR delayed onset and slowed disease progression in a mouse model of HD. Metformin, an antidiabetic drug, mimics CR by acting on cell metabolism at multiple levels. Long-term administration of metformin improved health and life span in mice. In this study, we showed that metformin rescued cells from mutant huntingtin (HTT)-induced toxicity, as indicated by reduced lactate dehydrogenase (LDH) release from cells and preserved ATP levels in cells expressing mutant HTT. Further mechanistic study indicated that metformin activated AMP-activated protein kinase (AMPK) and that inhibition of AMPK activation reduced its protective effects on mutant HTT toxicity, suggesting that AMPK mediates the protection of metformin in HD cells. Furthermore, metformin treatment prevented mitochondrial membrane depolarization and excess fission and modulated the disturbed mitochondrial dynamics in HD cells. We confirmed that metformin crossed the blood-brain barrier after oral administration and activated AMPK in the mouse brain. Our results urge further evaluation of the clinical potential for use of metformin in HD treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteína Huntingtina/toxicidad , Metformina/farmacología , Dinámicas Mitocondriales/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/fisiopatología , Ratones , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología
12.
Mol Neurobiol ; 53(8): 5628-39, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26476842

RESUMEN

Previous studies performed in cell lines have shown that the heat shock protein, DNAJB6, protects against the proteotoxic effects of mutant huntingtin (mut-Htt) via direct interaction with mut-Htt. However, these studies were performed primarily using in vitro models and cell lines. We report that when expressed in primary neurons, DNAJB6 induces cell death. Neurotoxicity is observed with both the DNAJB6a isoform, which is strictly nuclear, and the DNAJB6b isoform, which is predominantly cytoplasmic, suggesting that neurotoxicity is mediated in the nucleus. However, when co-expressed in primary neurons with mut-Htt, DNAJB6 protects against mut-Htt neurotoxicity. This suggests that the contrasting effect of DNAJB6 on neuronal viability depends on the presence or absence of proteotoxic stress. Neurotoxicity of DNAJB6 cannot be prevented by inhibition of glycogen synthase kinase 3 beta (GSK3ß) or c-Jun N-terminal kinase (JNK) but is prevented by pharmacological inhibition of cyclin-dependent kinases (CDKs). Expression of dominant-negative forms of CDK2 or CDK4, or of p21(CIP1), the physiological inhibitor of CDKs, also inhibits DNAJB6 neurotoxicity. DNAJB6 neurotoxicity can also be inhibited by histone deacetylase-4 (HDAC4), which interacts with DNAJB6 and which has previously been described to inhibit cell cycle progression. These results conclude that neurotoxicity resulting from elevated DNAJB6 is cell cycle dependent.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Neuronas/citología , Neuronas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quinasas Ciclina-Dependientes/metabolismo , Células HEK293 , Humanos , Proteína Huntingtina/toxicidad , Ratones , Mitosis/efectos de los fármacos , Proteínas Mutantes/toxicidad , Células 3T3 NIH , Neuronas/efectos de los fármacos , Neurotoxinas/toxicidad , Unión Proteica/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Ratas Wistar , Estrés Fisiológico/efectos de los fármacos
13.
Mol Neurobiol ; 53(2): 1165-1180, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25592718

RESUMEN

Proteins belonging to the AP-1 family of transcription factors are known to be involved in the regulation of neuronal viability. While strides have been made to elucidate the mechanisms of how individual members regulate cell death, much remains unknown. We find that the expression of one AP-1 member, c-Fos, is reduced in cerebellar granule neurons (CGNs) induced to die by low potassium (LK) treatment. Restoration and increase of this expression protect CGNs against LK-induced death, whereas knockdown induces death of otherwise healthy neurons. Furthermore, forced expression can protect cortical neurons against homocysteic acid (HCA)-induced toxicity. Taken together, this suggests that c-Fos is necessary for neuronal survival and that elevating c-Fos expression has a neuroprotective effect. Consistent with this idea is the finding that c-Fos expression is reduced selectively in the striatum in two separate mouse models of Huntington's disease and forced expression protects against neuronal death resulting from mutant huntingtin (mut-Htt) expression. Interestingly, neuroprotection by c-Fos does not require its DNA-binding, transcriptional, or heteromerization domains. However, this protective activity can be inhibited by pharmacological inhibition of c-Abl, CK-I, and MEK-ERK signaling. Additionally, expression of point mutant forms of this protein has identified that mutation of a tyrosine residue, Tyr345, can convert c-Fos from neuroprotective to neurotoxic. We show that c-Fos interacts with histone deacetylase-3 (HDAC3), a protein that contributes to mut-Htt neurotoxicity and whose overexpression is sufficient to promote neuronal death. When co-expressed, c-Fos can protect against HDAC3 neurotoxicity. Finally, our study identifies a 21-amino acid region at the C-terminus of c-Fos that is sufficient to protect neurons against death induced by LK, HCA treatment, or mut-Htt expression when expressed via a plasmid transfection or as a cell-permeable peptide. This cell-permeable peptide, designated as Fos-CTF, could have potential as a therapeutic agent for neurodegenerative diseases.


Asunto(s)
Aminoácidos/metabolismo , Histona Desacetilasas/metabolismo , Neuroprotección , Fármacos Neuroprotectores/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADN/metabolismo , Células HEK293 , Humanos , Proteína Huntingtina/toxicidad , Factor I del Crecimiento Similar a la Insulina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Mitógenos/farmacología , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Neuroprotección/efectos de los fármacos , Péptidos/farmacología , Fosforilación/efectos de los fármacos , Potasio/farmacología , Unión Proteica/efectos de los fármacos , Multimerización de Proteína , Ratas Wistar , Transcripción Genética/efectos de los fármacos
14.
Mol Neurobiol ; 53(5): 2857-2868, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-25876513

RESUMEN

RTP801 expression is induced by cellular stress and has a pro-apoptotic function in non-proliferating differentiated cells such as neurons. In several neurodegenerative disorders, including Parkinson's disease and Alzheimer's disease, elevated levels of RTP801 have been observed, which suggests a role for RTP801 in neuronal death. Neuronal death is also a pathological hallmark in Huntington's disease (HD), an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Currently, the exact mechanisms underlying mutant huntingtin (mhtt)-induced toxicity are still unclear. Here, we investigated whether RTP801 is involved in (mhtt)-induced cell death. Ectopic exon-1 mhtt elevated RTP801 mRNA and protein levels in nerve growth factor (NGF)-differentiated PC12 cells and in rat primary cortical neurons. In neuronal PC12 cells, mhtt also contributed to RTP801 protein elevation by reducing its proteasomal degradation rate, in addition to promoting RTP801 gene expression. Interestingly, silencing RTP801 expression with short hairpin RNAs (shRNAs) blocked mhtt-induced cell death in NGF-differentiated PC12 cells. However, RTP801 protein levels were not altered in the striatum of Hdh(Q7/Q111) and R6/1 mice, two HD models that display motor deficits but not neuronal death. Importantly, RTP801 protein levels were elevated in both neural telencephalic progenitors differentiated from HD patient-derived induced pluripotent stem cells and in the putamen and cerebellum of human HD postmortem brains. Taken together, our results suggest that RTP801 is a novel downstream effector of mhtt-induced toxicity and that it may be relevant to the human disease.


Asunto(s)
Proteína Huntingtina/toxicidad , Proteínas Mutantes/toxicidad , Proteínas Represoras/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Enfermedad de Huntington/patología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células PC12 , Proteolisis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Represoras/genética , Factores de Transcripción , Regulación hacia Arriba/efectos de los fármacos
15.
Mol Neurobiol ; 53(10): 6620-6634, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26637326

RESUMEN

Huntington's disease (HD) is a devastating neurodegenerative disorder, which is caused by the expression and aggregation of polyQ-expanded mutant huntingtin protein (mtHTT). While toxic mtHTT aggregates are primarily eliminated through autophagy, autophagy dysfunction is often observed in HD pathogenesis. Here, we show that ectodermal-neural cortex 1 (ENC1), a novel binding partner of sequestosome 1 (p62), negatively regulates autophagy under endoplasmic reticulum (ER) stress. We found that ER stress significantly increases the expression of ENC1 via inositol-requiring enzyme 1 (IRE1)-TNF receptor-associated factor 2 (TRAF2)-c-Jun N-terminal kinase (JNK) pathway. Ectopic expression of ENC1 alone induces the accumulation of detergent-resistant mtHTT aggregates and downregulation of ENC1 alleviates ER stress-induced mtHTT aggregation. Simultaneously, ER stress-induced impairment of autophagy flux is ameliorated by downregulation of ENC1. From immunoprecipitation and immunocytochemical assays, we found that ENC1 binds to p62 through its BTB and C-terminal Kelch (BACK) domain and this interaction is enhanced under ER stress. In particular, ENC1 preferentially interacts with the phosphorylated p62 at Ser403 during ER stress. Interestingly, ENC1 colocalizes with mtHTT aggregates and its C-terminal Kelch domain is required for interfering with the access of p62 to ubiquitinated mtHTT aggregates, thus inhibiting cargo recognition of p62. Accordingly, knockdown of ENC1 expression enhances colocalization of p62 with mtHTT aggregates. Consequently, ENC1 knockdown relieves death of neuronal cells expressing mtHTT under ER stress. These results suggest that ENC1 interacts with the phosphorylated p62 to impair autophagic degradation of mtHTT aggregates and affects cargo recognition failure under ER stress, leading to the accumulation and neurotoxicity of mtHTT aggregates.


Asunto(s)
Estrés del Retículo Endoplásmico , Proteína Huntingtina/toxicidad , Proteínas de Microfilamentos/metabolismo , Proteínas Mutantes/toxicidad , Neuropéptidos/metabolismo , Neurotoxinas/toxicidad , Proteínas Nucleares/metabolismo , Agregado de Proteínas , Proteína Sequestosoma-1/metabolismo , Animales , Autofagia , Línea Celular Tumoral , Endorribonucleasas/metabolismo , Células HEK293 , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Factor 2 Asociado a Receptor de TNF/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA