Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
PLoS Genet ; 17(8): e1009729, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34370738

RESUMEN

Muscle precursor cells known as myoblasts are essential for muscle development and regeneration. Notch signaling is an ancient intercellular communication mechanism that plays prominent roles in controlling the myogenic program of myoblasts. Currently whether and how the myogenic cues feedback to refine Notch activities in these cells are largely unknown. Here, by mouse and human gene gain/loss-of-function studies, we report that MyoD directly turns on the expression of Notch-ligand gene Dll1 which activates Notch pathway to prevent precautious differentiation in neighboring myoblasts, while autonomously inhibits Notch to facilitate a myogenic program in Dll1 expressing cells. Mechanistically, we studied cis-regulatory DNA motifs underlying the MyoD-Dll1-Notch axis in vivo by characterizing myogenesis of a novel E-box deficient mouse model, as well as in human cells through CRISPR-mediated interference. These results uncovered the crucial transcriptional mechanism that mediates the reciprocal controls of Notch and myogenesis.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Retroalimentación Fisiológica/fisiología , Proteínas de la Membrana/metabolismo , Proteína MioD/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Proteína MioD/fisiología , Mioblastos/metabolismo , Factor de Transcripción PAX7/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética
2.
Sci Rep ; 10(1): 18088, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093635

RESUMEN

Loss of popliteal lymphatic vessel (PLV) contractions, which is associated with damage to lymphatic muscle cells (LMCs), is a biomarker of disease progression in mice with inflammatory arthritis. Currently, the nature of LMC progenitors has yet to be formally described. Thus, we aimed to characterize the progenitors of PLV-LMCs during murine development, towards rational therapies that target their proliferation, recruitment, and differentiation onto PLVs. Since LMCs have been described as a hybrid phenotype of striated and vascular smooth muscle cells (VSMCs), we performed lineage tracing studies in mice to further clarify this enigma by investigating LMC progenitor contribution to PLVs in neonatal mice. PLVs from Cre-tdTomato reporter mice specific for progenitors of skeletal myocytes (Pax7+ and MyoD+) and VSMCs (Prrx1+ and NG2+) were analyzed via whole mount immunofluorescent microscopy. The results showed that PLV-LMCs do not derive from skeletal muscle progenitors. Rather, PLV-LMCs originate from Pax7-/MyoD-/Prrx1+/NG2+ progenitors similar to VSMCs prior to postnatal day 10 (P10), and from a previously unknown Pax7-/MyoD-/Prrx1+/NG2- muscle progenitor pathway during development after P10. Future studies of these LMC progenitors during maintenance and repair of PLVs, along with their function in other lymphatic beds, are warranted.


Asunto(s)
Linaje de la Célula , Vasos Linfáticos/citología , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/citología , Miocitos del Músculo Liso/citología , Arteria Poplítea/citología , Células Madre/citología , Animales , Animales Recién Nacidos , Antígenos/fisiología , Diferenciación Celular , Femenino , Proteínas de Homeodominio/fisiología , Vasos Linfáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteína MioD/fisiología , Miocitos del Músculo Liso/metabolismo , Factor de Transcripción PAX7/fisiología , Arteria Poplítea/metabolismo , Proteoglicanos/fisiología , Células Madre/metabolismo
3.
Urology ; 123: 296.e9-296.e18, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29730257

RESUMEN

OBJECTIVE: To reveal the potential role of the basic helix-loop-helix myogenic transcription regulator MyoD in the regulation of castration-resistant prostate cancer. METHODS: Expression level of MyoD was assessed in prostate cancer tissues using quantitative reverse transcription polymerase chain reaction and immunohistochemistry and in experimentally induced castration-resistant LNCaP/R cells using quantitative reverse transcription polymerase chain reaction and immunoblotting. Effect of MyoD knockdown on LNCaP/R cell progression was determined by assessing cell proliferation, apoptosis, and colony formation rate. The effect of MyoD knockdown on the oxidative stress state in PC3 cells was determined by assessing antioxidant response gene expression and glutathione synthetase-to-glutathione ratio. Finally, the functional link between the nuclear factor erythroid-derived 2-related factor 1 (NRF1) and the regulation of antioxidant response element-driven transcription by MyoD was studied at both molecular and functional levels. RESULTS: MyoD expression was significantly upregulated in hormone-refractory prostate cancer tissues and in experimentally induced castration-resistant LNCaP/R cells, and MyoD knockdown effectively impaired LNCaP/R cell proliferation and promoted apoptosis under androgen-depleted condition. Moreover, MyoD enhanced the glutathione production and protected against oxidative stress by positively regulating a cluster of antioxidant genes known to be the downstream targets of NRF1. Mechanistically, MyoD could augment the antioxidant response element-driven transcription in an NRF1-dependent manner, and the stimulatory effect of MyoD on the antioxidant response was substantially compromised in the presence of NRF1 small interfering RNA treatment. CONCLUSION: We have identified an unexpected collaboration between MyoD and NRF1 under androgen-depleted condition, which may serve as an important adaptive mechanism during the pathogenesis of castration-resistant prostate cancer.


Asunto(s)
Proteína MioD/fisiología , Neoplasias de la Próstata Resistentes a la Castración/etiología , Antioxidantes , Proliferación Celular , Humanos , Masculino , Proteína MioD/biosíntesis , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Células Tumorales Cultivadas
4.
Anim Sci J ; 89(8): 1214-1219, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29900636

RESUMEN

Myogenesis is precisely proceeded by myogenic regulatory factors. Myogenic stem cells are activated, proliferated and fused into a multinuclear myofiber. Pax7, paired box 7, one of the earliest markers during myogenesis. It has been reported that Pax7 regulates the muscle marker genes, Myf5 and MyoD toward differentiation. The possible roles of Pax7 in myogenic cells have been well researched. However, it has not yet been clarified if Pax7 itself is able to induce myogenic fate in nonmyogenic lineage cells. In this study, we performed experiments using stably expressed Pax7 in 3T3-L1 preadipocytes to elucidate if Pax7 inhibits adipogenesis. We found that Pax7 represses adipogenic markers and prevents differentiation. These cells showed decreased expression of PDGFRα, PPARγ and Fabp4 and inhibited forming lipid droplets.


Asunto(s)
Adipocitos/fisiología , Adipogénesis/genética , Diferenciación Celular/genética , Factor de Transcripción PAX7/fisiología , Células 3T3-L1 , Animales , Regulación hacia Abajo/genética , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Expresión Génica/genética , Gotas Lipídicas , Ratones , Desarrollo de Músculos , Proteína MioD/fisiología , Factor 5 Regulador Miogénico/fisiología , PPAR gamma/genética , PPAR gamma/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética
5.
Mol Genet Metab ; 123(4): 518-525, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29477258

RESUMEN

Neurofibromatosis Type 1 (NF1) is a common autosomal dominant genetic disorder While NF1 is primarily associated with predisposition for tumor formation, muscle weakness has emerged as having a significant impact on quality of life. NF1 inactivation is linked with a canonical upregulation Ras-MEK-ERK signaling. This in this study we tested the capacity of the small molecule MEK inhibitor PD0325901 to influence the intramyocellular lipid accumulation associated with NF1 deficiency. Established murine models of tissue specific Nf1 deletion in skeletal muscle (Nf1MyoD-/-) and limb mesenchyme (Nf1Prx1-/-) were tested. Developmental PD0325901 dosing of dams pregnant with Nf1MyoD-/- progeny rescued the phenotype of day 3 pups including body weight and lipid accumulation by Oil Red O staining. In contrast, PD0325901 treatment of 4 week old Nf1Prx1-/- mice for 8 weeks had no impact on body weight, muscle wet weight, activity, or intramyocellular lipid. Examination of day 3 Nf1Prx1-/- pups showed differences between the two tissue-specific knockout strains, with lipid staining greatest in Nf1MyoD-/- mice, and fibrosis higher in Nf1Prx1-/- mice. These data show that a MEK/ERK dependent mechanism underlies NF1 muscle metabolism during development. However, crosstalk from Nf1-deficient non-muscle mesenchymal cells may impact upon muscle metabolism and fibrosis in neonatal and mature myofibers.


Asunto(s)
Benzamidas/farmacología , Difenilamina/análogos & derivados , Extremidades/patología , Músculo Esquelético/patología , Enfermedades Musculares/prevención & control , Neurofibromatosis 1/fisiopatología , Neurofibromina 1/fisiología , Animales , Animales Recién Nacidos , Difenilamina/farmacología , Femenino , Proteínas de Homeodominio/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Proteína MioD/fisiología , Transducción de Señal , Proteínas ras/antagonistas & inhibidores , Proteínas ras/metabolismo
6.
Nucleic Acids Res ; 45(15): 8785-8805, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28575289

RESUMEN

Super-enhancers (SEs) are cis-regulatory elements enriching lineage specific key transcription factors (TFs) to form hotspots. A paucity of identification and functional dissection promoted us to investigate SEs during myoblast differentiation. ChIP-seq analysis of histone marks leads to the uncovering of SEs which remodel progressively during the course of differentiation. Further analyses of TF ChIP-seq enable the definition of SE hotspots co-bound by the master TF, MyoD and other TFs, among which we perform in-depth dissection for MyoD/FoxO3 interaction in driving the hotspots formation and SE activation. Furthermore, using Myogenin as a model locus, we elucidate the hierarchical and complex interactions among hotspots during the differentiation, demonstrating SE function is propelled by the physical and functional cooperation among hotspots. Finally, we show MyoD and FoxO3 are key in orchestrating the Myogenin hotspots interaction and activation. Altogether our results identify muscle-specific SEs and provide mechanistic insights into the functionality of SE.


Asunto(s)
Diferenciación Celular/genética , Elementos de Facilitación Genéticos/fisiología , Proteína Forkhead Box O3/fisiología , Desarrollo de Músculos/genética , Proteína MioD/fisiología , Animales , Células Cultivadas , Proteína Forkhead Box O3/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Proteína MioD/metabolismo , Mioblastos/fisiología , Miogenina/genética , Miogenina/metabolismo , Unión Proteica
7.
Biomed Res ; 38(3): 215-219, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28637957

RESUMEN

The Gm7325 gene, bioinformatically identified in the mouse genome, encodes a small protein but has not been characterized until recently. Our gene expression analysis revealed that Gm7325 transcription is remarkably upregulated in injured skeletal muscle tissues. Activated satellite cells and immature myotubes were densely decorated with positive signals for Gm7325 mRNA in in situ hybridization analysis, while no obvious signals were observed in quiescent satellite cells and mature myofibers. In the 5'-flanking regions of mouse Gm7325 and its human homologue, conserved E-box motifs for helix-loop-helix transcription factors are repeatedly arranged around the putative promoter regions. Reporter gene assays suggested that MyoD, a master transcription factor for myogenesis, binds to the conserved E-box motifs to activate Gm7325 expression. Therefore, Gm7325, as a novel MyoD-target gene, is specifically induced in activated satellite cells, and may have an important role in skeletal myogenesis.


Asunto(s)
Proteínas de la Membrana/fisiología , Proteína MioD/fisiología , Células Satélite del Músculo Esquelético/fisiología , Animales , Secuencia de Bases , Línea Celular , Secuencia de Consenso , Expresión Génica , Células HeLa , Humanos , Ratones , Desarrollo de Músculos , Activación Transcripcional
8.
PLoS One ; 12(4): e0175271, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28384253

RESUMEN

Prevention of age-associated reduction in muscle mass and function is required to manage a healthy life. Supplemental (-)-Epicatechin (EC) appears to act as a potential regulator for muscle growth and strength. However, its cellular and molecular mechanisms as a potential muscle growth agent have not been studied well. In the current study, we investigated a role of EC in differentiation of muscle progenitors to gain the molecular insight into how EC regulates muscle growth. EC enhanced myogenic differentiation in a dose-dependent manner through stimulation of promyogenic signaling pathways, p38MAPK and Akt. EC treatment elevated MyoD activity by enhancing its heterodimerization with E protein. Consistently, EC also positively regulated myogenic conversion and differentiation of fibroblasts. In conclusion, EC has a potential as a therapeutic or nutraceutical remedy to treat degenerative muscle diseases or age-related muscle weakness.


Asunto(s)
Catequina/farmacología , Diferenciación Celular/efectos de los fármacos , Proteína MioD/fisiología , Mioblastos/citología , Animales , Diferenciación Celular/fisiología , Línea Celular , Ratones
9.
Biochim Biophys Acta ; 1849(8): 1081-94, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26149774

RESUMEN

Skeletal muscle cell differentiation requires a family of proteins called myogenic regulatory factors (MRFs) to which MyoD belongs. The activity of MyoD is under epigenetic regulation, however, the molecular mechanism by which histone KMTs and KDMs regulate MyoD transcriptional activity through methylation remains to be determined. Here we provide evidence for a unique regulatory mechanism of MyoD transcriptional activity through demethylation by Jmjd2C demethylase whose level increases during muscle differentiation. G9a decreases MyoD stability via methylation-dependent MyoD ubiquitination. Jmjd2C directly associates with MyoD in vitro and in vivo to demethylate and stabilize MyoD. The hypo-methylated MyoD due to Jmjd2C is significantly more stable than hyper-methylated MyoD by G9a. Cul4/Ddb1/Dcaf1 pathway is essential for the G9a-mediated MyoD degradation in myoblasts. By the stabilization of MyoD, Jmjd2C increases myogenic conversion of mouse embryonic fibroblasts and MyoD transcriptional activity with erasing repressive H3K9me3 level at the promoter of MyoD target genes. Collectively, Jmjd2C increases MyoD transcriptional activity to facilitate skeletal muscle differentiation by increasing MyoD stability through inhibiting G9a-dependent MyoD degradation.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína MioD/metabolismo , Oxidorreductasas N-Desmetilantes/fisiología , Activación Transcripcional , Animales , Diferenciación Celular/genética , Células Cultivadas , Regulación hacia Abajo , Epigénesis Genética/fisiología , Células HEK293 , Humanos , Histona Demetilasas con Dominio de Jumonji , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/fisiología , Proteína MioD/fisiología , Mioblastos/fisiología , Proteolisis
10.
Nucleic Acids Res ; 43(4): 2008-21, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25653159

RESUMEN

During skeletal muscle differentiation, the activation of some tissue-specific genes occurs immediately while others are delayed. The molecular basis controlling temporal gene regulation is poorly understood. We show that the regulatory sequences, but not other regions of genes expressed at late times of myogenesis, are in close physical proximity in differentiating embryonic tissue and in differentiating culture cells, despite these genes being located on different chromosomes. Formation of these inter-chromosomal interactions requires the lineage-determinant MyoD and functional Brg1, the ATPase subunit of SWI/SNF chromatin remodeling enzymes. Ectopic expression of myogenin and a specific Mef2 isoform induced myogenic differentiation without activating endogenous MyoD expression. Under these conditions, the regulatory sequences of late gene loci were not in close proximity, and these genes were prematurely activated. The data indicate that the spatial organization of late genes contributes to temporal regulation of myogenic transcription by restricting late gene expression during the early stages of myogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Elementos Reguladores de la Transcripción , Animales , Línea Celular , Ensamble y Desensamble de Cromatina , Cromosomas de los Mamíferos , ADN Helicasas/fisiología , Histona Desacetilasa 2/fisiología , Ratones , Músculo Esquelético/metabolismo , Proteína MioD/fisiología , Proteínas Nucleares/fisiología , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Factores de Transcripción/fisiología
11.
J Dent Res ; 94(3): 421-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25576472

RESUMEN

The tongue is a muscular organ that is essential in vertebrates for important functions, such as food intake and communication. Little is known about regulation of myogenic progenitors during tongue development when compared with the limb or trunk region. In this study, we investigated the relationship between different myogenic subpopulations and the function of canonical Wnt signaling in regulating these subpopulations. We found that Myf5- and MyoD-expressing myogenic subpopulations exist during embryonic tongue myogenesis. In the Myf5-expressing myogenic progenitors, there is a cell-autonomous requirement for canonical Wnt signaling for cell migration and differentiation. In contrast, the MyoD-expressing subpopulation does not require canonical Wnt signaling during tongue myogenesis. Taken together, our results demonstrate that canonical Wnt signaling differentially regulates the Myf5- and MyoD-expressing subpopulations during tongue myogenesis.


Asunto(s)
Desarrollo de Músculos/fisiología , Células Madre/fisiología , Lengua/embriología , Vía de Señalización Wnt/fisiología , Animales , Proteína Axina/análisis , Proteína Axina/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Movimiento Celular/fisiología , Ratones , Fibras Musculares Esqueléticas/citología , Proteína MioD/análisis , Proteína MioD/fisiología , Factor 5 Regulador Miogénico/análisis , Factor 5 Regulador Miogénico/fisiología , ARN no Traducido/análisis , ARN no Traducido/fisiología , Lengua/citología , beta Catenina/análisis , beta Catenina/fisiología
12.
Nat Commun ; 5: 4597, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25119651

RESUMEN

Skeletal muscle stem cells (MuSCs), the major source for skeletal muscle regeneration in vertebrates, are in a state of cell cycle arrest in adult skeletal muscles. Prior evidence suggests that embryonic muscle progenitors proliferate and differentiate to form myofibres and also self-renew, implying that MuSCs, derived from these cells, acquire quiescence later during development. Depletion of Dicer in adult MuSCs promoted their exit from quiescence, suggesting microRNAs are involved in the maintenance of quiescence. Here we identified miR-195 and miR-497 that induce cell cycle arrest by targeting cell cycle genes, Cdc25 and Ccnd. Reduced expression of MyoD in juvenile MuSCs, as a result of overexpressed miR-195/497 or attenuated Cdc25/Ccnd, revealed an intimate link between quiescence and suppression of myogenesis in MuSCs. Transplantation of cultured MuSCs treated with miR-195/497 contributed more efficiently to regenerating muscles of dystrophin-deficient mice, indicating the potential utility of miR-195/497 for stem cell therapies.


Asunto(s)
Diferenciación Celular/fisiología , MicroARNs/fisiología , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Células Madre/fisiología , Envejecimiento/fisiología , Animales , Ciclo Celular/fisiología , Línea Celular , Masculino , Ratones , Ratones Endogámicos , Morfogénesis/fisiología , Desarrollo de Músculos/fisiología , Músculo Esquelético/fisiología , Proteína MioD/fisiología , Fosfatasas cdc25/fisiología
13.
J Biol Chem ; 289(34): 23417-27, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25006242

RESUMEN

The acquisition of skeletal muscle-specific function and terminal cell cycle arrest represent two important features of the myogenic differentiation program. These cellular processes are distinct and can be separated genetically. The lineage-specific transcription factor MyoD and the retinoblastoma protein pRb participate in both of these cellular events. Whether and how MyoD and pRb work together to effect terminal cell cycle arrest is uncertain. To address this question, we focused on cyclin D1, whose stable repression is required for terminal cell cycle arrest and execution of myogenesis. MyoD and pRb are both required for the repression of cyclin D1; their actions, however, were found not to be direct. Rather, they operate to regulate the immediate early gene Fra-1, a critical player in mitogen-dependent induction of cyclin D1. Two conserved MyoD-binding sites were identified in an intronic enhancer of Fra-1 and shown to be required for the stable repression of Fra-1 and, in turn, cyclin D1. Localization of MyoD alone to the intronic enhancer of Fra-1 in the absence of pRb was not sufficient to elicit a block to Fra-1 induction; pRb was also recruited to the intronic enhancer in a MyoD-dependent manner. These observations suggest that MyoD and pRb work together cooperatively at the level of the intronic enhancer of Fra-1 during terminal cell cycle arrest. This work reveals a previously unappreciated link between a lineage-specific transcription factor, a tumor suppressor, and a proto-oncogene in the control of an important facet of myogenic differentiation.


Asunto(s)
Ciclo Celular , Ciclina D1/metabolismo , Desarrollo de Músculos , Proteína MioD/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteína de Retinoblastoma/fisiología , Células 3T3 , Animales , Secuencia de Bases , Sitios de Unión , Diferenciación Celular , Línea Celular Transformada , ADN , Cartilla de ADN , Ratones , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , ARN Polimerasa II/metabolismo
14.
Nat Commun ; 5: 3793, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24786561

RESUMEN

Myogenic regulatory factors such as MyoD and Myf5 lie at the core of vertebrate muscle differentiation. However, E-boxes, the cognate binding sites for these transcription factors, are not restricted to the promoters/enhancers of muscle cell-specific genes. Thus, the specificity in myogenic transcription is poorly defined. Here we describe the transcription factor Ebf3 as a new determinant of muscle cell-specific transcription. In the absence of Ebf3 the lung does not unfold at birth, resulting in respiratory failure and perinatal death. This is due to a hypercontractile diaphragm with impaired Ca(2+) efflux-related muscle functions. Expression of the Ca(2+) pump Serca1 (Atp2a1) is downregulated in the absence of Ebf3, and its transgenic expression rescues this phenotype. Ebf3 binds directly to the promoter of Atp2a1 and synergises with MyoD in the induction of Atp2a1. In skeletal muscle, the homologous family member Ebf1 is strongly expressed and together with MyoD induces Atp2a1. Thus, Ebf3 is a new regulator of terminal muscle differentiation in the diaphragm, and Ebf factors cooperate with MyoD in the induction of muscle-specific genes.


Asunto(s)
Relajación Muscular/fisiología , Proteína MioD/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología , Factores de Transcripción/fisiología , Animales , Ratones , Ratones Noqueados , Insuficiencia Respiratoria/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
15.
Am J Physiol Regul Integr Comp Physiol ; 306(11): R837-44, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24671243

RESUMEN

Chronic alcohol abuse is associated with skeletal muscle myopathy. Previously, we demonstrated that chronic binge alcohol (CBA) consumption by rhesus macaques accentuates skeletal muscle wasting at end-stage of simian immunodeficiency virus (SIV) infection. A proinflammatory, prooxidative milieu and enhanced ubiquitin proteasome activity were identified as possible mechanisms leading to loss of skeletal muscle. The possibility that impaired regenerative capacity, as reflected by the ability of myoblasts derived from satellite cell (SCs) to differentiate into myotubes has not been examined. We hypothesized that the inflammation and oxidative stress in skeletal muscle from CBA animals impair the differentiation capacity of myoblasts to form new myofibers in in vitro assays. We isolated primary myoblasts from the quadriceps femoris of rhesus macaques that were administered CBA or isocaloric sucrose (SUC) for 19 mo. Proliferation and differentiation potential of cultured myoblasts were examined in vitro. Myoblasts from the CBA group had significantly reduced PAX7, MYOD1, MYOG, MYF5, and MEF2C expression. This was associated with decreased myotube formation as evidenced by Jenner-Giemsa staining and myonuclei fusion index. No significant difference in the proliferative ability, cell cycle distribution, or autophagy was detected between myoblasts isolated from CBA and SUC groups. Together, these results reflect marked dysregulation of myoblast myogenic gene expression and myotube formation, which we interpret as evidence of impaired skeletal muscle regenerative capacity in CBA-administered macaques. The contribution of this mechanism to alcoholic myopathy warrants further investigation.


Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Diferenciación Celular/fisiología , Regulación de la Expresión Génica/fisiología , Macaca mulatta/fisiología , Proteínas Musculares/fisiología , Mioblastos Esqueléticos/patología , Animales , Proliferación Celular , Técnicas In Vitro , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/fisiología , Masculino , Modelos Animales , Proteínas Musculares/genética , Proteína MioD/genética , Proteína MioD/fisiología , Mioblastos Esqueléticos/fisiología , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/fisiología , Miogenina/genética , Miogenina/fisiología , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/fisiología
16.
Artículo en Inglés | MEDLINE | ID: mdl-24492711

RESUMEN

Nuclear reprogramming technology was first established more than 50 years ago. It can rejuvenate somatic cells by erasing the epigenetic memories and reconstructing a new pluripotent order. The recent discovery reviewed here that induced pluripotency can be achieved by a small set of transcription factors has opened up unprecedented opportunities in the pharmaceutical industry, the clinic, and laboratories. This technology allows us to access pathological studies by using patient-specific induced pluripotent stem (iPS) cells. In addition, iPS cells are also expected to be a rising star for regenerative medicine, as sources of transplantation therapy.


Asunto(s)
Diferenciación Celular/fisiología , Reprogramación Celular/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Factores de Transcripción/fisiología , Diferenciación Celular/genética , Reprogramación Celular/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Proteína MioD/genética , Proteína MioD/fisiología , Factores de Transcripción/genética
17.
Biomaterials ; 35(7): 2188-98, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24360578

RESUMEN

We used a synthetic biology approach to produce myotubes from mammalian C2C12 myoblasts in non-differentiation growth conditions using the expression of basic helix-loop-helix transcription factors, MyoD and E12, in various combinations and configurations. Our approach not only recapitulated the basics of muscle development and physiology, as the obtained myotubes showed qualities similar to those seen in striated muscle fibers in vivo, but also allowed for the synthesis of populations of myotubes which assumed distinct morphology, myofibrillar development and Ca(2+) dynamics. This fashioned class of biomaterials is suitable for the building blocks of soft actuators in micro-scale biomimetic robotics. This production line strategy can be embraced in reparative medicine as synthetic human myotubes with predetermined morphological/functional properties could be obtained using this very approach. This methodology can be adopted beyond striated muscle for the engineering of other tissue components/cells whose differentiation is governed by the principles of basic helix-loop-helix transcription factors, as in the case, for example, of neural or immune cell types.


Asunto(s)
Diferenciación Celular , Fibras Musculares Esqueléticas/metabolismo , Proteína MioD/fisiología , Factor de Transcripción 3/fisiología , Factores de Transcripción/metabolismo , Animales , Línea Celular , Ratones
18.
Cancer Res ; 73(22): 6828-37, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24092238

RESUMEN

While medulloblastoma, a pediatric tumor of the cerebellum, is characterized by aberrations in developmental pathways, the majority of genetic determinants remain unknown. An unbiased Sleeping Beauty transposon screen revealed MyoD as a putative medulloblastoma tumor suppressor. This was unexpected, as MyoD is a muscle differentiation factor and not previously known to be expressed in cerebellum or medulloblastoma. In response to deletion of one allele of MyoD, two other Sonic hedgehog-driven mouse medulloblastoma models showed accelerated tumor formation and death, confirming MyoD as a tumor suppressor in these models. In normal cerebellum, MyoD was expressed in the proliferating granule neuron progenitors that are thought to be precursors to medulloblastoma. Similar to some other tumor suppressors that are induced in cancer, MyoD was expressed in proliferating medulloblastoma cells in three mouse models and in human medulloblastoma cases. This suggests that although expression of MyoD in a proliferating tumor is insufficient to prevent tumor progression, its expression in the cerebellum hinders medulloblastoma genesis.


Asunto(s)
Neoplasias Cerebelosas/genética , Genes Supresores de Tumor/fisiología , Meduloblastoma/genética , Proteína MioD/fisiología , Animales , Proliferación Celular , Transformación Celular Neoplásica/genética , Cerebelo/embriología , Cerebelo/metabolismo , Progresión de la Enfermedad , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Proteína MioD/genética
19.
Cardiovasc Res ; 100(1): 105-13, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23794713

RESUMEN

AIMS: Fibroblasts can be directly reprogrammed to cardiomyocyte-like cells by introducing defined genes. However, the reprogramming efficiency remains low, delaying the clinical application of this strategy to regenerative cardiology. We previously showed that fusion of the MyoD transactivation domain to the pluripotency transcription factor Oct4 facilitated the transcriptional activity of Oct4, resulting in highly efficient production of induced pluripotent stem cells. We examined whether the same approach can be applied to cardiac transcription factors to facilitate cardiac reprogramming. METHODS AND RESULTS: We fused the MyoD domain to Mef2c, Gata4, Hand2, and Tbx5 and transduced these genes in various combinations into mouse non-cardiac fibroblasts. Transduction of the chimeric Mef2c with the wild-types of the other three genes produced much larger beating clusters of cardiomyocyte-like cells faster than the combination of the four wild-type genes, with an efficiency of 3.5%, >15-fold greater than the wild-type genes. CONCLUSION: Fusion of a powerful transactivation domain to heterologous factors can increase the efficiency of direct reprogramming of fibroblasts to cardiomyocytes.


Asunto(s)
Diferenciación Celular , Fibroblastos/citología , Proteína MioD/fisiología , Miocitos Cardíacos/citología , Activación Transcripcional , Animales , Técnica del Anticuerpo Fluorescente , Células Madre Pluripotentes Inducidas , Factores de Transcripción MEF2/fisiología , Ratones , Proteína MioD/química , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Estructura Terciaria de Proteína
20.
Keio J Med ; 62(3): 74-82, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23801083

RESUMEN

In the field of developmental biology, the concept that cells, once terminally differentiated, are fixed in their cell fate was long believed to be true. However, Dr. Gurdon and colleagues challenged this fundamental doctrine and demonstrated that cellular reprogramming and cell fate conversion are possible by somatic nuclear transfer and cell fusion. The Weintraub laboratory discovered in the 1980s that a single transcription factor, MyoD, can convert fibroblasts into skeletal muscle cells, and subsequent studies also demonstrated that several transcription factors are lineage converting factors within the blood cell lineage. In 2006, Takahashi and Yamanaka discovered that transduction of the four stem cell-specific transcription factors Oct4, Sox2, Klf4, and c-Myc can reprogram mouse fibroblast cells into a pluripotent state. In 2007, they demonstrated that the same four factors similarly reprogram human somatic cells into pluripotent stem cells. These discoveries by Dr. Yamanaka and colleagues fundamentally changed research in the fields of disease modeling and regenerative medicine and also inspired the next stage of cellular reprogramming, i.e., the generation of desired cell types without reverting to stem cells by overexpression of lineage-specific transcription factors. Recent studies demonstrated that a diverse range of cell types, such as pancreatic ß cells, neurons, neural progenitors, cardiomyocytes, and hepatocytes, can be directly induced from somatic cells by combinations of specific factors. In this article, I review the pioneering works of cellular reprogramming and discuss the recent progress and future perspectives of direct reprogramming technology.


Asunto(s)
Reprogramación Celular , Animales , Fibroblastos/citología , Hepatocitos/citología , Humanos , Factor 4 Similar a Kruppel , Músculo Esquelético/citología , Proteína MioD/fisiología , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...