Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.016
Filtrar
1.
Sci Rep ; 14(1): 11174, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750129

RESUMEN

Current treatments for anxiety and depression show limited efficacy in many patients, indicating the need for further research into the underlying mechanisms. JNK1 has been shown to regulate anxiety- and depressive-like behaviours in mice, however the effectors downstream of JNK1 are not known. Here we compare the phosphoproteomes from wild-type and Jnk1-/- mouse brains and identify JNK1-regulated signalling hubs. We next employ a zebrafish (Danio rerio) larvae behavioural assay to identify an antidepressant- and anxiolytic-like (AA) phenotype based on 2759 measured stereotypic responses to clinically proven antidepressant and anxiolytic (AA) drugs. Employing machine learning, we classify an AA phenotype from extracted features measured during and after a startle battery in fish exposed to AA drugs. Using this classifier, we demonstrate that structurally independent JNK inhibitors replicate the AA phenotype with high accuracy, consistent with findings in mice. Furthermore, pharmacological targeting of JNK1-regulated signalling hubs identifies AKT, GSK-3, 14-3-3 ζ/ε and PKCε as downstream hubs that phenocopy clinically proven AA drugs. This study identifies AKT and related signalling molecules as mediators of JNK1-regulated antidepressant- and anxiolytic-like behaviours. Moreover, the assay shows promise for early phase screening of compounds with anti-stress-axis properties and for mode of action analysis.


Asunto(s)
Ansiolíticos , Ansiedad , Conducta Animal , Larva , Proteína Quinasa 8 Activada por Mitógenos , Transducción de Señal , Pez Cebra , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/genética , Larva/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Ansiolíticos/farmacología , Fenotipo , Antidepresivos/farmacología , Modelos Animales de Enfermedad , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo
2.
Toxicol Appl Pharmacol ; 486: 116933, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631520

RESUMEN

"White pollution" has a significant impact on male reproduction. Di-n-butyl phthalate (DBP) is one of the most important factors in this type of pollution. Currently, research from international sources has demonstrated the significant reproductive toxicity of DBP. However, most of these studies have focused mainly on hormones expression at the protein and mRNA levels and the specific molecular targets of DBP and its mechanisms of action remain unclear. In this study, we established a Sprague Dawley pregnant mouse model exposed to DBP, and all male offspring were immediately euthanized at birth and bilateral testes were collected. We found through transcriptome sequencing that cell apoptosis and MAPK signaling pathway are the main potential pathways for DBP induced reproductive toxicity. Molecular biology analyses revealed a significant increase in the protein levels of JNK1(MAPK8) and BAX, as well as a significant increase in the BAX/BCL2 ratio after DBP exposure. Therefore, we propose that DBP induces reproductive toxicity by regulating JNK1 expression to activate the MAPK signaling pathway and induce reproductive cell apoptosis. In conclusion, our study provides the first evidence that the MAPK signaling pathway is involved in DBP-induced reproductive toxicity and highlights the importance of JNK1 as a potential target of DBP in inducing reproductive toxicity.


Asunto(s)
Apoptosis , Dibutil Ftalato , Sistema de Señalización de MAP Quinasas , Testículo , Animales , Masculino , Dibutil Ftalato/toxicidad , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Femenino , Ratones , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Embarazo , Apoptosis/efectos de los fármacos , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/genética
3.
Z Naturforsch C J Biosci ; 79(3-4): 47-60, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38549398

RESUMEN

Garcinia mangostana fruits are used traditionally for inflammatory skin conditions, including acne. In this study, an in silico approach was employed to predict the interactions of G. mangostana xanthones and benzophenones with three proteins involved in the pathogenicity of acne, namely the human JNK1, Cutibacterium acnes KAS III and exo-ß-1,4-mannosidase. Molecular docking analysis was performed using Autodock Vina. The highest docking scores and size-independent ligand efficiency values towards JNK1, C. acnes KAS III and exo-ß-1,4-mannosidase were obtained for garcinoxanthone T, gentisein/2,4,6,3',5'-pentahydroxybenzophenone and mangostanaxanthone VI, respectively. To the best of our knowledge, this is the first report of the potential of xanthones and benzophenones to interact with C. acnes KAS III. Molecular dynamics simulations using GROMACS indicated that the JNK1-garcinoxanthone T complex had the highest stability of all ligand-protein complexes, with a high number of hydrogen bonds predicted to form between this ligand and its target. Petra/Osiris/Molinspiration (POM) analysis was also conducted to determine pharmacophore sites and predict the molecular properties of ligands influencing ADMET. All ligands, except for mangostanaxanthone VI, showed good membrane permeability. Garcinoxanthone T, gentisein and 2,4,6,3',5'-pentahydroxybenzophenone were identified as the most promising compounds to explore further, including in experimental studies, for their anti-acne potential.


Asunto(s)
Acné Vulgar , Benzofenonas , Garcinia mangostana , Simulación del Acoplamiento Molecular , Xantonas , Xantonas/química , Xantonas/farmacología , Benzofenonas/química , Benzofenonas/farmacología , Garcinia mangostana/química , Humanos , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/microbiología , Simulación de Dinámica Molecular , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/química , Simulación por Computador , Enlace de Hidrógeno
4.
Clin Exp Pharmacol Physiol ; 51(3): e13843, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38302075

RESUMEN

This study explores the potential mechanisms of obstructive sleep apnoea (OSA) complicates type 2 diabetes mellitus (T2DM) by which chronic intermittent hypoxia (CIH) induces insulin resistance and cell apoptosis in the pancreas through oxidative stress. Four- and eight-week CIH rat models were established, and Tempol (100 mg/kg/d), was used as an oxidative stress inhibitor. This study included five groups: 4-week CIH, 4-week CIH-Tempol, 8-week CIH, 8-week CIH-Tempol and normal control (NC) groups. Fasting blood glucose and insulin levels were measured in the serum. The expression levels of 8-hidroxy-2-deoxyguanosine (8-OHdG), tribbles homologue 3 (TRB3), c-Jun N-terminal kinase (JNK), phosphorylated JNK (p-JNK), insulin receptor substrate-1 (IRS-1), phosphorylated IRS-1 (Ser307) (p-IRS-1ser307 ), protein kinase B (AKT), phosphorylated AKT (Ser473) (p-AKTser473 ), B cell lymphoma protein-2 (Bcl-2), cleaved-caspase-3 (Cl-caspase-3), and the islet cell apoptosis were detected in the pancreas. CIH induced oxidative stress in the pancreas. Compared with that in the NC group and CIH-Tempol groups individually, the homeostasis model assessment of insulin resistance (HOMA-IR) and apoptosis of islet cells was increased in the CIH groups. CIH-induced oxidative stress increased the expression of p-IRS-1Ser307 and decreased the expression of p-AKTSer473 . The expression levels of TRB3 and p-JNK were higher in the CIH groups than in both the CIH-Tempol and NC groups. Meanwhile, the expressions of Cl-caspase-3 and Bcl-2 were upregulated and downregulated, respectively, in the CIH groups. Hence, the present study demonstrated that CIH-induced oxidative stress might not only induce insulin resistance but also islet cell apoptosis in the pancreas through TRB3 and p-JNK.


Asunto(s)
Óxidos N-Cíclicos , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Marcadores de Spin , Animales , Ratas , Apoptosis , Caspasa 3/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipoxia/complicaciones , Estrés Oxidativo , Páncreas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo
5.
Acta Biochim Pol ; 70(4): 817-822, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099475

RESUMEN

BACKGROUND: Prostate cancer is one of the most common cancers in men worldwide. This study aims to elucidate the roles of c-Jun N-terminal kinase (JNK) in the progression of castration-resistant prostate cancer (CRPC). METHODS: JNK overexpressing and knockdown cell lines were established on the PC-3 prostate cell line. qPCR and Western blotting were performed to determine the mRNA and protein levels of target genes in prostate tissues and cell lines. MTT and Matrigel invasion assays were conducted to evaluate the cell viability and invasive ability, respectively. The Kaplan-Meier estimator was performed to estimate the overall survival rate and second progression-free survival rate. Pearson's correlation coefficient was used to evaluate the relationship between JNK and prostate-specific antigen (PSA). RESULTS: Relative JNK expression was correlated with Gleason score and PSA value in patients with CRPC. Kaplan-Meier analysis revealed that patients with low JNK expression exhibited high overall survival and second progression-free survival rate. In vitro assays demonstrated that JNK overexpression promoted cell viability and invasion as well as the protein expressions of extracellular signal-regulated kinase (ERK) and matrix metalloproteinase 1 (MMP1) in PC-3 cell lines. CONCLUSIONS: JNK overexpression promotes the development of CRPC via the regulation of ERK and MMP1.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular , Metaloproteinasa 1 de la Matriz , Antígeno Prostático Específico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo
6.
Mol Metab ; 78: 101816, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37821006

RESUMEN

OBJECTIVE: The mitochondrial unfolded protein response (UPRmt) is an adaptive cellular response to stress to ensure mitochondrial proteostasis and function. Here we explore the capacity of physical exercise to induce UPRmt in the skeletal muscle. METHODS: Therefore, we combined mouse models of exercise (swimming and treadmill running), pharmacological intervention, and bioinformatics analyses. RESULTS: Firstly, RNA sequencing and Western blotting analysis revealed that an acute aerobic session stimulated several mitostress-related genes and protein content in muscle, including the UPRmt markers. Conversely, using a large panel of isogenic strains of BXD mice, we identified that BXD73a and 73b strains displayed low levels of several UPRmt-related genes in the skeletal muscle, and this genotypic feature was accompanied by body weight gain, lower locomotor activity, and aerobic capacity. Finally, we identified that c-Jun N-terminal kinase (JNK) activation was critical in exercise-induced UPRmt in the skeletal muscle since pharmacological JNK pathway inhibition blunted exercise-induced UPRmt markers in mice muscle. CONCLUSION: Our findings provide new insights into how exercise triggers mitostress signals toward the oxidative capacity in the skeletal muscle.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Condicionamiento Físico Animal , Animales , Ratones , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Respuesta de Proteína Desplegada , Proteína Quinasa 8 Activada por Mitógenos/metabolismo
7.
Mar Biotechnol (NY) ; 25(6): 846-857, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37658990

RESUMEN

We cultured silver pomfret for 20 days, decreasing water temperature from 18 to 8 ℃, and sampled muscle every 5 days. Muscle fiber degeneration and apoptosis began to increase at 13 ℃ detected by HE and TUNEL staining. Further analysis of transcriptome revealed that several apoptosis-related pathways were highly enriched by differentially expressed genes (DEGs). We analyzed 10 DEGs from these pathways by RT-qPCR during the temperature-decreasing process. JNK1, PIDD, CytC, Casp 3, and GADD45 were up-regulated after 15 and 20 days, while DUSP3, JNK2, and PARP genes were down-regulated after 15 and 20 days. DUSP5 was up-regulated from 10 to 20 days, and C-JUN was up-regulated after 20 days. We analyzed apoptosis in PaM cells under different temperatures (26 ℃, 23 ℃, 20 ℃, 17 ℃, and 14 ℃). The cell viability significantly declined from 14 to 20 ℃; the TUNEL and IHC results showed that the apoptosis signal increased with the temperature dropping, especially in 17 ℃ and 14 ℃; DUSP5, JNK1, CytC, C-JUN, Casp 3, and GADD45 were up-regulated at 17 ℃ and 14 ℃, and PIDD was up-regulated at 20 ℃, 17 ℃, and 14 ℃. DUSP3 was up-regulated at 20 ℃ but down-regulated at 17 ℃ and 14 ℃, and PARP was down-regulated at 17 ℃ and 14 ℃. JNK2 was up-regulated at 20 ℃ but down-regulated at 17 ℃ and 14 ℃. Our results suggest that DUSP could help inhibit apoptosis in the initial stage of cold stress, but low temperature could down-regulate it and up-regulate JNK-C-JUN, inducing apoptosis in a later stage. These data provide a basis for the study of the response mechanism of fish to cold.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteína Quinasa 8 Activada por Mitógenos , Animales , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/farmacología , Fosforilación , Respuesta al Choque por Frío , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Apoptosis
8.
Autophagy ; 19(12): 3079-3095, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37464898

RESUMEN

Misregulation of neuronal macroautophagy/autophagy has been implicated in age-related neurodegenerative diseases. We compared autophagosome formation and maturation in primary murine neurons during development and through aging to elucidate how aging affects neuronal autophagy. We observed an age-related decrease in the rate of autophagosome formation leading to a significant decrease in the density of autophagosomes along the axon. Next, we identified a surprising increase in the maturation of autophagic vesicles in neurons from aged mice. While we did not detect notable changes in endolysosomal content in the distal axon during early aging, we did observe a significant loss of acidified vesicles in the distal axon during late aging. Interestingly, we found that autophagic vesicles were transported more efficiently in neurons from adult mice than in neurons from young mice. This efficient transport of autophagic vesicles in both the distal and proximal axon is maintained in neurons during early aging, but is lost during late aging. Our data indicate that early aging does not negatively impact autophagic vesicle transport nor the later stages of autophagy. However, alterations in autophagic vesicle transport efficiency during late aging reveal that aging differentially impacts distinct aspects of neuronal autophagy.Abbreviations: ACAP3: ArfGAP with coiled-coil, ankyrin repeat and PH domains 3; ARF6: ADP-ribosylation factor 6; ATG: autophagy related; AVs: autophagic vesicles; DCTN1/p150Glued: dynactin 1; DRG: dorsal root ganglia; GAP: GTPase activating protein; GEF: guanine nucleotide exchange factor; LAMP2: lysosomal-associated protein 2; LysoT: LysoTracker; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK8IP1/JIP1: mitogen-activated protein kinase 8 interacting protein 1; MAPK8IP3/JIP3: mitogen-activated protein kinase 8 interacting protein 3; mCh: mCherry; PE: phosphatidylethanolamine.


Asunto(s)
Autofagosomas , Autofagia , Ratones , Animales , Autofagosomas/metabolismo , Macroautofagia , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Axones/metabolismo , Lisosomas/metabolismo , Envejecimiento
9.
Molecules ; 28(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375361

RESUMEN

The c-Jun N-terminal kinase (JNK) family includes three proteins (JNK1-3) that regulate many physiological processes, including cell proliferation and differentiation, cell survival, and inflammation. Because of emerging data suggesting that JNK3 may play an important role in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease, as well as cancer pathogenesis, we sought to identify JNK inhibitors with increased selectivity for JNK3. A panel of 26 novel tryptanthrin-6-oxime analogs was synthesized and evaluated for JNK1-3 binding (Kd) and inhibition of cellular inflammatory responses. Compounds 4d (8-methoxyindolo[2,1-b]quinazolin-6,12-dione oxime) and 4e (8-phenylindolo[2,1-b]quinazolin-6,12-dione oxime) had high selectivity for JNK3 versus JNK1 and JNK2 and inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in THP-1Blue cells and interleukin-6 (IL-6) production by MonoMac-6 monocytic cells in the low micromolar range. Likewise, compounds 4d, 4e, and pan-JNK inhibitor 4h (9-methylindolo[2,1-b]quinazolin-6,12-dione oxime) decreased LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. Molecular modeling suggested modes of binding interaction of these compounds in the JNK3 catalytic site that were in agreement with the experimental data on JNK3 binding. Our results demonstrate the potential for developing anti-inflammatory drugs based on these nitrogen-containing heterocyclic systems with selectivity for JNK3.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Lipopolisacáridos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Fosforilación , Oximas/farmacología , Oximas/química
10.
Front Immunol ; 14: 1188774, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325630

RESUMEN

Background: Intervertebral disc degeneration (IDD) is one of the most common health problems in the elderly and a major causative factor in low back pain (LBP). An increasing number of studies have shown that IDD is closely associated with autophagy and immune dysregulation. Therefore, the aim of this study was to identify autophagy-related biomarkers and gene regulatory networks in IDD and potential therapeutic targets. Methods: We obtained the gene expression profiles of IDD by downloading the datasets GSE176205 and GSE167931 from the Gene Expression Omnibus (GEO) public database. Subsequently, differentially expressed genes (DEGs) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene ontology (GO), and gene set enrichment analysis (GSEA) were performed to explore the biological functions of DEGs. Differentially expressed autophagy-related genes (DE-ARGs) were then crossed with the autophagy gene database. The hub genes were screened using the DE-ARGs protein-protein interaction (PPI) network. The correlation between the hub genes and immune infiltration and the construction of the gene regulatory network of the hub genes were confirmed. Finally, quantitative PCR (qPCR) was used to validate the correlation of hub genes in a rat IDD model. Results: We obtained 636 DEGs enriched in the autophagy pathway. Our analysis revealed 30 DE-ARGs, of which six hub genes (MAPK8, CTSB, PRKCD, SNCA, CAPN1, and EGFR) were identified using the MCODE plugin. Immune cell infiltration analysis revealed that there was an increased proportion of CD8+ T cells and M0 macrophages in IDD, whereas CD4+ memory T cells, neutrophils, resting dendritic cells, follicular helper T cells, and monocytes were much less abundant. Subsequently, the competitive endogenous RNA (ceRNA) network was constructed using 15 long non-coding RNAs (lncRNAs) and 21 microRNAs (miRNAs). In quantitative PCR (qPCR) validation, two hub genes, MAPK8 and CAPN1, were shown to be consistent with the bioinformatic analysis results. Conclusion: Our study identified MAPK8 and CAPN1 as key biomarkers of IDD. These key hub genes may be potential therapeutic targets for IDD.


Asunto(s)
Degeneración del Disco Intervertebral , MicroARNs , Animales , Ratas , Autofagia/genética , Biomarcadores , Linfocitos T CD8-positivos , Degeneración del Disco Intervertebral/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo
11.
Eur J Med Chem ; 256: 115442, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37156184

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a severe and progressive lung disease with poor prognosis and limited treatment options. The c-Jun N-Terminal Kinase 1 (JNK1), a key component of the MAPK pathway, has been implicated in the pathogenesis of IPF and represents a potential therapeutic target. However, the development of JNK1 inhibitors has been slowed, partly due to synthetic complexity in medicinal chemistry modification. Here, we report a synthesis-accessibility-oriented strategy for designing JNK1 inhibitors based on computational prediction of synthetic feasibility and fragment-based molecule generation. This strategy led to the discovery of several potent JNK1 inhibitors, such as compound C6 (IC50 = 33.5 nM), which exhibited comparable activity to the clinical candidate CC-90001 (IC50 = 24.4 nM). The anti-fibrotic effect of C6 was further confirmed in animal model of pulmonary fibrosis. Moreover, compound C6 could be synthesized in only two steps, compared to nine steps for CC-90001. Our findings suggest that compound C6 is a promising lead for further optimization and development as a novel anti-fibrotic agent targeting JNK1. In addition, the discovery of C6 also demonstrates the feasibility of synthesis-accessibility-oriented strategy in lead discovery.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteína Quinasa 8 Activada por Mitógenos , Animales , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/uso terapéutico , Pirimidinas/farmacología , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Fibrosis , Proteínas Quinasas JNK Activadas por Mitógenos
12.
Hear Res ; 434: 108784, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37172415

RESUMEN

The c-Jun N-terminal kinase (JNK) pathway is a vital component of the mitogen-activated protein kinase cascade, which regulates cell death and survival. The present study aimed to explore the Spatio-temporal changes in all JNK isoforms in the cochleae of C57/BL6J mice with age-related hearing loss. Changes in the three isoforms of JNKs in the cochleae of an animal model with presbycusis and the senescent HEI-OC1 cell line were tested by immunohistochemistry staining and western blotting. Our results demonstrated that all three JNK isoforms are distributed in the cochleae, and the expression patterns of JNK1, JNK2, and JNK3 differed in hair cells, spiral ganglion neurons, and stria vascularis, with great significance in the cochleae of adult C57BL/6J mice. The levels of JNK1, JNK2, and JNK3 showed various spatio-temporal changes in the aging mice. In a senescent hair cell model, changes in JNK1, JNK2, and JNK3 expression levels were similar to those observed in the cochleae. Our study is the first to show that JNK3 is highly expressed in the hair cells of C57BL/6J mice and further increases in conjunction with age-related hearing loss, suggesting that it may play a more critical role than previously believed in hair cell loss and spiral ganglion degeneration.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Presbiacusia , Ratones , Animales , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Presbiacusia/genética , Ratones Endogámicos C57BL , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Isoformas de Proteínas
13.
Artículo en Inglés | MEDLINE | ID: mdl-36803749

RESUMEN

Diaminopyrimidine compounds having the following general structure (I), compositions comprising an effective amount of a diaminopyrimidine compound, and methods for treating or preventing fibrotic liver disorders or other diseases associated with the JNK pathway are discussed in this patent study.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Hepatopatías , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas
14.
J Med Chem ; 66(5): 3356-3371, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36826833

RESUMEN

The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family, which includes JNK1-JNK3. Interestingly, JNK1 and JNK2 show opposing functions, with JNK2 activity favoring cell survival and JNK1 stimulating apoptosis. Isoform-selective small molecule inhibitors of JNK1 or JNK2 would be useful as pharmacological probes but have been difficult to develop due to the similarity of their ATP binding pockets. Here, we describe the discovery of a covalent inhibitor YL5084, the first such inhibitor that displays selectivity for JNK2 over JNK1. We demonstrated that YL5084 forms a covalent bond with Cys116 of JNK2, exhibits a 20-fold higher Kinact/KI compared to that of JNK1, and engages JNK2 in cells. However, YL5084 exhibited JNK2-independent antiproliferative effects in multiple myeloma cells, suggesting the existence of additional targets relevant in this context. Thus, although not fully optimized, YL5084 represents a useful chemical starting point for the future development of JNK2-selective chemical probes.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Proteína Quinasa 9 Activada por Mitógenos , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación
15.
Mol Neurobiol ; 60(5): 2367-2378, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36650421

RESUMEN

Stress is considered as a major cause of depression. C-Jun N-terminal kinase (JNK) is a member of the stress-induced mitogen activated protein (MAP) kinase family which is often activated through phosphorylation. Clinical studies and animal experiments have found that abnormal phosphorylation/activation of JNK exists in the occurrence of various psychiatric diseases. Recently, several studies linked JNK kinase activity to depression. However, whether excessive activation of JNK activity is directly responsible for the occurrence of depression and the underlying mechanisms remain unclear. Here, we constructed a conditional transgenic mouse which is specifically expressing MKK7-JNK1 (CAJNK1) in the central nervous system. CAJNK1 mice showed activation of JNK and lead to depression-like behavior in mice. Transcriptome analysis indicates reduced expression of synaptic-associated genes in CAJNK1 mice brains. Consistently, we found abnormal dendritic spine development and PSD95 downregulation in CAJNK1 hippocampal neurons. Our studies provide compelling evidence that activation of JNK as an intrinsic factor leading to depression-like behavior in mice provides direct clues for targeting the JNK activity as a potential therapeutic strategy for depression.


Asunto(s)
Depresión , MAP Quinasa Quinasa 7 , Ratones , Animales , MAP Quinasa Quinasa 7/genética , MAP Quinasa Quinasa 7/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Fosforilación , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Ratones Transgénicos , MAP Quinasa Quinasa 4/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(4): e2218373120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656864

RESUMEN

The HER2+ subtype of human breast cancer is associated with the malignant transformation of luminal ductal cells of the mammary epithelium. The sequence analysis of tumor DNA identifies loss of function mutations and deletions of the MAP2K4 and MAP2K7 genes that encode direct activators of the JUN NH2-terminal kinase (JNK). We report that in vitro studies of human mammary epithelial cells with CRISPR-induced mutations in the MAPK and MAP2K components of the JNK pathway caused no change in growth in 2D culture, but these mutations promoted epithelial cell proliferation in 3D culture. Analysis of gene expression signatures in 3D culture demonstrated similar changes caused by HER2 activation and JNK pathway loss. The mechanism of signal transduction cross-talk may be mediated, in part, by JNK-suppressed expression of integrin α6ß4 that binds HER2 and amplifies HER2 signaling. These data suggest that HER2 activation and JNK pathway loss may synergize to promote breast cancer. To test this hypothesis, we performed in vivo studies using a mouse model of HER2+ breast cancer with Cre/loxP-mediated ablation of genes encoding JNK (Mapk8 and Mapk9) and the MAP2K (Map2k4 and Map2k7) that activate JNK in mammary epithelial cells. Kaplan-Meier analysis of tumor development demonstrated that JNK pathway deficiency promotes HER2+-driven breast cancer. Collectively, these data identify JNK pathway genes as potential suppressors for HER2+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Sistema de Señalización de MAP Quinasas , Humanos , Femenino , Neoplasias de la Mama/patología , Transducción de Señal , Transformación Celular Neoplásica/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Línea Celular Tumoral
17.
Genes Genomics ; 45(4): 429-435, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36434388

RESUMEN

BACKGROUND: The transcription factor orthodenticle homeobox 2 (OTX2) has critical functions in brain and eye development, and its mutations in humans are related to retinal diseases, such as ocular coloboma and microphthalmia. However, the regulatory mechanisms of OTX2 are poorly identified. OBJECTIVE: The identification of JNK1 as an OTX2 regulatory protein through the protein interaction and phosphorylation. METHODS: To identify the binding partner of OTX2, we performed co-immunoprecipitation and detected with a pooled antibody that targeted effective kinases. The protein interaction between JNK1 and OTX2 was identified with the co-immunoprecipitation and immunocytochemistry. In vivo and in vitro kinase assay of JNK1 was performed to detect the phosphorylation of OTX2 by JNK1. RESULTS: JNK1 directly interacted with OTX2 through the transactivation domain at the c-terminal region. The protein-protein interaction and co-localization between JNK1 and OTX2 were further validated in the developing P0 mouse retina. In addition, we confirmed that the inactivation of JNK1 K55N mutant significantly reduced the JNK1-mediated phosphorylation of OTX2 by performing an immune complex protein kinase assay. CONCLUSION: c-Jun N-terminal kinase 1 (JNK1) phosphorylates OTX2 transcription factor through the protein-protein interaction.


Asunto(s)
Proteína Quinasa 8 Activada por Mitógenos , Factores de Transcripción Otx , Retina , Animales , Humanos , Ratones , Regulación de la Expresión Génica , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Fosforilación , Unión Proteica , Factores de Transcripción/genética , Retina/metabolismo
18.
Asian J Androl ; 25(2): 198-207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35975362

RESUMEN

Mitogen-activated protein kinase-8-interacting protein 2 (MAPK8IP2) is a scaffold protein that modulates MAPK signal cascades. Although MAPK pathways were heavily implicated in prostate cancer progression, the regulation of MAPK8IP2 expression in prostate cancer is not yet reported. We assessed MAPK8IP2 gene expression in prostate cancer related to disease progression and patient survival outcomes. MAPK8IP2 expression was analyzed using multiple genome-wide gene expression datasets derived from The Cancer Genome Atlas (TCGA) RNA-sequence project and complementary DNA (cDNA) microarrays. Multivariable Cox regressions and log-rank tests were used to analyze the overall survival outcome and progression-free interval. MAPK8IP2 protein expression was evaluated using the immunohistochemistry approach. The quantitative PCR and Western blot methods analyzed androgen-stimulated MAPK8IP2 expression in LNCaP cells. In primary prostate cancer tissues, MAPK8IP2 mRNA expression levels were significantly higher than those in the case-matched benign prostatic tissues. Increased MAPK8IP2 expression was strongly correlated with late tumor stages, lymph node invasion, residual tumors after surgery, higher Gleason scores, and preoperational serum prostate-specific antigen (PSA) levels. MAPK8IP2 upregulation was significantly associated with worse overall survival outcomes and progression-free intervals. In castration-resistant prostate cancers, MAPK8IP2 expression strongly correlated with androgen receptor (AR) signaling activity. In cell culture-based experiments, MAPK8IP2 expression was stimulated by androgens in AR-positive prostate cancer cells. However, MAPK8IP2 expression was blocked by AR antagonists only in androgen-sensitive LNCaP but not castration-resistant C4-2B and 22RV1 cells. These results indicate that MAPK8IP2 is a robust prognostic factor and therapeutic biomarker for prostate cancer. The potential role of MAPK8IP2 in the castration-resistant progression is under further investigation.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Andrógenos/uso terapéutico , Receptores Androgénicos/genética , Pronóstico , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/uso terapéutico , Línea Celular Tumoral , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica
19.
Autophagy ; 19(4): 1199-1220, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36048753

RESUMEN

ABBREVIATIONS: Atg5: Autophagy-related 5; Atg8a: Autophagy-related 8a; AL: autolysosome; AP: autophagosome; BAF1: bafilomycin A1; BDNF: brain derived neurotrophic factor; BMP: bone morphogenetic protein; Cyt-c-p: Cytochrome c proximal; CQ: chloroquine; DCTN1: dynactin 1; Dhc: dynein heavy chain; EE: early endosome; DYNC1I1: dynein cytoplasmic 1 intermediate chain 1; HD: Huntington disease; HIP1/Hip1: huntingtin interacting protein 1; HTT/htt: huntingtin; iNeuron: iPSC-derived human neurons; IP: immunoprecipitation; Khc: kinesin heavy chain; KIF5C: kinesin family member 5C; LAMP1/Lamp1: lysosomal associated membrane protein 1; LE: late endosome; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K12/DLK: mitogen-activated protein kinase kinase kinase 12; MAPK8/JNK/bsk: mitogen-activated protein kinase 8/basket; MAPK8IP3/JIP3: mitogen-activated protein kinase 8 interacting protein 3; NGF: nerve growth factor; NMJ: neuromuscular junction; NTRK1/TRKA: neurotrophic receptor tyrosine kinase 1; NRTK2/TRKB: neurotrophic receptor tyrosine kinase 2; nuf: nuclear fallout; PG: phagophore; PtdIns3P: phosphatidylinositol-3-phosphate; puc: puckered; ref(2)P: refractory to sigma P; Rilpl: Rab interacting lysosomal protein like; Rip11: Rab11 interacting protein; RTN1: reticulon 1; syd: sunday driver; SYP: synaptophysin; SYT1/Syt1: synaptotagmin 1; STX17/Syx17: syntaxin 17; tkv: thickveins; VF: vesicle fraction; wit: wishful thinking; wnd: wallenda.


Asunto(s)
Autofagia , Cinesinas , Humanos , Cinesinas/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Axones/metabolismo , Factores de Transcripción/metabolismo , Proteínas Portadoras , Endosomas/metabolismo , Proteína Huntingtina/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo
20.
Cell Death Dis ; 13(11): 966, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396625

RESUMEN

Mitophagy is an important metabolic mechanism that modulates mitochondrial quality and quantity by selectively removing damaged or unwanted mitochondria. BNIP3 (BCL2/adenovirus e1B 19 kDa protein interacting protein 3), a mitochondrial outer membrane protein, is a mitophagy receptor that mediates mitophagy under various stresses, particularly hypoxia, since BNIP3 is a hypoxia-responsive protein. However, the underlying mechanisms that regulate BNIP3 and thus mediate mitophagy under hypoxic conditions remain elusive. Here, we demonstrate that in hypoxia JNK1/2 (c-Jun N-terminal kinase 1/2) phosphorylates BNIP3 at Ser 60/Thr 66, which hampers proteasomal degradation of BNIP3 and drives mitophagy by facilitating the direct binding of BNIP3 to LC3 (microtubule-associated protein 1 light chain 3), while PP1/2A (protein phosphatase 1/2A) represses mitophagy by dephosphorylating BNIP3 and triggering its proteasomal degradation. These findings reveal the intrinsic mechanisms cells use to regulate mitophagy via the JNK1/2-BNIP3 pathway in response to hypoxia. Thus, the JNK1/2-BNIP3 signaling pathway strongly links mitophagy to hypoxia and may be a promising therapeutic target for hypoxia-related diseases.


Asunto(s)
Hipoxia , Mitofagia , Humanos , Hipoxia/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Mitofagia/fisiología , Fosforilación , Proteínas Proto-Oncogénicas/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...