Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
BMC Cancer ; 21(1): 1201, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34763650

RESUMEN

BACKGROUND: Radiotherapy is routinely used to combat glioblastoma (GBM). However, the treatment efficacy is often limited by the radioresistance of GBM cells. METHODS: Two GBM lines MO59K and MO59J, differing in intrinsic radiosensitivity and mutational status of DNA-PK and ATM, were analyzed regarding their response to DNA-PK/PI3K/mTOR inhibition by PI-103 in combination with radiation. To this end we assessed colony-forming ability, induction and repair of DNA damage by γH2AX and 53BP1, expression of marker proteins, including those belonging to NHEJ and HR repair pathways, degree of apoptosis, autophagy, and cell cycle alterations. RESULTS: We found that PI-103 radiosensitized MO59K cells but, surprisingly, it induced radiation resistance in MO59J cells. Treatment of MO59K cells with PI-103 lead to protraction of the DNA damage repair as compared to drug-free irradiated cells. In PI-103-treated and irradiated MO59J cells the foci numbers of both proteins was higher than in the drug-free samples, but a large portion of DNA damage was quickly repaired. Another cell line-specific difference includes diminished expression of p53 in MO59J cells, which was further reduced by PI-103. Additionally, PI-103-treated MO59K cells exhibited an increased expression of the apoptosis marker cleaved PARP and increased subG1 fraction. Moreover, irradiation induced a strong G2 arrest in MO59J cells (~ 80% vs. ~ 50% in MO59K), which was, however, partially reduced in the presence of PI-103. In contrast, treatment with PI-103 increased the G2 fraction in irradiated MO59K cells. CONCLUSIONS: The triple-target inhibitor PI-103 exerted radiosensitization on MO59K cells, but, unexpectedly, caused radioresistance in the MO59J line, lacking DNA-PK. The difference is most likely due to low expression of the DNA-PK substrate p53 in MO59J cells, which was further reduced by PI-103. This led to less apoptosis as compared to drug-free MO59J cells and enhanced survival via partially abolished cell-cycle arrest. The findings suggest that the lack of DNA-PK-dependent NHEJ in MO59J line might be compensated by DNA-PK independent DSB repair via a yet unknown mechanism.


Asunto(s)
Neoplasias Encefálicas/terapia , Proteína Quinasa Activada por ADN/deficiencia , Furanos/farmacología , Glioblastoma/terapia , Piridinas/farmacología , Pirimidinas/farmacología , Tolerancia a Radiación/efectos de los fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Quimioradioterapia/métodos , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Furanos/uso terapéutico , Glioblastoma/genética , Glioblastoma/patología , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Piridinas/uso terapéutico , Pirimidinas/uso terapéutico , Tolerancia a Radiación/genética , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
2.
Nat Commun ; 11(1): 6182, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273464

RESUMEN

Upon sensing cytosolic DNA, the enzyme cGAS induces innate immune responses that underpin anti-microbial defenses and certain autoimmune diseases. Missense mutations of PRKDC encoding the DNA-dependent protein kinase (DNA-PK) catalytic subunit (DNA-PKcs) are associated with autoimmune diseases, yet how DNA-PK deficiency leads to increased immune responses remains poorly understood. In this study, we report that DNA-PK phosphorylates cGAS and suppresses its enzymatic activity. DNA-PK deficiency reduces cGAS phosphorylation and promotes antiviral innate immune responses, thereby potently restricting viral replication. Moreover, cells isolated from DNA-PKcs-deficient mice or patients carrying PRKDC missense mutations exhibit an inflammatory gene expression signature. This study provides a rational explanation for the autoimmunity of patients with missense mutations of PRKDC, and suggests that cGAS-mediated immune signaling is a potential target for therapeutic interventions.


Asunto(s)
Antivirales/metabolismo , Proteína Quinasa Activada por ADN/deficiencia , Inmunidad Innata , Nucleotidiltransferasas/metabolismo , Animales , Línea Celular , Cromonas/farmacología , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Morfolinas/farmacología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína/efectos de los fármacos , ARN Guía de Kinetoplastida/metabolismo , Transducción de Señal/efectos de los fármacos , Simplexvirus/efectos de los fármacos , Simplexvirus/fisiología , Células THP-1 , Vesiculovirus/efectos de los fármacos , Vesiculovirus/fisiología , Replicación Viral/efectos de los fármacos
3.
Aging (Albany NY) ; 12(23): 23578-23597, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33289702

RESUMEN

Non-homologous end-joining (NHEJ) is a DNA repair pathway required to detect, process, and ligate DNA double-stranded breaks (DSBs) throughout the cell cycle. The NHEJ pathway is necessary for V(D)J recombination in developing B and T lymphocytes. During NHEJ, Ku70 and Ku80 form a heterodimer that recognizes DSBs and promotes recruitment and function of downstream factors PAXX, MRI, DNA-PKcs, Artemis, XLF, XRCC4, and LIG4. Mutations in several known NHEJ genes result in severe combined immunodeficiency (SCID). Inactivation of Mri, Paxx or Xlf in mice results in normal or mild phenotype, while combined inactivation of Xlf/Mri, Xlf/Paxx, or Xlf/Dna-pkcs leads to late embryonic lethality. Here, we describe three new mouse models. We demonstrate that deletion of Trp53 rescues embryonic lethality in mice with combined deficiencies of Xlf and Mri. Furthermore, Xlf-/-Mri-/-Trp53+/- and Xlf-/-Paxx-/-Trp53+/- mice possess reduced body weight, severely reduced mature lymphocyte counts, and accumulation of progenitor B cells. We also report that combined inactivation of Mri/Paxx results in live-born mice with modest phenotype, and combined inactivation of Mri/Dna-pkcs results in embryonic lethality. Therefore, we conclude that XLF is functionally redundant with MRI and PAXX during lymphocyte development in vivo. Moreover, Mri genetically interacts with Dna-pkcs and Paxx.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/deficiencia , Inmunodeficiencia Combinada Grave/genética , Animales , Peso Corporal , Proteína Quinasa Activada por ADN/deficiencia , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones Noqueados , Fenotipo , Inmunodeficiencia Combinada Grave/inmunología , Inmunodeficiencia Combinada Grave/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
4.
Cell Death Dis ; 11(7): 602, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732911

RESUMEN

Glioblastoma multiforme (GBM) is the most malignant primary brain tumor and has the highest mortality rate among cancers and high resistance to radiation and cytotoxic chemotherapy. Although some targeted therapies can partially inhibit oncogenic mutation-driven proliferation of GBM cells, therapies harnessing synthetic lethality are 'coincidental' treatments with high effectiveness in cancers with gene mutations, such as GBM, which frequently exhibits DNA-PKcs mutation. By implementing a highly efficient high-throughput screening (HTS) platform using an in-house-constructed genome-wide human microRNA inhibitor library, we demonstrated that miR-1193 inhibition sensitized GBM tumor cells with DNA-PKcs deficiency. Furthermore, we found that miR-1193 directly targets YY1AP1, leading to subsequent inhibition of FEN1, an important factor in DNA damage repair. Inhibition of miR-1193 resulted in accumulation of DNA double-strand breaks and thus increased genomic instability. RPA-coated ssDNA structures enhanced ATR checkpoint kinase activity, subsequently activating the CHK1/p53/apoptosis axis. These data provide a preclinical theory for the application of miR-1193 inhibition as a potential synthetic lethal approach targeting GBM cancer cells with DNA-PKcs deficiency.


Asunto(s)
Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Proteína Quinasa Activada por ADN/deficiencia , Glioblastoma/enzimología , Glioblastoma/genética , MicroARNs/metabolismo , Mutaciones Letales Sintéticas/genética , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Secuencia de Bases , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Inestabilidad Genómica , Humanos , MicroARNs/genética , Modelos Biológicos , Reproducibilidad de los Resultados , Transducción de Señal , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Factor de Transcripción YY1/metabolismo
5.
Mol Immunol ; 120: 93-100, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32113132

RESUMEN

Spontaneous DNA-PKcs deficiencies in animals result in a severe combined immunodeficiency (SCID) phenotype because DNA-PKcs is required to activate Artemis for V(D)J recombination coding end hairpin opening. The impact on signal joint formation in these spontaneous mutant mammals is variable. Genetically engineered DNA-PKcs null mice and cells from them show a >1,000-fold reduction in coding joint formation and minimal reduction in signal joint formation during V(D)J recombination. Does chemical inhibition of DNA-PKcs mimic this phenotype? M3814 (also known as Nedisertib) is a potent DNA-PKcs inhibitor. We find here that M3814 causes a quantitative reduction in coding joint formation relative to signal joint formation. The sequences of signal and coding junctions were within normal limits, though rare coding joints showed novel features. The signal junctions generally did not show evidence of resection into the signal ends that is often seen in cells that have genetic defects in DNA-PKcs. Comparison of the chemical inhibition findings here with the known results for spontaneous and engineered DNA-PKcs mutant mammals is informative for considering pharmacologic small molecule inhibition of DNA-PKcs in various types of neoplasia.


Asunto(s)
Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Recombinación V(D)J , Animales , Reparación del ADN , Proteína Quinasa Activada por ADN/deficiencia , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Endonucleasas/deficiencia , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , Técnicas In Vitro , Ratones , Ratones Noqueados , Ratones SCID , Mutación , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Recombinación V(D)J/efectos de los fármacos
6.
Basic Res Cardiol ; 115(2): 11, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919590

RESUMEN

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a novel inducer to promote mitochondrial apoptosis and suppress tumor growth in a variety of cells although its role in cardiovascular diseases remains obscure. This study was designed to examine the role of DNA-PKcs in cardiac ischemia reperfusion (IR) injury and mitochondrial damage. Cardiomyocyte-specific DNA-PKcs knockout (DNA-PKcsCKO) mice were subjected to IR prior to assessment of myocardial function and mitochondrial apoptosis. Our data revealed that IR challenge, hypoxia-reoxygenation (HR) or H2O2-activated DNA-PKcs through post-transcriptional phosphorylation in murine hearts or cardiomyocytes. Mice deficient in DNA-PKcs in cardiomyocytes were protected against cardiomyocyte death, infarct area expansion and cardiac dysfunction. DNA-PKcs ablation countered IR- or HR-induced oxidative stress, mPTP opening, mitochondrial fission, mitophagy failure and Bax-mediated mitochondrial apoptosis, possibly through suppression of Bax inhibitor-1 (BI-1) activity. A direct association between DNA-PKcs and BI-1 was noted where DNA-PKcs had little effect on BI-1 transcription but interacted with BI-1 to promote its degradation. Loss of DNA-PKcs stabilized BI-1, thus offering resistance of mitochondria and cardiomyocytes against IR insult. Moreover, DNA-PKcs ablation-induced beneficial cardioprotection against IR injury was mitigated by concurrent knockout of BI-1. Double deletion of DNA-PKcs and BI-1 failed to exert protection against global IR injury and mitochondrial damage, confirming a permissive role of BI-1 in DNA-PKcs deletion-elicited cardioprotection against IR injury. DNA-PKcs serves as a novel causative factor for mitochondrial damage via suppression of BI-1, en route to the onset and development of cardiac IR injury.


Asunto(s)
Apoptosis , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias Cardíacas/enzimología , Infarto del Miocardio/enzimología , Daño por Reperfusión Miocárdica/enzimología , Miocitos Cardíacos/enzimología , Animales , Células Cultivadas , Proteína Quinasa Activada por ADN/deficiencia , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Homeostasis , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/patología , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Estabilidad Proteica , Proteolisis , Transducción de Señal
7.
Int J Mol Sci ; 20(23)2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31801300

RESUMEN

Mechanistic approaches to modeling the effects of ionizing radiation on cells are on the rise, promising a better understanding of predictions and higher flexibility concerning conditions to be accounted for. In this work we modified and extended a previously published mechanistic model of cell survival after photon irradiation under hypoxia to account for radiosensitization caused by deficiency or inhibition of DNA damage repair enzymes. The model is shown to be capable of describing the survival data of cells with DNA damage repair deficiency, both under norm- and hypoxia. We find that our parameterization of radiosensitization is invariant under change of oxygen status, indicating that the relevant parameters for both mechanisms can be obtained independently and introduced freely to the model to predict their combined effect.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Reparación del ADN/efectos de la radiación , Proteína Quinasa Activada por ADN/genética , Fotones , Inhibidores de Proteínas Quinasas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Células A549 , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Células CHO , Hipoxia de la Célula , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Cricetulus , ADN/genética , ADN/metabolismo , Daño del ADN , Reparación del ADN/efectos de los fármacos , Proteína Quinasa Activada por ADN/deficiencia , Relación Dosis-Respuesta en la Radiación , Expresión Génica , Humanos , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Ratones , Oxígeno/farmacología
8.
BMC Pulm Med ; 19(1): 165, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31464599

RESUMEN

BACKGROUND: Recent studies have highlighted the contribution of senescent mesenchymal and epithelial cells in Idiopathic Pulmonary Fibrosis (IPF), but little is known regarding the molecular mechanisms that regulate the accumulation of senescent cells in this disease. Therefore, we addressed the hypothesis that the loss of DNA repair mechanisms mediated by DNA protein kinase catalytic subunit (DNA-PKcs) in IPF, promoted the accumulation of mesenchymal progenitors and progeny, and the expression of senescent markers by these cell types. METHODS: Surgical lung biopsy samples and lung fibroblasts were obtained from patients exhibiting slowly, rapidly or unknown progressing IPF and lung samples lacking any evidence of fibrotic disease (i.e. normal; NL). The expression of DNA-Pkcs in lung tissue was assessed by quantitative immunohistochemical analysis. Chronic inhibition of DNA-PKcs kinase activity was mimicked using a highly specific small molecule inhibitor, Nu7441. Proteins involved in DNA repair (stage-specific embryonic antigen (SSEA)-4+ cells) were determined by quantitative Ingenuity Pathway Analysis of transcriptomic datasets (GSE103488). Lastly, the loss of DNA-PKc was modeled in a humanized model of pulmonary fibrosis in NSG SCID mice genetically deficient in PRKDC (the transcript for DNA-PKcs) and treated with Nu7441. RESULTS: DNA-PKcs expression was significantly reduced in IPF lung tissues. Chronic inhibition of DNA-PKcs by Nu7441 promoted the proliferation of SSEA4+ mesenchymal progenitor cells and a significant increase in the expression of senescence-associated markers in cultured lung fibroblasts. Importantly, mesenchymal progenitor cells and their fibroblast progeny derived from IPF patients showed a loss of transcripts encoding for DNA damage response and DNA repair components. Further, there was a significant reduction in transcripts encoding for PRKDC (the transcript for DNA-PKcs) in SSEA4+ mesenchymal progenitor cells from IPF patients compared with normal lung donors. In SCID mice lacking DNA-PKcs activity receiving IPF lung explant cells, treatment with Nu7441 promoted the expansion of progenitor cells, which was observed as a mass of SSEA4+ CgA+ expressing cells. CONCLUSIONS: Together, our results show that the loss of DNA-PKcs promotes the expansion of SSEA4+ mesenchymal progenitors, and the senescence of their mesenchymal progeny.


Asunto(s)
Senescencia Celular/genética , Cromonas/farmacología , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Células Madre Mesenquimatosas/citología , Morfolinas/farmacología , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Daño del ADN , Reparación del ADN , Proteína Quinasa Activada por ADN/deficiencia , Proteínas de Unión al ADN/deficiencia , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Pulmón/patología , Ratones , Ratones SCID
9.
DNA Repair (Amst) ; 74: 70-79, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30606609

RESUMEN

DSBs are harmful lesions produced through endogenous metabolism or by exogenous agents such as ionizing radiation, that can trigger genomic rearrangements. We have recently shown that exposure to 2 Gy of X-rays has opposite effects on the induction of Shh-dependent MB in NHEJ- and HR-deficient Ptch1+/- mice. In the current study we provide a comprehensive link on the role of HR/NHEJ at low doses (0.042 and 0.25 Gy) from the early molecular changes through DNA damage processing, up to the late consequences of their inactivation on tumorigenesis. Our data indicate a prominent role for HR in genome stability, by preventing spontaneous and radiation-induced oncogenic damage in neural precursors of the cerebellum, the cell of origin of MB. Instead, loss of DNA-PKcs function increased DSBs and apoptosis in neural precursors of the developing cerebellum, leading to killing of tumor initiating cells, and suppression of MB tumorigenesis in DNA-PKcs-/-/Ptch1+/- mice. Pathway analysis demonstrates that DNA-PKcs genetic inactivation confers a remarkable radiation hypersensitivity, as even extremely low radiation doses may deregulate many DDR genes, also triggering p53 pathway activation and cell cycle arrest. Finally, by showing that DNA-PKcs inhibition by NU7441 radiosensitizes human MB cells, our in vitro findings suggest the inclusion of MB in the list of tumors beneficiating from the combination of radiotherapy and DNA-PKcs targeting, holding promise for clinical translation.


Asunto(s)
Neoplasias Cerebelosas/genética , Reparación del ADN/efectos de la radiación , Meduloblastoma/genética , Neoplasias Inducidas por Radiación/genética , Receptor Patched-1/deficiencia , Receptor Patched-1/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/efectos de la radiación , Línea Celular Tumoral , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/terapia , Daño del ADN , Reparación del ADN por Unión de Extremidades/efectos de la radiación , ADN Helicasas/genética , Proteína Quinasa Activada por ADN/deficiencia , Proteínas de Unión al ADN/deficiencia , Relación Dosis-Respuesta en la Radiación , Recombinación Homóloga/efectos de la radiación , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patología , Meduloblastoma/terapia , Ratones , Terapia Molecular Dirigida , Mutación , Neoplasias Inducidas por Radiación/metabolismo , Neoplasias Inducidas por Radiación/patología , Neoplasias Inducidas por Radiación/terapia , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Riesgo , Rayos X/efectos adversos
10.
DNA Repair (Amst) ; 73: 7-16, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30409670

RESUMEN

DNA-PKcs deficiency has been studied in numerous animal models and cell culture systems. In previous studies of kinase inactivating mutations in cell culture systems, ablation of DNA-PK's catalytic activity results in a cell phenotype that is virtually indistinguishable from that ascribed to complete loss of the enzyme. However, a recent compelling study demonstrates a remarkably more severe phenotype in mice harboring a targeted disruption of DNA-PK's ATP binding site as compared to DNA-PKcs deficient mice. Here we investigate the mechanism for these divergent results. We find that kinase inactivating DNA-PKcs mutants markedly radiosensitize immortalized DNA-PKcs deficient cells, but have no substantial effects on transformed DNA-PKcs deficient cells. Since the non-homologous end joining mechanism likely functions similarly in all of these cell strains, it seems unlikely that kinase inactive DNA-PK could impair the end joining mechanism in some cell types, but not in others. In fact, we observed no significant differences in either episomal or chromosomal end joining assays in cells expressing kinase inactivated DNA-PKcs versus no DNA-PKcs. Several potential explanations could explain these data including a non-catalytic role for DNA-PKcs in promoting cell death, or alteration of gene expression by loss of DNA-PKcs as opposed to inhibition of its catalytic activity. Finally, controversy exists as to whether DNA-PKcs autophosphorylates or is the target of other PIKKs; we present data demonstrating that DNA-PK primarily autophosphorylates.


Asunto(s)
Proteína Quinasa Activada por ADN/deficiencia , Proteínas de Unión al ADN/deficiencia , Proteínas Nucleares/deficiencia , Fenotipo , Adenosina Trifosfato/metabolismo , Animales , Roturas del ADN de Doble Cadena , Células HCT116 , Humanos , Ratones , Fosforilación
11.
DNA Repair (Amst) ; 73: 164-169, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30579708

RESUMEN

Non-homologous end joining (NHEJ) is a DNA repair pathway that senses, processes and ligates DNA double-strand breaks (DSBs) throughout the cell cycle. During NHEJ, core Ku70 and Ku80 subunits bind DSBs as a heterodimer and promote further recruitment of accessory factors (e.g., PAXX, Mri, DNA-PKcs, Artemis) and downstream core subunits XRCC4 and DNA ligase 4 (Lig4). Inactivation of Ku70 or Ku80 genes in mice results in immunodeficiency and high levels of genomic instability; deletion of individual Dna-pkcs, Xlf, Paxx or Mri genes results in viable mice with no or modest DNA repair defects. However, combined inactivation of either Xlf and Dna-pkcs, or Xlf and Paxx, or Xlf and Mri, leads to synthetic lethality in mice, which correlates with increased levels of apoptosis in the central nervous system. Here, we demonstrated that inactivation of pro-apoptotic factor Trp53 rescues embryonic lethality of Xlf-/-Paxx-/- and Xlf-/-Dna-pkcs-/- double knockout mice. Moreover, combined inactivation of Paxx and Dna-pkcs results in live-born fertile Paxx-/-Dna-pkcs-/- mice indistinguishable from Dna-pkcs-/- knockout controls.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/genética , Silenciador del Gen , Mutaciones Letales Sintéticas , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Animales , Línea Celular , Enzimas Reparadoras del ADN/genética , Proteína Quinasa Activada por ADN/deficiencia , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/deficiencia , Técnicas de Inactivación de Genes , Humanos , Ratones , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética
12.
Exp Hematol ; 67: 18-31, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30125602

RESUMEN

Cell-line-derived xenografts (CDXs) or patient-derived xenografts (PDXs) in immune-deficient mice have revolutionized our understanding of normal and malignant human hematopoiesis. Transgenic approaches further improved in vivo hematological research, allowing the development of human-cytokine-producing mice, which show superior human cell engraftment. The most popular mouse strains used in research, the NOG (NOD.Cg-Prkdcscid Il2rγtm1Sug/Jic) and the NSG (NOD/SCID-IL2Rγ-/-, NOD.Cg-PrkdcscidIl2rγtm1Wjl/SzJ) mouse, and their human-cytokine-producing (interleukin-3, granulocyte-macrophage colony-stimulating factor, and stem cell factor) counterparts (huNOG and NSGS), rely partly on a mutation in the DNA repair protein PRKDC, causing a severe combined immune deficiency (SCID) phenotype and rendering the mice less tolerant to DNA-damaging therapeutics, thereby limiting their usefulness in the investigation of novel acute myeloid leukemia (AML) therapeutics. NRG (NOD/RAG1/2-/-IL2Rγ-/-) mice show equivalent immune ablation through a defective recombination activation gene (RAG), leaving DNA damage repair intact, and human-cytokine-producing NRGS (NRG-SGM3) mice were generated, improving myeloid engraftment. Our findings indicate that unconditioned NRG and NRGS mice can harbor established AML CDXs and can tolerate aggressive induction chemotherapy at higher doses than NSG mice without overt toxicity. However, unconditioned NRGS mice developed less clinically relevant disease, with CDXs forming solid tumors throughout the body, whereas unconditioned NRG mice were incapable of efficiently supporting PDX or human hematopoietic stem cell engraftment. These findings emphasize the contextually dependent utility of each of these powerful new strains in the study of normal and malignant human hematopoiesis. Therefore, the choice of mouse strain cannot be random, but must be based on the experimental outcomes and questions to be addressed.


Asunto(s)
Hematopoyesis , Leucemia Mieloide Aguda/fisiopatología , Ratones Endogámicos , Ratones Transgénicos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Niño , Citarabina/administración & dosificación , Proteína Quinasa Activada por ADN/deficiencia , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Doxorrubicina/administración & dosificación , Esquema de Medicación , Supervivencia de Injerto , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad gamma Común de Receptores de Interleucina/genética , Interleucina-3/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones , Ratones Endogámicos/genética , Ratones Transgénicos/genética , Trasplante de Neoplasias/métodos , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Inducción de Remisión , Especificidad de la Especie , Factor de Células Madre/genética , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Nucleic Acids Res ; 46(16): 8326-8346, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30010942

RESUMEN

Chronic low levels of survival motor neuron (SMN) protein cause spinal muscular atrophy (SMA). SMN is ubiquitously expressed, but the mechanisms underlying predominant neuron degeneration in SMA are poorly understood. We report that chronic low levels of SMN cause Senataxin (SETX)-deficiency, which results in increased RNA-DNA hybrids (R-loops) and DNA double-strand breaks (DSBs), and deficiency of DNA-activated protein kinase-catalytic subunit (DNA-PKcs), which impairs DSB repair. Consequently, DNA damage accumulates in patient cells, SMA mice neurons and patient spinal cord tissues. In dividing cells, DSBs are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ) pathways, but neurons predominantly use NHEJ, which relies on DNA-PKcs activity. In SMA dividing cells, HR repairs DSBs and supports cellular proliferation. In SMA neurons, DNA-PKcs-deficiency causes defects in NHEJ-mediated repair leading to DNA damage accumulation and neurodegeneration. Restoration of SMN levels rescues SETX and DNA-PKcs deficiencies and DSB accumulation in SMA neurons and patient cells. Moreover, SETX overexpression in SMA neurons reduces R-loops and DNA damage, and rescues neurodegeneration. Our findings identify combined deficiency of SETX and DNA-PKcs stemming downstream of SMN as an underlying cause of DSBs accumulation, genomic instability and neurodegeneration in SMA and suggest SETX as a potential therapeutic target for SMA.


Asunto(s)
Daño del ADN , ADN Helicasas/deficiencia , Proteína Quinasa Activada por ADN/deficiencia , Proteínas de Unión al ADN/deficiencia , Degeneración Nerviosa , Proteínas Nucleares/deficiencia , ARN Helicasas/deficiencia , Atrofias Musculares Espinales de la Infancia/genética , Anciano , Animales , División Celular , Células Cultivadas , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , ADN Helicasas/fisiología , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Modelos Animales de Enfermedad , Fibroblastos , Humanos , Masculino , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Enzimas Multifuncionales , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Conformación de Ácido Nucleico , ARN Helicasas/genética , ARN Helicasas/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Atrofias Musculares Espinales de la Infancia/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/fisiología , Proteína 2 para la Supervivencia de la Neurona Motora/deficiencia , Proteína 2 para la Supervivencia de la Neurona Motora/genética
14.
Nat Commun ; 9(1): 2015, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789568

RESUMEN

Hyperinsulinemia is the earliest symptom of insulin resistance (IR), but a causal relationship between the two remains to be established. Here we show that a protein kinase D2 (PRKD2) nonsense mutation (K410X) in two rhesus monkeys with extreme hyperinsulinemia along with IR and metabolic defects by using extreme phenotype sampling and deep sequencing analyses. This mutation reduces PRKD2 at both the mRNA and the protein levels. Taking advantage of a PRKD2-KO mouse model, we demonstrate that PRKD2 deletion triggers hyperinsulinemia which precedes to IR and metabolic disorders in the PRKD2 ablation mice. PRKD2 deficiency promotes ß-cell insulin secretion by increasing the expression and activity of L-type Ca2+ channels and subsequently augmenting high glucose- and membrane depolarization-induced Ca2+ influx. Altogether, these results indicate that down-regulation of PRKD2 is involved in the pathogenesis of hyperinsulinemia which, in turn, results in IR and metabolic disorders.


Asunto(s)
Codón sin Sentido , Proteína Quinasa Activada por ADN/genética , Hiperinsulinismo/genética , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Síndrome Metabólico/genética , Proteínas Nucleares/genética , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Membrana Celular/metabolismo , Proteína Quinasa Activada por ADN/deficiencia , Femenino , Regulación de la Expresión Génica , Glucosa/metabolismo , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patología , Células Secretoras de Insulina/patología , Macaca mulatta , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Ratones , Ratones Noqueados , Proteínas Nucleares/deficiencia , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
15.
Chromosoma ; 126(2): 287-298, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27136939

RESUMEN

Noncycling and terminally differentiated (TD) cells display differences in radiosensitivity and DNA damage response. Unlike other TD cells, Sertoli cells express a mixture of proliferation inducers and inhibitors in vivo and can reenter the cell cycle. Being in a G1-like cell cycle stage, TD Sertoli cells are expected to repair DSBs by the error-prone nonhomologous end-joining pathway (NHEJ). Recently, we have provided evidence for the involvement of Ku-dependent NHEJ in protecting testis cells from DNA damage as indicated by persistent foci of the DNA double-strand break (DSB) repair proteins phospho-H2AX, 53BP1, and phospho-ATM in TD Sertoli cells of Ku70-deficient mice. Here, we analyzed the kinetics of 53BP1 foci induction and decay up to 12 h after 0.5 Gy gamma irradiation in DNA-PKcs-deficient (Prkdc scid ) and wild-type Sertoli cells. In nonirradiated mice and Prkdc scid Sertoli cells displayed persistent DSBs foci in around 12 % of cells and a fivefold increase in numbers of these DSB DNA damage-related foci relative to the wild type. In irradiated mice, Prkdc scid Sertoli cells showed elevated levels of DSB-indicating foci in 82 % of cells 12 h after ionizing radiation (IR) exposure, relative to 52 % of irradiated wild-type Sertoli cells. These data indicate that Sertoli cells respond to and repair IR-induced DSBs in vivo, with repair kinetics being slow in the wild type and inefficient in Prkdc scid . Applying the same dose of IR to Prdkc -/- and Ku -/- mouse embryonic fibroblast (MEF) cells revealed a delayed induction of 53BP1 DSB-indicating foci 5 min post-IR in Prdkc -/- cells. Inefficient DSB repair was evident 7 h post-IR in DNA-PKcs-deficient cells, but not in Ku -/- MEFs. Our data show that quiescent Sertoli cells repair genotoxic DSBs by DNA-PKcs-dependent NEHJ in vivo with a slower kinetics relative to somatic DNA-PKcs-deficient cells in vitro, while DNA-PKcs deficiency caused inefficient DSB repair at later time points post-IR in both conditions. These observations suggest that DNA-PKcs contributes to the fast and slow repair of DSBs by NHEJ.


Asunto(s)
Reparación del ADN , Proteína Quinasa Activada por ADN/deficiencia , Proteínas de Unión al ADN/deficiencia , Fibroblastos/metabolismo , Proteínas Nucleares/deficiencia , Células de Sertoli/metabolismo , Animales , Ciclo Celular/genética , Línea Celular , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN , Reparación del ADN por Unión de Extremidades , Técnicas de Inactivación de Genes , Cinética , Masculino , Ratones , Ratones SCID , Radiación Ionizante , Células de Sertoli/efectos de la radiación , Telómero/genética , Telómero/metabolismo
16.
J Exp Med ; 213(12): 2575-2589, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27810924

RESUMEN

Cell transplantation into immunodeficient mice has revolutionized our understanding of regeneration, stem cell self-renewal, and cancer; yet models for direct imaging of engrafted cells has been limited. Here, we characterize zebrafish with mutations in recombination activating gene 2 (rag2), DNA-dependent protein kinase (prkdc), and janus kinase 3 (jak3). Histology, RNA sequencing, and single-cell transcriptional profiling of blood showed that rag2 hypomorphic mutant zebrafish lack T cells, whereas prkdc deficiency results in loss of mature T and B cells and jak3 in T and putative Natural Killer cells. Although all mutant lines engraft fluorescently labeled normal and malignant cells, only the prkdc mutant fish reproduced as homozygotes and also survived injury after cell transplantation. Engraftment into optically clear casper, prkdc-mutant zebrafish facilitated dynamic live cell imaging of muscle regeneration, repopulation of muscle stem cells within their endogenous niche, and muscle fiber fusion at single-cell resolution. Serial imaging approaches also uncovered stochasticity in fluorescently labeled leukemia regrowth after competitive cell transplantation into prkdc mutant fish, providing refined models to assess clonal dominance and progression in the zebrafish. Our experiments provide an optimized and facile transplantation model, the casper, prkdc mutant zebrafish, for efficient engraftment and direct visualization of fluorescently labeled normal and malignant cells at single-cell resolution.


Asunto(s)
Proteína Quinasa Activada por ADN/deficiencia , Imagenología Tridimensional/métodos , Trasplante de Neoplasias , Fenómenos Ópticos , Análisis de la Célula Individual/métodos , Pez Cebra/metabolismo , Anemia/patología , Animales , Secuencia de Bases , Células Clonales , Proteína Quinasa Activada por ADN/metabolismo , Modelos Animales de Enfermedad , Rayos gamma , Homocigoto , Humanos , Huésped Inmunocomprometido/efectos de la radiación , Proteínas Luminiscentes/metabolismo , Células Musculares/patología , Células Musculares/efectos de la radiación , Mutación/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Regeneración/efectos de la radiación , Trasplante Homólogo , Recombinación V(D)J/genética , Proteínas de Pez Cebra/metabolismo , Proteína Fluorescente Roja
17.
Neoplasia ; 18(8): 468-79, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27566103

RESUMEN

Severe combined immunodeficiency (SCID) mice have widely been used as hosts for human tumor cell xenograft study. This animal model, however, is labor intensive. As zebrafish is largely emerging as a promising model system for studying human diseases including cancer, developing efficient immunocompromised strains for tumor xenograft study are also demanded in zebrafish. Here, we have created the Prkdc-null SCID zebrafish model which provides the stable immune-deficient background required for xenotransplantation of tumor cell. In this study, the two transcription activator-like effector nucleases that specifically target the exon3 of the zebrafish Prkdc gene were used to induce a frame shift mutation, causing a complete knockout of the gene function. The SCID zebrafish showed susceptibility to spontaneous infection, a well-known phenotype found in the SCID mutation. Further characterization revealed that the SCID zebrafish contained no functional T and B lymphocytes which reflected the phenotypes identified in the mice SCID model. Intraperitoneal injection of human cancer cells into the adult SCID zebrafish clearly showed tumor cell growth forming into a solid mass. Our present data show the suitability of using the SCID zebrafish strain for xenotransplantation experiments, and in vivo monitoring of the tumor cell growth in the zebrafish demonstrates use of the animal model as a new platform of tumor xenograft study.


Asunto(s)
Proteína Quinasa Activada por ADN/deficiencia , Neoplasias Gastrointestinales/genética , Linfocitos/metabolismo , Proteínas Nucleares/deficiencia , Animales , Animales Modificados Genéticamente , Biopsia , Línea Celular Tumoral , Modelos Animales de Enfermedad , Neoplasias Gastrointestinales/inmunología , Neoplasias Gastrointestinales/patología , Marcación de Gen/métodos , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Linfocitos/inmunología , Linfocitos/patología , Fenotipo , Trasplante Heterólogo
18.
DNA Repair (Amst) ; 45: 56-62, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27373144

RESUMEN

In mammalian cells, chromatin poly(ADP-ribos)ylation (PARylation) at sites of DNA Double-Strand Breaks (DSBs) is mediated by two highly related enzymes, PARP1 and PARP2. However, enzyme-specific genetic interactions with other DSB repair factors remain largely undefined. In this context, it was previously shown that mice lacking PARP1 and H2AX, a histone variant that promotes DSB repair throughout the cell cycle, or the core nonhomologous end-joining (NHEJ) factor Ku80 are not viable, while mice lacking PARP1 and the noncore NHEJ factor DNA-PKcs are severely growth retarded and markedly lymphoma-prone. Here, we have examined the requirement for PARP2 in these backgrounds. We find that, like PARP1, PARP2 is essential for viability in mice lacking H2AX. Moreover, treatment of H2AX-deficient primary fibroblasts or B lymphocytes with PARP inhibitors leads to activation of the G2/M checkpoint and accumulation of chromatid-type breaks in a lineage- and gene-dose dependent manner. In marked contrast to PARP1, loss of PARP2 does not result in additional phenotypes in growth, development or tumorigenesis in mice lacking either Ku80 or DNA-PKcs. Altogether these findings highlight specific nonoverlapping functions of PARP1 and PARP2 at H2AX-deficient chromatin during replicative phases of the cell cycle and uncover a unique requirement for PARP1 in NHEJ-deficient cells.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN/genética , Histonas/genética , Linfoma/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasas/genética , Neoplasias del Timo/genética , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Linfocitos B/patología , Bencimidazoles/farmacología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Cromatina/química , Cromatina/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/deficiencia , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Embrión de Mamíferos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Puntos de Control de la Fase G2 del Ciclo Celular , Histonas/deficiencia , Humanos , Autoantígeno Ku/deficiencia , Autoantígeno Ku/genética , Linfoma/metabolismo , Linfoma/patología , Ratones , Ratones Noqueados , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/deficiencia , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/deficiencia , Cultivo Primario de Células , Neoplasias del Timo/metabolismo , Neoplasias del Timo/patología
19.
J Immunol ; 196(7): 3032-42, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26921311

RESUMEN

Unlike most DNA-dependent protein kinase, catalytic subunit (DNA-PKcs)-deficient mouse cell strains, we show in the present study that targeted deletion of DNA-PKcs in two different human cell lines abrogates VDJ signal end joining in episomal assays. Although the mechanism is not well defined, DNA-PKcs deficiency results in spontaneous reduction of ATM expression in many cultured cell lines (including those examined in this study) and in DNA-PKcs-deficient mice. We considered that varying loss of ATM expression might explain differences in signal end joining in different cell strains and animal models, and we investigated the impact of ATM and/or DNA-PKcs loss on VDJ recombination in cultured human and rodent cell strains. To our surprise, in DNA-PKcs-deficient mouse cell strains that are proficient in signal end joining, restoration of ATM expression markedly inhibits signal end joining. In contrast, in DNA-PKcs-deficient cells that are deficient in signal end joining, complete loss of ATM enhances signal (but not coding) joint formation. We propose that ATM facilitates restriction of signal ends to the classical nonhomologous end-joining pathway.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN/deficiencia , Expresión Génica , Recombinación V(D)J , Animales , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Línea Celular , Expresión Génica Ectópica , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Marcación de Gen , Células HEK293 , Humanos , Ratones , Fenotipo
20.
Chromosome Res ; 23(4): 719-32, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26152239

RESUMEN

Etoposide (ETO), a drug used for the treatment of human tumors, is associated with the development of secondary malignancies. Recently, therapeutic strategies have incorporated chemosensitizing agents to improve the tumoral response to this drug. ETO creates DNA double-strand breaks (DSB) via inhibition of DNA topoisomerase II (Top2). To repair DSB, homologous recombination (HR) and non-homologous end-joining (NHEJ), involving D-NHEJ (dependent of the catalytic subunit of DNA-dependent protein kinase, DNA-PKcs) and B-NHEJ (backup repair pathway) are activated. We evaluated the progression of the DNA damage induced by the Top2 poison ETO in G2 phase of human HeLa cells after chemical inhibition of DNA-PKcs with NU7026. Compared to ETO treatment alone, this combined treatment resulted in a twofold higher rate of chromatid breaks and exchanges when analysis was performed in the following metaphase. Moreover, when analysis was performed in the second metaphase following treatment, increases in the percentage of micronuclei with H2AX (biomarker for DSB) foci in binucleated cells and dicentric chromosomes were seen. In post-mitotic G1 phase, a close association between unresolved DSB and meiotic recombination 11 homolog A (MRE11) signals was observed, demonstrating the contribution of MRE11 in the DSB repair by B-NHEJ. Hence, chemical inhibition of DNA-PKcs impaired both D-NHEJ and HR repair pathways, altering the maintenance of chromosomal integrity and cell proliferation. Our results suggest that the chemosensitizing effectiveness of the DNA-PKcs inhibitor and the survival rate of aberrant cells may contribute to the development of therapy-related tumors.


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Aberraciones Cromosómicas/inducido químicamente , Proteína Quinasa Activada por ADN/deficiencia , Etopósido/toxicidad , Fase G2/efectos de los fármacos , Fase G2/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Reordenamiento Génico , Células HeLa , Histonas/metabolismo , Recombinación Homóloga , Humanos , Proteína Homóloga de MRE11 , Índice Mitótico , Unión Proteica , Recombinasa Rad51/metabolismo , Intercambio de Cromátides Hermanas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...