Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Sci Rep ; 14(1): 10777, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734687

RESUMEN

Emerging evidence has documented that circadian rhythm disorders could be related to cardiovascular diseases. However, there is limited knowledge on the direct adverse effects of circadian misalignment on the heart. This study aimed to investigate the effect of chronic circadian rhythm disorder on heart homeostasis in a mouse model of consistent jetlag. The jetlag model was induced in mice by a serial 8-h phase advance of the light cycle using a light-controlled isolation box every 4 days for up to 3 months. Herein, we demonstrated for the first time that chronic circadian rhythm disorder established in the mouse jetlag model could lead to HFpEF-like phenotype such as cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction, following the attenuation of the Clock-sGC-cGMP-PKG1 signaling. In addition, clock gene knock down in cardiomyocytes induced hypertrophy via decreased sGC-cGMP-PKG signaling pathway. Furthermore, treatment with an sGC-activator riociguat directly attenuated the adverse effects of jetlag model-induced cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction. Our data suggest that circadian rhythm disruption could induce HFpEF-like phenotype through downregulation of the clock-sGC-cGMP-PKG1 signaling pathway. sGC could be one of the molecular targets against circadian rhythm disorder-related heart disease.


Asunto(s)
Proteínas CLOCK , GMP Cíclico , Insuficiencia Cardíaca , Transducción de Señal , Guanilil Ciclasa Soluble , Animales , Ratones , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , GMP Cíclico/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Masculino , Modelos Animales de Enfermedad , Fenotipo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Miocitos Cardíacos/metabolismo , Ritmo Circadiano/fisiología , Ratones Endogámicos C57BL , Trastornos Cronobiológicos/metabolismo , Volumen Sistólico
2.
Cell Metab ; 36(2): 377-392.e11, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38194970

RESUMEN

Recent studies have shown that the hypothalamus functions as a control center of aging in mammals that counteracts age-associated physiological decline through inter-tissue communications. We have identified a key neuronal subpopulation in the dorsomedial hypothalamus (DMH), marked by Ppp1r17 expression (DMHPpp1r17 neurons), that regulates aging and longevity in mice. DMHPpp1r17 neurons regulate physical activity and WAT function, including the secretion of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), through sympathetic nervous stimulation. Within DMHPpp1r17 neurons, the phosphorylation and subsequent nuclear-cytoplasmic translocation of Ppp1r17, regulated by cGMP-dependent protein kinase G (PKG; Prkg1), affect gene expression regulating synaptic function, causing synaptic transmission dysfunction and impaired WAT function. Both DMH-specific Prkg1 knockdown, which suppresses age-associated Ppp1r17 translocation, and the chemogenetic activation of DMHPpp1r17 neurons significantly ameliorate age-associated dysfunction in WAT, increase physical activity, and extend lifespan. Thus, these findings clearly demonstrate the importance of the inter-tissue communication between the hypothalamus and WAT in mammalian aging and longevity control.


Asunto(s)
Envejecimiento , Longevidad , Ratones , Animales , Neuronas/metabolismo , Transmisión Sináptica , Tejido Adiposo/metabolismo , Hipotálamo/metabolismo , Núcleo Hipotalámico Dorsomedial/metabolismo , Mamíferos/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo
3.
Am J Reprod Immunol ; 90(6): e13795, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38009056

RESUMEN

BACKGROUND: Naringenin (NGEN) has anti-inflammatory and anti-diabetic effects. On this basis, this study aims to determine whether NGEN affects insulin resistance (IR) in polycystic ovary syndrome (PCOS). METHODS: CCK-8 assay and oil red O staining were used to detect the cytotoxicity of NGEN and lipid production in cells or tissues, respectively. The differentiated mature SW872 cells were treated with palmitic acid (PA) to mimic IR cell model. Through detecting glucose consumption, the changes of inflammation and glycolipid metabolism can be observed with the assessment on expression levels of the inflammatory factors as well as lipid synthesis- (ACC, SREBP1c, PPARγ), glucose metabolism- and thermogenesis (ATGL, GLUT4, UCP1)-related genes. Insulin sensitivity was determined by changes in glucose consumption and PKGIα pathway. PKGIα was silenced to verify the protective mechanism of NGEN. PCOS rat model was constructed to confirm the results of cell experiments in vivo. RESULTS: NGEN generated no effect on SW872 cell viability. SW872 cells were differentiated and mature, as evidenced by lipid droplet formation, lipid synthesis gene activation, sugar metabolism and inhibition of thermogenesis-related genes. PA induction promoted lipid synthesis in mature adipocytes, and inhibited glucose metabolism and cell insulin sensitivity. NGEN pretreatment effectively alleviated the above-mentioned abnormalities. The protective mechanism of NGEN was achieved through promoting PKGIα activation. NGEN also mitigated the abnormal glucose and lipid metabolism in PCOS rats. CONCLUSION: NGEN inhibits the expression of PKGIα to alleviate IR that occurs in PCOS.


Asunto(s)
Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Humanos , Femenino , Ratas , Animales , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Síndrome del Ovario Poliquístico/genética , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Adipocitos/metabolismo , Glucosa , Lípidos
4.
Commun Biol ; 6(1): 798, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524852

RESUMEN

cGMP-dependent protein kinase I-α (PKG1α) is a target for pulmonary arterial hypertension due to its role in the regulation of smooth muscle function. While most work has focused on regulation of cGMP turnover, we recently described several small molecule tool compounds which were capable of activating PKG1α via a cGMP independent pathway. Selected molecules were crystallized in the presence of PKG1α and were found to bind to an allosteric site proximal to the low-affinity nucleotide binding domain. These molecules act to displace the switch helix and cause activation of PKG1α representing a new mechanism for the activation and control of this critical therapeutic path. The described structures are vital to understanding the function and control of this key regulatory pathway.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo
5.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37372987

RESUMEN

The inositol triphosphate-associated proteins IRAG1 and IRAG2 are cGMP kinase substrate proteins that regulate intracellular Ca2+. Previously, IRAG1 was discovered as a 125 kDa membrane protein at the endoplasmic reticulum, which is associated with the intracellular Ca2+ channel IP3R-I and the PKGIß and inhibits IP3R-I upon PKGIß-mediated phosphorylation. IRAG2 is a 75 kDa membrane protein homolog of IRAG1 and was recently also determined as a PKGI substrate. Several (patho-)physiological functions of IRAG1 and IRAG2 were meanwhile elucidated in a variety of human and murine tissues, e.g., of IRAG1 in various smooth muscles, heart, platelets, and other blood cells, of IRAG2 in the pancreas, heart, platelets, and taste cells. Hence, lack of IRAG1 or IRAG2 leads to diverse phenotypes in these organs, e.g., smooth muscle and platelet disorders or secretory deficiency, respectively. This review aims to highlight the recent research regarding these two regulatory proteins to envision their molecular and (patho-)physiological tasks and to unravel their functional interplay as possible (patho-)physiological counterparts.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Proteínas de la Membrana , Ratones , Humanos , Animales , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Liso/metabolismo , Plaquetas/metabolismo , Retículo Endoplásmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo
6.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835364

RESUMEN

The permeability of the glomerular filtration barrier (GFB) is mainly regulated by podocytes and their foot processes. Protein kinase G type Iα (PKGIα) and adenosine monophosphate-dependent kinase (AMPK) affect the contractile apparatus of podocytes and influence the permeability of the GFB. Therefore, we studied the interplay between PKGIα and AMPK in cultured rat podocytes. The glomerular permeability to albumin and transmembrane FITC-albumin flux decreased in the presence of AMPK activators and increased in the presence of PKG activators. The knockdown of PKGIα or AMPK with small-interfering RNA (siRNA) revealed a mutual interaction between PKGIα and AMPK and influenced podocyte permeability to albumin. Moreover, PKGIα siRNA activated the AMPK-dependent signaling pathway. AMPKα2 siRNA increased basal levels of phosphorylated myosin phosphate target subunit 1 and decreased the phosphorylation of myosin light chain 2. Podocytes that were treated with AMPK or PKG activators were characterized by the different organization of actin filaments within the cell. Our findings suggest that mutual interactions between PKGIα and AMPKα2 regulate the contractile apparatus and permeability of the podocyte monolayer to albumin. Understanding this newly identified molecular mechanism in podocytes provides further insights into the pathogenesis of glomerular disease and novel therapeutic targets for glomerulopathies.


Asunto(s)
Albúminas , Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Podocitos , Animales , Ratas , Adenosina Monofosfato/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Permeabilidad , Podocitos/metabolismo , Ratas Wistar , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Albúminas/metabolismo
7.
J Biol Chem ; 298(9): 102284, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35868561

RESUMEN

cGMP-dependent protein kinase (PKG) represents a compelling drug target for treatment of cardiovascular diseases. PKG1 is the major effector of beneficial cGMP signaling which is involved in smooth muscle relaxation and vascular tone, inhibition of platelet aggregation and signaling that leads to cardioprotection. In this study, a novel piperidine series of activators previously identified from an ultrahigh-throughput screen were validated to directly bind partially activated PKG1α and subsequently enhance its kinase activity in a concentration-dependent manner. Compounds from initial optimization efforts showed an ability to activate PKG1α independent of the endogenous activator, cGMP. We demonstrate these small molecule activators mimic the effect of cGMP on the kinetic parameters of PKG1α by positively modulating the KM of the peptide substrate and negatively modulating the apparent KM for ATP with increase in catalytic efficiency, kcat. In addition, these compounds also allosterically modulate the binding affinity of cGMP for PKG1α by increasing the affinity of cGMP for the high-affinity binding site (CNB-A) and decreasing the affinity of cGMP for the low-affinity binding site (CNB-B). We show the mode of action of these activators involves binding to an allosteric site within the regulatory domain, near the CNB-B binding site. To the best of our knowledge, these are the first reported non-cGMP mimetic small molecules shown to directly activate PKG1α. Insights into the mechanism of action of these compounds will enable future development of cardioprotective compounds that function through novel modes of action for the treatment of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Proteína Quinasa Dependiente de GMP Cíclico Tipo I , GMP Cíclico , Piperidinas , Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/enzimología , GMP Cíclico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Humanos , Piperidinas/farmacología , Piperidinas/uso terapéutico , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
8.
J Med Chem ; 65(15): 10318-10340, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35878399

RESUMEN

Activation of PKG1α is a compelling strategy for the treatment of cardiovascular diseases. As the main effector of cyclic guanosine monophosphate (cGMP), activation of PKG1α induces smooth muscle relaxation in blood vessels, lowers pulmonary blood pressure, prevents platelet aggregation, and protects against cardiac stress. The development of activators has been mostly limited to cGMP mimetics and synthetic peptides. Described herein is the optimization of a piperidine series of small molecules to yield activators that demonstrate in vitro phosphorylation of vasodilator-stimulated phosphoprotein as well as antiproliferative effects in human pulmonary arterial smooth muscle cells. Hydrogen/deuterium exchange mass spectrometry experiments with the small molecule activators revealed a mechanism of action consistent with cGMP-induced activation, and an X-ray co-crystal structure with a construct encompassing the regulatory domains illustrated a binding mode in an allosteric pocket proximal to the low-affinity cyclic nucleotide-binding domain.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I , GMP Cíclico , GMP Cíclico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Humanos , Miocitos del Músculo Liso , Fosforilación , Procesamiento Proteico-Postraduccional
9.
Biochim Biophys Acta Mol Cell Res ; 1869(9): 119301, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35642843

RESUMEN

Podocyte foot processes are an important cellular layer of the glomerular barrier that regulates glomerular permeability. Insulin via the protein kinase G type Iα (PKGIα) signaling pathway regulates the balance between contractility and relaxation (permeability) of the podocyte barrier by regulation of the actin cytoskeleton. This mechanism was shown to be disrupted in diabetes. Rho family guanosine-5'-triphosphates (GTPases) are dynamic modulators of the actin cytoskeleton and expressed in cells that form the glomerular filtration barrier. Thus, changes in Rho GTPase activity may affect glomerular permeability to albumin. The present study showed that Rho family GTPases control podocyte migration and permeability. Moreover these processes are regulated by insulin in PKGIα-dependent manner. Modulation of the PKGI-dependent activity of Rac1 and RhoA GTPases with inhibitors or small-interfering RNA impair glomerular permeability to albumin. We also demonstrated this mechanism in obese, insulin-resistant Zucker rats. We propose that PKGIα-Rac1-RhoA crosstalk is necessary in proper organization of the podocyte cytoskeleton and consequently the stabilization of glomerular architecture and regulation of filtration barrier permeability.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Podocitos , Albúminas/metabolismo , Animales , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Citoesqueleto/metabolismo , Insulina/metabolismo , Permeabilidad , Podocitos/metabolismo , Ratas , Ratas Wistar , Ratas Zucker , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
10.
J Biol Chem ; 298(8): 102175, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35752367

RESUMEN

Type I cGMP-dependent protein kinases (PKGIs) are important components of various signaling pathways and are canonically activated by nitric oxide- and natriuretic peptide-induced cGMP generation. However, some reports have shown that PKGIα can also be activated in vitro by oxidizing agents. Using in vitro kinase assays, here, we found that purified PKGIα stored in PBS with Flag peptide became oxidized and activated even in the absence of oxidizing agent; furthermore, once established, this activation could not be reversed by reduction with DTT. We demonstrate that activation was enhanced by addition of Cu2+ before storage, indicating it was driven by oxidation and mediated by trace metals present during storage. Previous reports suggested that PKGIα Cys43, Cys118, and Cys196 play key roles in oxidation-induced kinase activation; we show that activation was reduced by C118A or C196V mutations, although C43S PKGIα activation was not reduced. In contrast, under the same conditions, purified PKGIß activity only slightly increased with storage. Using PKGIα/PKGIß chimeras, we found that residues throughout the PKGIα-specific autoinhibitory loop were responsible for this activation. To explore whether oxidants activate PKGIα in H9c2 and C2C12 cells, we monitored vasodilator-stimulated phosphoprotein phosphorylation downstream of PKGIα. While we observed PKGIα Cys43 crosslinking in response to H2O2 (indicating an oxidizing environment in the cells), we were unable to detect increased vasodilator-stimulated phosphoprotein phosphorylation under these conditions. Taken together, we conclude that while PKGIα can be readily activated by oxidation in vitro, there is currently no direct evidence of oxidation-induced PKGIα activation in vivo.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Peróxido de Hidrógeno , GMP Cíclico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Óxido Nítrico/metabolismo , Oxidantes , Oxidación-Reducción , Fosforilación
11.
Physiol Rep ; 10(4): e15177, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35179826

RESUMEN

Stromal interaction molecule 1 (STIM1) is a major regulator of store-operated calcium entry in non-excitable cells. Recent studies have suggested that STIM1 plays a role in pathological hypertrophy; however, the physiological role of STIM1 in the heart is not well understood. We have shown that mice with a cardiomyocyte deletion of STIM1 (cr STIM1-/- ) develop ER stress, mitochondrial, and metabolic abnormalities, and dilated cardiomyopathy. However, the specific signaling pathways and kinases regulated by STIM1 are largely unknown. Therefore, we used a discovery-based kinomics approach to identify kinases differentially regulated by STIM1. Twelve-week male control and cr STIM1-/- mice were injected with saline or phenylephrine (PE, 15 mg/kg, s.c, 15 min), and hearts obtained for analysis of the Serine/threonine kinome. Primary analysis was performed using BioNavigator 6.0 (PamGene), using scoring from the Kinexus PhosphoNET database and GeneGo network modeling, and confirmed using standard immunoblotting. Kinomics revealed significantly lower PKG and protein kinase C (PKC) signaling in the hearts of the cr STIM1-/- in comparison to control hearts, confirmed by immunoblotting for the calcium-dependent PKC isoform PKCα and its downstream target MARCKS. Similar reductions in cr STIM1-/- hearts were found for the kinases: MEK1/2, AMPK, and PDPK1, and in the activity of the Ca2+ -dependent phosphatase, calcineurin. Electrocardiogram analysis also revealed that cr STIM1-/- mice have significantly lower HR and prolonged QT interval. In conclusion, we have shown several calcium-dependent kinases and phosphatases are regulated by STIM1 in the adult mouse heart. This has important implications in understanding how STIM1 contributes to the regulation of cardiac physiology and pathophysiology.


Asunto(s)
Miocitos Cardíacos/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Potenciales de Acción , Animales , Calcineurina/metabolismo , Señalización del Calcio , Células Cultivadas , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Estrés del Retículo Endoplásmico , Frecuencia Cardíaca , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa C/metabolismo , Molécula de Interacción Estromal 1/genética
12.
Hypertension ; 79(5): 946-956, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35168371

RESUMEN

BACKGROUND: We previously demonstrated that nitroxyl causes vasodilation, at least in part, by inducing the formation of an intradisulfide bond between C117 and C195 in the high affinity cyclic guanosine monophosphate-binding site of PKGI (cyclic guanosine monophosphate-dependent protein kinase I). The aim of this study was to determine whether nitroxyl donors lower blood pressure via this novel PKGI activation mechanism in vivo. METHODS: To determine this, a C195S PKGI knock-in mouse model was generated that ubiquitously and constitutively expresses a mutant kinase resistant to nitroxyl-induced intradisulfide activation. RESULTS: Knock-in and wild-type littermates did not differ in appearance, body weight, in PKGI protein expression or blood gas content. Organ weight was similar between genotypes apart from the cecum that was significantly enlarged in knock-in animals. Mean arterial pressure and heart rate monitored in vivo over 24 hours by radio-telemetry revealed neither a significant difference between genotypes at baseline nor during angiotensin II-induced hypertension or sepsis. CXL-1020, a clinically relevant nitroxyl donor, did not lower blood pressure in normotensive animals. In contrast, administering CXL-1020 to hypertensive wild-type mice reduced their blood pressure by 10±4 mm Hg (P=0.0184), whereas the knock-in littermates were unaffected. CONCLUSIONS: Oxidation of C195 in PKGI contributes to the antihypertensive effects observed in response to nitroxyl donors, emphasising the potential importance of nitroxyl donors in pathological scenarios when cyclic guanosine monophosphate levels are reduced and insufficient to activate PKGI.


Asunto(s)
Hipertensión , Hipotensión , Animales , Presión Sanguínea , GMP Cíclico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/química , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Guanosina/farmacología , Guanosina Monofosfato/farmacología , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Ratones , Óxidos de Nitrógeno , Proteínas Quinasas/farmacología
13.
Nat Commun ; 13(1): 728, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132099

RESUMEN

Postsynaptic NMDARs at spinal synapses are required for postsynaptic long-term potentiation and chronic pain. However, how presynaptic NMDARs (PreNMDARs) in spinal nociceptor terminals control presynaptic plasticity and pain hypersensitivity has remained unclear. Here we report that PreNMDARs in spinal nociceptor terminals modulate synaptic transmission in a nociceptive tone-dependent manner. PreNMDARs depresses presynaptic transmission in basal state, while paradoxically causing presynaptic potentiation upon injury. This state-dependent modulation is dependent on Ca2+ influx via PreNMDARs. Small conductance Ca2+-activated K+ (SK) channels are responsible for PreNMDARs-mediated synaptic depression. Rather, tissue inflammation induces PreNMDARs-PKG-I-dependent BDNF secretion from spinal nociceptor terminals, leading to SK channels downregulation, which in turn converts presynaptic depression to potentiation. Our findings shed light on the state-dependent characteristics of PreNMDARs in spinal nociceptor terminals on modulating nociceptive transmission and revealed a mechanism underlying state-dependent transition. Moreover, we identify PreNMDARs in spinal nociceptor terminals as key constituents of activity-dependent pain sensitization.


Asunto(s)
Dolor Crónico/fisiopatología , Nociceptores/metabolismo , Terminales Presinápticos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio/metabolismo , Dolor Crónico/genética , Dolor Crónico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Inflamación , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Ratones , Ratones Transgénicos , Sustancia Gris Periacueductal/citología , Sustancia Gris Periacueductal/fisiología , Canales de Potasio Calcio-Activados/genética , Canales de Potasio Calcio-Activados/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Transmisión Sináptica
14.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614110

RESUMEN

Achalasia is an esophageal smooth muscle motility disorder with unknown pathogenesis. Taking into account our previous results on the downexpression of miR-200c-3p in tissues of patients with achalasia correlated with an increased expression of PRKG1, SULF1, and SYDE1 genes, our aim was to explore the unknown biological interaction between these genes and human miR-200c-3p and if this relation could unravel their functional role in the etiology of achalasia. To search for putative miR-200c-3p binding sites in the 3'-UTR of PRKG1, SULF1 and SYDE1, a bioinformatics tool was used. To test whether PRKG1, SULF1, and SYDE1 are targeted by miR-200c-3p, a dual-luciferase reporter assay and quantitative PCR on HEK293 and fibroblast cell lines were performed. To explore the biological correlation between PRKG1 and miR-200c-3p, an immunoblot analysis was carried out. The overexpression of miR-200c-3p reduced the luciferase activity in cells transfected with a luciferase reporter containing a fragment of the 3'-UTR regions of PRKG1, SULF1, and SYDE1 which included the miR-200c-3p seed sequence. The deletion of the miR-200c-3p seed sequence from the 3'-UTR fragments abrogated this reduction. A negative correlation between miR-200c-3p and PRKG1, SULF1, and SYDE1 expression levels was observed. Finally, a reduction of the endogenous level of PRKG1 in cells overexpressing miR-200c-3p was detected. Our study provides, for the first time, functional evidence about the PRKG1 gene as a direct target and SULF1 and SYDE1 as potential indirect substrates of miR-200c-3p and suggests the involvement of NO/cGMP/PKG signaling in the pathogenesis of achalasia.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Acalasia del Esófago , MicroARNs , Humanos , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/genética , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Acalasia del Esófago/genética , Células HEK293 , MicroARNs/genética , MicroARNs/metabolismo
15.
Br J Pharmacol ; 179(11): 2413-2429, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34000062

RESUMEN

BACKGROUND AND PURPOSE: Heart failure is associated with high morbidity and mortality, and new therapeutic targets are needed. Preclinical data suggest that pharmacological activation of protein kinase G (PKG) can reduce maladaptive ventricular remodelling and cardiac dysfunction in the stressed heart. However, clinical trial results have been mixed and the effects of long-term PKG activation in the heart are unknown. EXPERIMENTAL APPROACH: We characterized the cardiac phenotype of mice carrying a heterozygous knock-in mutation of PKG1 (Prkg1R177Q/+ ), which causes constitutive, cGMP-independent activation of the kinase. We examined isolated cardiac myocytes and intact mice, the latter after stress induced by surgical transaortic constriction or angiotensin II (Ang II) infusion. KEY RESULTS: Cardiac myocytes from Prkg1R177Q/+ mice showed altered phosphorylation of sarcomeric proteins and reduced contractility in response to electrical stimulation, compared to cells from wild type mice. Under basal conditions, young PKG1R177Q/+ mice exhibited no obvious cardiac abnormalities, but aging animals developed mild increases in cardiac fibrosis. In response to angiotensin II infusion or fixed pressure overload induced by transaortic constriction, young PKGR177Q/+ mice exhibited excessive hypertrophic remodelling with increased fibrosis and myocyte apoptosis, leading to increased left ventricular dilation and dysfunction compared to wild type litter mates. CONCLUSION AND IMPLICATIONS: Long-term PKG1 activation in mice may be harmful to the heart, especially in the presence of pressure overload and neurohumoral stress. LINKED ARTICLES: This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.


Asunto(s)
Angiotensina II , Cardiomiopatías , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos , Remodelación Ventricular
16.
Cardiovasc Res ; 118(12): 2703-2717, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34550322

RESUMEN

AIMS: Intimal hyperplasia is a common feature of vascular remodelling disorders. Accumulation of synthetic smooth muscle cell (SMC)-like cells is the main underlying cause. Current therapeutic approaches including drug-eluting stents are not perfect due to the toxicity on endothelial cells and novel therapeutic strategies are needed. Our preliminary screening for dysregulated cyclic nucleotide phosphodiesterases (PDEs) in growing SMCs revealed the alteration of PDE10A expression. Herein, we investigated the function of PDE10A in SMC proliferation and intimal hyperplasia both in vitro and in vivo. METHODS AND RESULTS: RT-qPCR, immunoblot, and in situ proximity ligation assay were performed to determine PDE10A expression in synthetic SMCs and injured vessels. We found that PDE10A mRNA and/or protein levels are up-regulated in cultured SMCs upon growth stimulation, as well as in intimal cells in injured mouse femoral arteries. To determine the cellular functions of PDE10A, we focused on its role in SMC proliferation. The anti-mitogenic effects of PDE10A on SMCs were evaluated via cell counting, BrdU incorporation, and flow cytometry. We found that PDE10A deficiency or inhibition arrested the SMC cell cycle at G1-phase with a reduction of cyclin D1. The anti-mitotic effect of PDE10A inhibition was dependent on cGMP-dependent protein kinase Iα (PKGIα), involving C-natriuretic peptide (CNP) and particulate guanylate cyclase natriuretic peptide receptor 2 (NPR2). In addition, the effects of genetic depletion and pharmacological inhibition of PDE10A on neointimal formation were examined in a mouse model of femoral artery wire injury. Both PDE10A knockout and inhibition decreased injury-induced intimal thickening in femoral arteries by at least 50%. Moreover, PDE10A inhibition decreased ex vivo remodelling of cultured human saphenous vein segments. CONCLUSIONS: Our findings indicate that PDE10A contributes to SMC proliferation and intimal hyperplasia at least partially via antagonizing CNP/NPR2/cGMP/PKG1α signalling and suggest that PDE10A may be a novel drug target for treating vascular occlusive disease.


Asunto(s)
Músculo Liso Vascular , Lesiones del Sistema Vascular , Animales , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/farmacología , Proliferación Celular , Células Cultivadas , GMP Cíclico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Ciclina D1/metabolismo , Células Endoteliales/metabolismo , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/farmacología , Humanos , Hiperplasia/metabolismo , Hiperplasia/patología , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , ARN Mensajero/metabolismo , Remodelación Vascular , Lesiones del Sistema Vascular/tratamiento farmacológico , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo
17.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576086

RESUMEN

The cysteine-rich LIM-only protein 4 (CRP4), a LIM-domain and zinc finger containing adapter protein, has been implicated as a downstream effector of the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) pathway in multiple cell types, including vascular smooth muscle cells (VSMCs). VSMCs and nitric oxide (NO)-induced cGMP signaling through cGMP-dependent protein kinase type I (cGKI) play fundamental roles in the physiological regulation of vascular tone and arterial blood pressure (BP). However, it remains unclear whether the vasorelaxant actions attributed to the NO/cGMP axis require CRP4. This study uses mice with a targeted deletion of the CRP4 gene (CRP4 KO) to elucidate whether cGMP-elevating agents, which are well known for their vasorelaxant properties, affect vessel tone, and thus, BP through CRP4. Cinaciguat, a NO- and heme-independent activator of the NO-sensitive (soluble) guanylyl cyclase (NO-GC) and NO-releasing agents, relaxed both CRP4-proficient and -deficient aortic ring segments pre-contracted with prostaglandin F2α. However, the magnitude of relaxation was slightly, but significantly, increased in vessels lacking CRP4. Accordingly, CRP4 KO mice presented with hypotonia at baseline, as well as a greater drop in systolic BP in response to the acute administration of cinaciguat, sodium nitroprusside, and carbachol. Mechanistically, loss of CRP4 in VSMCs reduced the Ca2+-sensitivity of the contractile apparatus, possibly involving regulatory proteins, such as myosin phosphatase targeting subunit 1 (MYPT1) and the regulatory light chain of myosin (RLC). In conclusion, the present findings confirm that the adapter protein CRP4 interacts with the NO-GC/cGMP/cGKI pathway in the vasculature. CRP4 seems to be part of a negative feedback loop that eventually fine-tunes the NO-GC/cGMP axis in VSMCs to increase myofilament Ca2+ desensitization and thereby the maximal vasorelaxant effects attained by (selected) cGMP-elevating agents.


Asunto(s)
Presión Sanguínea , Vasos Sanguíneos/fisiología , GMP Cíclico/metabolismo , Proteínas con Dominio LIM/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Vasos Sanguíneos/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Femenino , Masculino , Ratones Noqueados , Modelos Biológicos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Norepinefrina/farmacología , Transducción de Señal , Guanilil Ciclasa Soluble/metabolismo , Vasodilatadores/farmacología
18.
JCI Insight ; 6(18)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34324442

RESUMEN

cGMP-dependent protein kinase 1α (PKG1α) promotes left ventricle (LV) compensation after pressure overload. PKG1-activating drugs improve heart failure (HF) outcomes but are limited by vasodilation-induced hypotension. Signaling molecules that mediate PKG1α cardiac therapeutic effects but do not promote PKG1α-induced hypotension could therefore represent improved therapeutic targets. We investigated roles of mixed lineage kinase 3 (MLK3) in mediating PKG1α effects on LV function after pressure overload and in regulating BP. In a transaortic constriction HF model, PKG activation with sildenafil preserved LV function in MLK3+/+ but not MLK3-/- littermates. MLK3 coimmunoprecipitated with PKG1α. MLK3-PKG1α cointeraction decreased in failing LVs. PKG1α phosphorylated MLK3 on Thr277/Ser281 sites required for kinase activation. MLK3-/- mice displayed hypertension and increased arterial stiffness, though PKG stimulation with sildenafil or the soluble guanylate cyclase (sGC) stimulator BAY41-2272 still reduced BP in MLK3-/- mice. MLK3 kinase inhibition with URMC-099 did not affect BP but induced LV dysfunction in mice. These data reveal MLK3 as a PKG1α substrate mediating PKG1α preservation of LV function but not acute PKG1α BP effects. Mechanistically, MLK3 kinase-dependent effects preserved LV function, whereas MLK3 kinase-independent signaling regulated BP. These findings suggest augmenting MLK3 kinase activity could preserve LV function in HF but avoid hypotension from PKG1α activation.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Insuficiencia Cardíaca/fisiopatología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Disfunción Ventricular Izquierda/fisiopatología , Animales , Aorta/patología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Células HEK293 , Insuficiencia Cardíaca/complicaciones , Humanos , Hipertensión/genética , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Pirroles/farmacología , Citrato de Sildenafil/farmacología , Rigidez Vascular/genética , Vasodilatadores/farmacología , Disfunción Ventricular Izquierda/etiología , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
19.
Int J Mol Sci ; 22(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064290

RESUMEN

Inositol 1,4,5-triphosphate receptor-associated cGMP kinase substrate 1 (IRAG1) is a substrate protein of the NO/cGMP-signaling pathway and forms a ternary complex with the cGMP-dependent protein kinase Iß (PKGIß) and the inositol triphosphate receptor I (IP3R-I). Functional studies about IRAG1 exhibited that IRAG1 is specifically phosphorylated by the PKGIß, regulating cGMP-mediated IP3-dependent Ca2+-release. IRAG1 is widely distributed in murine tissues, e.g., in large amounts in smooth muscle-containing tissues and platelets, but also in lower amounts, e.g., in the spleen. The NO/cGMP/PKGI signaling pathway is important in several organ systems. A loss of PKGI causes gastrointestinal disorders, anemia and splenomegaly. Due to the similar tissue distribution of the PKGIß to IRAG1, we investigated the pathophysiological functions of IRAG1 in this context. Global IRAG1-KO mice developed gastrointestinal bleeding, anemia-associated splenomegaly and iron deficiency. Additionally, Irag1-deficiency altered the protein levels of some cGMP/PKGI signaling proteins-particularly a strong decrease in the PKGIß-in the colon, spleen and stomach but did not change mRNA-expression of the corresponding genes. The present work showed that a loss of IRAG1 and the PKGIß/IRAG1 signaling has a crucial function in the development of gastrointestinal disorders and anemia-associated splenomegaly. Furthermore, global Irag1-deficient mice are possible in vivo model to investigate PKGIß protein functions.


Asunto(s)
Anemia/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Transducción de Señal/fisiología , Esplenomegalia/metabolismo , Animales , Calcio/metabolismo , Colon/metabolismo , GMP Cíclico/metabolismo , Femenino , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Fosforilación/fisiología , ARN Mensajero/metabolismo , Bazo/metabolismo , Estómago
20.
Nat Commun ; 12(1): 2628, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976159

RESUMEN

Thoracic aortic aneurysm, as occurs in Marfan syndrome, is generally asymptomatic until dissection or rupture, requiring surgical intervention as the only available treatment. Here, we show that nitric oxide (NO) signaling dysregulates actin cytoskeleton dynamics in Marfan Syndrome smooth muscle cells and that NO-donors induce Marfan-like aortopathy in wild-type mice, indicating that a marked increase in NO suffices to induce aortopathy. Levels of nitrated proteins are higher in plasma from Marfan patients and mice and in aortic tissue from Marfan mice than in control samples, indicating elevated circulating and tissue NO. Soluble guanylate cyclase and cGMP-dependent protein kinase are both activated in Marfan patients and mice and in wild-type mice treated with NO-donors, as shown by increased plasma cGMP and pVASP-S239 staining in aortic tissue. Marfan aortopathy in mice is reverted by pharmacological inhibition of soluble guanylate cyclase and cGMP-dependent protein kinase and lentiviral-mediated Prkg1 silencing. These findings identify potential biomarkers for monitoring Marfan Syndrome in patients and urge evaluation of cGMP-dependent protein kinase and soluble guanylate cyclase as therapeutic targets.


Asunto(s)
Aneurisma de la Aorta Torácica/patología , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Síndrome de Marfan/complicaciones , Guanilil Ciclasa Soluble/metabolismo , Animales , Aorta/citología , Aorta/diagnóstico por imagen , Aorta/efectos de los fármacos , Aorta/patología , Aneurisma de la Aorta Torácica/diagnóstico , Aneurisma de la Aorta Torácica/etiología , Aneurisma de la Aorta Torácica/prevención & control , Biomarcadores/sangre , Biomarcadores/metabolismo , Carbazoles/administración & dosificación , GMP Cíclico/sangre , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrilina-1/genética , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Síndrome de Marfan/sangre , Síndrome de Marfan/genética , Síndrome de Marfan/patología , Ratones , Músculo Liso Vascular/citología , Mutación , Miocitos del Músculo Liso , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/administración & dosificación , Cultivo Primario de Células , Guanilil Ciclasa Soluble/antagonistas & inhibidores , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...