Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.151
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 150, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702777

RESUMEN

BACKGROUND: Vasculopathy is the most common complication of diabetes. Endothelial cells located in the innermost layer of blood vessels are constantly affected by blood flow or vascular components; thus, their mechanosensitivity plays an important role in mediating vascular regulation. Endothelial damage, one of the main causes of hyperglycemic vascular complications, has been extensively studied. However, the role of mechanosensitive signaling in hyperglycemic endothelial damage remains unclear. METHODS: Vascular endothelial-specific Piezo1 knockout mice were generated to investigate the effects of Piezo1 on Streptozotocin-induced hyperglycemia and vascular endothelial injury. In vitro activation or knockdown of Piezo1 was performed to evaluate the effects on the proliferation, migration, and tubular function of human umbilical vein endothelial cells in high glucose. Reactive oxygen species production, mitochondrial membrane potential alternations, and oxidative stress-related products were used to assess the extent of oxidative stress damage caused by Piezo1 activation. RESULTS: Our study found that in VECreERT2;Piezo1flox/flox mice with Piezo1 conditional knockout in vascular endothelial cells, Piezo1 deficiency alleviated streptozotocin-induced hyperglycemia with reduced apoptosis and abscission of thoracic aortic endothelial cells, and decreased the inflammatory response of aortic tissue caused by high glucose. Moreover, the knockout of Piezo1 showed a thinner thoracic aortic wall, reduced tunica media damage, and increased endothelial nitric oxide synthase expression in transgenic mice, indicating the relief of endothelial damage caused by hyperglycemia. We also showed that Piezo1 activation aggravated oxidative stress injury and resulted in severe dysfunction through the Ca2+-induced CaMKII-Nrf2 axis in human umbilical vein endothelial cells. In Piezo1 conditional knockout mice, Piezo1 deficiency partially restored superoxide dismutase activity and reduced malondialdehyde content in the thoracic aorta. Mechanistically, Piezo1 deficiency decreased CaMKII phosphorylation and restored the expression of Nrf2 and its downstream molecules HO-1 and NQO1. CONCLUSION: In summary, our study revealed that Piezo1 is involved in high glucose-induced oxidative stress injury and aggravated endothelial dysfunction, which have great significance for alleviating endothelial damage caused by hyperglycemia.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Células Endoteliales de la Vena Umbilical Humana , Canales Iónicos , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III , Estrés Oxidativo , Animales , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Diabetes Mellitus Experimental/metabolismo , Canales Iónicos/metabolismo , Canales Iónicos/genética , Glucemia/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Mecanotransducción Celular , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/deficiencia , Células Cultivadas , Proliferación Celular , Apoptosis , Masculino , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/patología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/etiología , Movimiento Celular , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Ratones , Estreptozocina , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Endotelio Vascular/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética
2.
Skelet Muscle ; 14(1): 11, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769542

RESUMEN

BACKGROUND: Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse models thereof. However, the underlying pathomechanisms and their contribution to muscle dysfunction remain unknown. METHODS: We compared changes in NMJs and activity-dependent signalling pathways in HSALR and Mbnl1ΔE3/ΔE3 mice, two established mouse models of DM1. RESULTS: Muscle from DM1 mouse models showed major deregulation of calcium/calmodulin-dependent protein kinases II (CaMKIIs), which are key activity sensors regulating synaptic gene expression and acetylcholine receptor (AChR) recycling at the NMJ. Both mouse models exhibited increased fragmentation of the endplate, which preceded muscle degeneration. Endplate fragmentation was not accompanied by changes in AChR turnover at the NMJ. However, the expression of synaptic genes was up-regulated in mutant innervated muscle, together with an abnormal accumulation of histone deacetylase 4 (HDAC4), a known target of CaMKII. Interestingly, denervation-induced increase in synaptic gene expression and AChR turnover was hampered in DM1 muscle. Importantly, CaMKIIß/ßM overexpression normalized endplate fragmentation and synaptic gene expression in innervated Mbnl1ΔE3/ΔE3 muscle, but it did not restore denervation-induced synaptic gene up-regulation. CONCLUSIONS: Our results indicate that CaMKIIß-dependent and -independent mechanisms perturb synaptic gene regulation and muscle response to denervation in DM1 mouse models. Changes in these signalling pathways may contribute to NMJ destabilization and muscle dysfunction in DM1 patients.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Modelos Animales de Enfermedad , Músculo Esquelético , Distrofia Miotónica , Unión Neuromuscular , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Distrofia Miotónica/fisiopatología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Unión Neuromuscular/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/inervación , Músculo Esquelético/patología , Ratones , Humanos , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/genética , Masculino , Ratones Endogámicos C57BL
3.
Zhen Ci Yan Jiu ; 49(5): 480-486, 2024 May 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38764119

RESUMEN

OBJECTIVES: To observe the activation state and neuronal types of somatosensory cortex and the primary motor cortex induced by electroacupuncture (EA) stimulation of "Sibai" (ST2) and "Quanliao" (SI18) acupoints in mice. METHODS: Male C57BL/6J mice were randomly divided into blank control and EA groups, with 6 mice in each group. Rats of the EA group received EA stimulation (2 Hz, 0.6 mA) at ST2 and SI18 for 30 minutes. Samples were collected after EA intervention, and immunofluorescence staining was performed to quantify the expression of the c-Fos gene (proportion of c-Fos positive cells) in the somatosensory cortex and primary motor cortex. The co-labelled cells of calcium/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) and gamma-aminobutyric acid (GABA) in the somatosensory cortex and primary motor cortex were observed and counted by using microscope after immunofluorescence staining. Another 10 mice were used to detect the calcium activity of excitatory neurons in the somatosensory cortex and primary motor cortex by fiber photometry. RESULTS: In comparison with the blank control group, the number of c-Fos positive cells, and the proportion of c-Fos and CaMKⅡ co-labelled cells in both the somatosensory cortex and primary motor cortex were significantly increased after EA stimulation (P<0.05). No significant changes were found in the proportion of c-Fos and GABA co-labeled cells in both the somatosensory cortex and primary motor cortex after EA. Results of fiber optic calcium imaging technology showed that the spontaneous calcium activity of excitatory neurons in both somatosensory cortex and primary motor cortex were obviously increased during EA compared with that before EA (P<0.01), and strikingly reduced after cessation of EA compared with that during EA (P<0.05). CONCLUSIONS: Under physiological conditions, EA of ST2 and SI18 can effectively activate excitatory neurons in the somatosensory cortex and primary motor cortex.


Asunto(s)
Puntos de Acupuntura , Electroacupuntura , Ratones Endogámicos C57BL , Neuronas , Animales , Masculino , Ratones , Neuronas/metabolismo , Corteza Sensoriomotora/metabolismo , Humanos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Corteza Motora/metabolismo , Corteza Somatosensorial/metabolismo
4.
Exp Anim ; 73(2): 233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38710612

RESUMEN

Zhen Li, Mengfan He, Danqing Dai, Xiaofei Gao, Huazheng Liang and Lize Xiong Exp. Anim. 73(1), 109-123, 2024 https://doi.org/10.1538/expanim.23-0065 In the original publication of the article, the Funding section was incomplete. The correct Funding information is provided below: Funding This work was supported by a grant from the Shanghai Commission of Science and Technology (201409003500), Major Project of National Natural Science Foundation of China (No. 82293640, No. 82293643), Key Project of National Natural Science Foundation of China (No. 82130121), the second round of the three-year action plan for "strengthening and promoting Traditional Chinese Medicine" of Hongkou District (HKGYQYXM-2022-06), and Scientific and technological innovation 2030 - major project of Brain Science and Brain-Like Intelligence Technology (2021ZD0202804) to Dr. Lize Xiong, a grant from the National Natural Science Foundation of China (No.81974535) to Dr. Huazheng Liang, and the Talent Promotion Program of Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine (SY-XKZT-2019-3006) and the Discipline Promotion Program of Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine (SY-XKZT-2019-1012) to Dr. Zhen Li.


Asunto(s)
Modelos Animales de Enfermedad , Animales , Ratones , Trastornos Neurocognitivos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Masculino , Periodo Perioperatorio
5.
Biomed Res Int ; 2024: 6160554, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567164

RESUMEN

Hypertrophic cardiomyopathy (HCM) is characterised by asymmetric left ventricular hypertrophy, ventricular arrhythmias, and cardiomyocyte dysfunction that may cause sudden death. HCM is associated with mutations in sarcomeric proteins and is usually transmitted as an autosomal-dominant trait. The aim of this in silico study was to assess the mechanisms that underlie the altered electrophysiological activity, contractility, regulation of energy metabolism, and crossbridge cycling in HCM at the single-cell level. To investigate this, we developed a human ventricular cardiomyocyte model that incorporates electrophysiology, metabolism, and force generation. The model was validated by its ability to reproduce the experimentally observed kinetic properties of human HCM induced by (a) remodelling of several ion channels and Ca2+-handling proteins arising from altered Ca2+/calmodulin kinase II signalling pathways and (b) increased Ca2+ sensitivity of the myofilament proteins. Our simulation showed a decreased phosphocreatine-to-ATP ratio (-9%) suggesting a negative mismatch between energy expenditure and supply. Using a spatial myofilament half-sarcomere model, we also compared the fraction of detached, weakly bound, and strongly bound crossbridges in the control and HCM conditions. Our simulations showed that HCM has more crossbridges in force-producing states than in the control condition. In conclusion, our model reveals that impaired crossbridge kinetics is accompanied by a negative mismatch between the ATP supply and demand ratio. This suggests that improving this ratio may reduce the incidence of sudden death in HCM.


Asunto(s)
Cardiomiopatía Hipertrófica , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Mutación , Señalización del Calcio , Adenosina Trifosfato/metabolismo , Muerte Súbita
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 563-570, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38597448

RESUMEN

OBJECTIVE: To observe neuroprotective effects of Ca2+/calmodulin-dependent kinase Ⅱ (CaMK Ⅱ)γ and CaMkII δ against acute neuronal ischemic reperfusion injury in mice and explore the underlying mechanism. METHODS: Primary cultures of brain neurons isolated from fetal mice (gestational age of 18 days) were transfected with two specific siRNAs (si-CAMK2G and si-CAMK2D) or a control sequence (si-NT). After the transfection, the cells were exposed to oxygen-glucose deprivation/reperfusion (OGD/R) conditions for 1 h followed by routine culture. The expressions of phosphatidylinositol-3-kinase/extracellular signal-regulated kinase (PI3K/Akt/Erk) signaling pathway components in the neurons were detected using immunoblotting. The expressions of the PI3K/Akt/Erk signaling pathway proteins were also detected in the brain tissues of mice receiving middle cerebral artery occlusion (MCAO) or sham operation. RESULTS: The neuronal cells transfected with siCAMK2G showed significantly lower survival rates than those with si-NT transfection at 12, 24, 48, and 72 h after OGD/R (P < 0.01), and si-CAMK2G transfection inhibited OGD/R-induced upregulation of CaMKⅡγ expression. Compared to si-NT, transfection with si-CAMK2G and si-CAMK2D both significantly inhibited the expressions of PI3K/Akt/Erk signaling pathway components (P < 0.01). In the mouse models of MCAO, the expressions of CaMKⅡδ and CaMKⅡγ were significantly increased in the brain, where activation of the PI3K/Akt/Erk signaling pathway was detected. The expression levels of CaMKⅡδ, CaMKⅡγ, Erk, phosphorylated Erk, Akt, and phosphorylated Akt were all significantly higher in MCAO mice than in the sham-operated mice at 24, 48, 72, and 96 h after reperfusion (P < 0.05). CONCLUSION: The neuroprotective effects of CaMKⅡδ and CaMKⅡγ against acute neuronal ischemic reperfusion injury are mediated probably by the PI3K/Akt/Erk pathway.


Asunto(s)
Isquemia Encefálica , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Ratones , Ratas , Isquemia Encefálica/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Infarto de la Arteria Cerebral Media , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Transducción de Señal
7.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674016

RESUMEN

Organ transplantation is associated with various forms of programmed cell death which can accelerate transplant injury and rejection. Targeting cell death in donor organs may represent a novel strategy for preventing allograft injury. We have previously demonstrated that necroptosis plays a key role in promoting transplant injury. Recently, we have found that mitochondria function is linked to necroptosis. However, it remains unknown how necroptosis signaling pathways regulate mitochondrial function during necroptosis. In this study, we investigated the receptor-interacting protein kinase 3 (RIPK3) mediated mitochondrial dysfunction and necroptosis. We demonstrate that the calmodulin-dependent protein kinase (CaMK) family members CaMK1, 2, and 4 form a complex with RIPK3 in mouse cardiac endothelial cells, to promote trans-phosphorylation during necroptosis. CaMK1 and 4 directly activated the dynamin-related protein-1 (Drp1), while CaMK2 indirectly activated Drp1 via the phosphoglycerate mutase 5 (PGAM5). The inhibition of CaMKs restored mitochondrial function and effectively prevented endothelial cell death. CaMKs inhibition inhibited activation of CaMKs and Drp1, and cell death and heart tissue injury (n = 6/group, p < 0.01) in a murine model of cardiac transplantation. Importantly, the inhibition of CaMKs greatly prolonged heart graft survival (n = 8/group, p < 0.01). In conclusion, CaMK family members orchestrate cell death in two different pathways and may be potential therapeutic targets in preventing cell death and transplant injury.


Asunto(s)
Dinaminas , Rechazo de Injerto , Trasplante de Corazón , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Ratones , Rechazo de Injerto/metabolismo , Rechazo de Injerto/patología , Trasplante de Corazón/efectos adversos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Dinaminas/metabolismo , Dinaminas/genética , Mitocondrias/metabolismo , Células Endoteliales/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosforilación , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Transducción de Señal
8.
Nutrients ; 16(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38674927

RESUMEN

The excessive activation of glutamate in the brain is a factor in the development of vascular dementia. γ-Oryzanol is a natural compound that has been shown to enhance brain function, but more research is needed to determine its potential as a treatment for vascular dementia. This study investigated if γ-oryzanol can delay or improve glutamate neurotoxicity in an in vitro model of differentiated HT-22 cells and explored its neuroprotective mechanisms. The differentiated HT-22 cells were treated with 0.1 mmol/L glutamate for 24 h then given γ-oryzanol at appropriate concentrations or memantine (10 µmol/L) for another 24 h. Glutamate produced reactive oxygen species and depleted glutathione in the cells, which reduced their viability. Mitochondrial dysfunction was also observed, including the inhibition of mitochondrial respiratory chain complex I activity, the collapse of mitochondrial transmembrane potential, and the reduction of intracellular ATP levels in the HT-22 cells. Calcium influx triggered by glutamate subsequently activated type II calcium/calmodulin-dependent protein kinase (CaMKII) in the HT-22 cells. The activation of CaMKII-ASK1-JNK MAP kinase cascade, decreased Bcl-2/Bax ratio, and increased Apaf-1-dependent caspase-9 activation were also observed due to glutamate induction, which were associated with increased DNA fragmentation. These events were attenuated when the cells were treated with γ-oryzanol (0.4 mmol/L) or the N-methyl-D-aspartate receptor antagonist memantine. The results suggest that γ-oryzanol has potent neuroprotective properties against glutamate excitotoxicity in differentiated HT-22 cells. Therefore, γ-oryzanol could be a promising candidate for the development of therapies for glutamate excitotoxicity-associated neurodegenerative diseases, including vascular dementia.


Asunto(s)
Ácido Glutámico , Mitocondrias , Fármacos Neuroprotectores , Fenilpropionatos , Especies Reactivas de Oxígeno , Ácido Glutámico/toxicidad , Fenilpropionatos/farmacología , Animales , Fármacos Neuroprotectores/farmacología , Ratones , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oryza/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Memantina/farmacología , Apoptosis/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo
9.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38565288

RESUMEN

Excitotoxicity and the concurrent loss of inhibition are well-defined mechanisms driving acute elevation in excitatory/inhibitory (E/I) balance and neuronal cell death following an ischemic insult to the brain. Despite the high prevalence of long-term disability in survivors of global cerebral ischemia (GCI) as a consequence of cardiac arrest, it remains unclear whether E/I imbalance persists beyond the acute phase and negatively affects functional recovery. We previously demonstrated sustained impairment of long-term potentiation (LTP) in hippocampal CA1 neurons correlating with deficits in learning and memory tasks in a murine model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Here, we use CA/CPR and an in vitro ischemia model to elucidate mechanisms by which E/I imbalance contributes to ongoing hippocampal dysfunction in male mice. We reveal increased postsynaptic GABAA receptor (GABAAR) clustering and function in the CA1 region of the hippocampus that reduces the E/I ratio. Importantly, reduced GABAAR clustering observed in the first 24 h rebounds to an elevation of GABAergic clustering by 3 d postischemia. This increase in GABAergic inhibition required activation of the Ca2+-permeable ion channel transient receptor potential melastatin-2 (TRPM2), previously implicated in persistent LTP and memory deficits following CA/CPR. Furthermore, we find Ca2+-signaling, likely downstream of TRPM2 activation, upregulates Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, thereby driving the elevation of postsynaptic inhibitory function. Thus, we propose a novel mechanism by which inhibitory synaptic strength is upregulated in the context of ischemia and identify TRPM2 and CaMKII as potential pharmacological targets to restore perturbed synaptic plasticity and ameliorate cognitive function.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Ratones Endogámicos C57BL , Transducción de Señal , Canales Catiónicos TRPM , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Masculino , Ratones , Canales Catiónicos TRPM/metabolismo , Transducción de Señal/fisiología , Isquemia Encefálica/metabolismo , Región CA1 Hipocampal/metabolismo , Receptores de GABA-A/metabolismo , Hipocampo/metabolismo , Inhibición Neural/fisiología , Neuronas GABAérgicas/metabolismo , Paro Cardíaco/complicaciones , Paro Cardíaco/metabolismo
10.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474197

RESUMEN

Glioblastoma stem cells (GSCs) play a pivotal role in the initiation, progression, resistance to treatment, and relapse of glioblastoma multiforme (GBM). Thus, identifying potential therapeutic targets and drugs that interfere with the growth of GSCs may contribute to improved treatment outcomes for GBM. In this study, we first demonstrated the functional role of protein arginine methyltransferase 1 (PRMT1) in GSC growth. Furamidine, a PRMT1 inhibitor, effectively inhibited the proliferation and tumorsphere formation of U87MG-derived GSCs by inducing cell cycle arrest at the G0/G1 phase and promoting the intrinsic apoptotic pathway. Moreover, furamidine potently suppressed the in vivo tumor growth of U87MG GSCs in a chick embryo chorioallantoic membrane model. In particular, the inhibitory effect of furamidine on U87MG GSC growth was associated with the downregulation of signal transducer and activator of transcription 3 (STAT3) and key GSC markers, including CD133, Sox2, Oct4, Nanog, aldehyde dehydrogenase 1, and integrin α6. Our results also showed that the knockdown of PRMT1 by small interfering RNA significantly inhibited the proliferation of U87MG GSCs in vitro and in vivo through a molecular mechanism similar to furamidine. In addition, combined treatment with furamidine and berbamine, a calcium/calmodulin-dependent protein kinase II gamma (CaMKIIγ) inhibitor, inhibited the growth of U87MG GSCs more strongly than single-compound treatment. The increased antiproliferative effect of combining the two compounds resulted from a stronger downregulation of STAT3-mediated downstream GBM stemness regulators through dual PRMT1 and CaMKIIγ function blockade. In conclusion, these findings suggest that PRMT1 and its inhibitor, furamidine, are potential novel therapeutic targets and drug candidates for effectively suppressing GSC growth.


Asunto(s)
Benzamidinas , Neoplasias Encefálicas , Glioblastoma , Embrión de Pollo , Animales , Humanos , Glioblastoma/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Recurrencia Local de Neoplasia/patología , Proliferación Celular , Transducción de Señal , Neoplasias Encefálicas/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo
11.
Protein Sci ; 33(4): e4960, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501502

RESUMEN

Ca2+ /calmodulin-dependent protein kinase II (CaMKII) is a multidomain serine/threonine kinase that plays important roles in the brain, heart, muscle tissue, and eggs/sperm. The N-terminal kinase and regulatory domain is connected by a flexible linker to the C-terminal hub domain. The hub domain drives the oligomeric organization of CaMKII, assembling the kinase domains into high local concentration. Previous structural studies have shown multiple stoichiometries of the holoenzyme as well as the hub domain alone. Here, we report a comprehensive study of the hub domain stoichiometry and stability in solution. We solved two crystal structures of the CaMKIIß hub domain that show 14-mer (3.1 Å) and 16-mer (3.4 Å) assemblies. Both crystal structures were determined from crystals grown in the same drop, which suggests that CaMKII oligomers with different stoichiometries likely coexist. To further interrogate hub stability, we employed mass photometry and temperature denaturation studies of CaMKIIß and CaMKIIα hubs, which highlight major differences between these highly similar domains. We created a dimeric CaMKIIß hub unit using rational mutagenesis, which is significantly less stable than the oligomer. Both hub domains populate an intermediate during unfolding. We found that multiple CaMKIIß hub stoichiometries are present in solution and that larger oligomers are more stable. CaMKIIα had a narrower distribution of molecular weight and was distinctly more stable than CaMKIIß.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Calcio , Masculino , Humanos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Semen/metabolismo
12.
Nat Commun ; 15(1): 2694, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538603

RESUMEN

Long noncoding RNAs (lncRNAs) play crucial roles in maintaining cell homeostasis and function. However, it remains largely unknown whether and how neuronal activity impacts the transcriptional regulation of lncRNAs, or if this leads to synapse-related changes and contributes to the formation of long-term memories. Here, we report the identification of a lncRNA, SLAMR, which becomes enriched in CA1-hippocampal neurons upon contextual fear conditioning but not in CA3 neurons. SLAMR is transported along dendrites via the molecular motor KIF5C and is recruited to the synapse upon stimulation. Loss of function of SLAMR reduces dendritic complexity and impairs activity-dependent changes in spine structural plasticity and translation. Gain of function of SLAMR, in contrast, enhances dendritic complexity, spine density, and translation. Analyses of the SLAMR interactome reveal its association with CaMKIIα protein through a 220-nucleotide element also involved in SLAMR transport. A CaMKII reporter reveals a basal reduction in CaMKII activity with SLAMR loss-of-function. Furthermore, the selective loss of SLAMR function in CA1 disrupts the consolidation of fear memory in male mice, without affecting their acquisition, recall, or extinction, or spatial memory. Together, these results provide new molecular and functional insight into activity-dependent changes at the synapse and consolidation of contextual fear.


Asunto(s)
ARN Largo no Codificante , Ratones , Masculino , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Neuronas/metabolismo , Hipocampo/fisiología , Recuerdo Mental/fisiología , Plasticidad Neuronal/genética , Ratones Endogámicos C57BL
13.
Eur J Pharmacol ; 970: 176483, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38479721

RESUMEN

Stromal derived factor 1 (SDF1) has been shown to be involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the detailed molecular mechanisms remain unclear. To address this, we utilized primary cultured rat pulmonary artery smooth muscle cells (PASMCs) and monocrotaline (MCT)-induced PAH rat models to investigate the mechanisms of SDF1 driving PASMCs proliferation and pulmonary arterial remodeling. SDF1 increased runt-related transcription factor 2 (Runx2) acetylation by Calmodulin (CaM)-dependent protein kinase II (CaMKII)-dependent HDAC4 cytoplasmic translocation, elevation of Runx2 acetylation conferred its resistance to proteasome-mediated degradation. The accumulation of Runx2 further upregulated osteopontin (OPN) expression, finally leading to PASMCs proliferation. Blocking SDF1, suppression of CaMKII, inhibition the nuclear export of HDAC4 or silencing Runx2 attenuated pulmonary arterial remodeling and prevented PAH development in MCT-induced PAH rat models. Our study provides novel sights for SDF1 induction of PASMCs proliferation and suggests that targeting SDF1/CaMKII/HDAC4/Runx2 axis has potential value in the management of PAH.


Asunto(s)
Hipertensión Arterial Pulmonar , Ratas , Animales , Hipertensión Arterial Pulmonar/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Remodelación Vascular/fisiología , Proliferación Celular , Arteria Pulmonar/patología , Hipertensión Pulmonar Primaria Familiar/patología , Miocitos del Músculo Liso , Monocrotalina/efectos adversos , Modelos Animales de Enfermedad , Histona Desacetilasas/metabolismo
14.
eNeuro ; 11(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38548335

RESUMEN

Neuroprotection after injury or in neurodegenerative disease remains a major goal for basic and translational neuroscience. Retinal ganglion cells (RGCs), the projection neurons of the eye, degenerate in optic neuropathies after axon injury, and there are no clinical therapies to prevent their loss or restore their connectivity to targets in the brain. Here we demonstrate a profound neuroprotective effect of the exogenous expression of various Ca2+/calmodulin-dependent protein kinase II (CaMKII) isoforms in mice. A dramatic increase in RGC survival following the optic nerve trauma was elicited by the expression of constitutively active variants of multiple CaMKII isoforms in RGCs using adeno-associated viral (AAV) vectors across a 100-fold range of AAV dosing in vivo. Despite this neuroprotection, however, short-distance RGC axon sprouting was suppressed by CaMKII, and long-distance axon regeneration elicited by several pro-axon growth treatments was likewise inhibited even as CaMKII further enhanced RGC survival. Notably, in a dose-escalation study, AAV-expressed CaMKII was more potent for axon growth suppression than the promotion of survival. That diffuse overexpression of constitutively active CaMKII strongly promotes RGC survival after axon injury may be clinically valuable for neuroprotection per se. However, the associated strong suppression of the optic nerve axon regeneration demonstrates the need for understanding the intracellular domain- and target-specific CaMKII activities to the development of CaMKII signaling pathway-directed strategies for the treatment of optic neuropathies.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedades del Nervio Óptico , Traumatismos del Nervio Óptico , Ratones , Animales , Células Ganglionares de la Retina/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Axones/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Regeneración Nerviosa/fisiología , Enfermedades del Nervio Óptico/metabolismo , Isoformas de Proteínas/metabolismo , Supervivencia Celular/fisiología
15.
Cell Rep ; 43(4): 113839, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38507409

RESUMEN

Homeostatic regulation of synapses is vital for nervous system function and key to understanding a range of neurological conditions. Synaptic homeostasis is proposed to operate over hours to counteract the destabilizing influence of long-term potentiation (LTP) and long-term depression (LTD). The prevailing view holds that synaptic scaling is a slow first-order process that regulates postsynaptic glutamate receptors and fundamentally differs from LTP or LTD. Surprisingly, we find that the dynamics of scaling induced by neuronal inactivity are not exponential or monotonic, and the mechanism requires calcineurin and CaMKII, molecules dominant in LTD and LTP. Our quantitative model of these enzymes reconstructs the unexpected dynamics of homeostatic scaling and reveals how synapses can efficiently safeguard future capacity for synaptic plasticity. This mechanism of synaptic adaptation supports a broader set of homeostatic changes, including action potential autoregulation, and invites further inquiry into how such a mechanism varies in health and disease.


Asunto(s)
Calcineurina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Homeostasis , Sinapsis , Animales , Sinapsis/metabolismo , Sinapsis/fisiología , Calcineurina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Ratones
16.
Int Immunopharmacol ; 130: 111811, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38457929

RESUMEN

Glaucoma is characterized by a progressive loss of retinal ganglion cells (RGCs), leading to irreversible visual function impairment. Sustained increase in intraocular pressure represents a major risk factor for glaucoma, yet the underlying mechanisms of RGC apoptosis induced by intraocular pressure remains unclear. This study aims to investigate the role of TRPV4 in RGC apoptosis in a rat model of chronic ocular hypertension (COH) and the underlying molecular mechanism. In the COH rat models, we evaluated the visual function, retinal pathological changes and RGC apoptosis. TRPV4 expression and downstream signaling molecules were also detected. We found that RGC density decreased and RGC apoptosis was induced in COH eyes compared with control eyes. TRPV4 expression increased significantly in response to elevated IOP. TRPV4 inhibition by the TRPV4 antagonist HC-067047 (HC-067) suppressed RGC apoptosis and protected visual function. HC-067 treatment upregulated the phosphorylation of CaMKII in both control and COH eyes. Finally, HC-067 treatment suppressed the production of TNF-α induced by ocular hypertension. The TRPV4 antagonist HC-067 might suppress RGC apoptosis by regulating the activation of CaMKII and inhibiting the production of TNF-α in the COH model. This indicated that TRPV4 antagonists may be a potential and novel therapeutic strategy for glaucoma.


Asunto(s)
Apoptosis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Morfolinas , Hipertensión Ocular , Pirroles , Células Ganglionares de la Retina , Canales Catiónicos TRPV , Factor de Necrosis Tumoral alfa , Animales , Ratas , Apoptosis/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Modelos Animales de Enfermedad , Glaucoma/tratamiento farmacológico , Hipertensión Ocular/tratamiento farmacológico , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Canales Catiónicos TRPV/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Morfolinas/farmacología , Morfolinas/uso terapéutico , Pirroles/farmacología , Pirroles/uso terapéutico
17.
Ann Clin Lab Sci ; 54(1): 17-25, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38514055

RESUMEN

OBJECTIVE: Diabetic cardiomyopathy (DCM) is the most common cardiovascular complication of type 2 diabetes mellitus (T2DM). Patients affected with DCM face a notably higher risk of progressing to congestive heart failure compared to other populations. Myocardial hypertrophy, a clearly confirmed pathological change in DCM, plays an important role in the development of DCM, with abnormal Ca2+ homeostasis serving as the key signal to induce myocardial hypertrophy. Therefore, investigating the mechanism of Ca2+ transport is of great significance for the prevention and treatment of myocardial hypertrophy in T2DM. METHODS: The rats included in the experiment were divided into wild type (WT) group and T2DM group. The T2DM rat model was established by feeding the rats with high-fat and high-sugar diets for three months combined with low dose of streptozotocin (100mg/kg). Afterwards, primary rat cardiomyocytes were isolated and cultured, and cardiomyocyte hypertrophy was induced through high-glucose treatment. Subsequently, mechanistic investigations were carried out through transfection with si-STIM1 and oe-STIM1. Western blot (WB) was used to detect the expression of the STIM1, Orai1 and p-CaMKII. qRT-PCR was used to detect mRNA levels of myocardial hypertrophy marker proteins. Cell surface area was detected using TRITC-Phalloidin staining, and intracellular Ca2+ concentration in cardiomyocytes was measured using Fluo-4 fluorescence staining. RESULTS: Through animal experiments, an upregulation of Orai1 and STIM1 was revealed in the rat model of myocardial hypertrophy induced by T2DM. Meanwhile, through cell experiments, it was found that in high glucose (HG)-induced hypertrophic cardiomyocytes, the expression of STIM1, Orai1, and p-CaMKII was upregulated, along with increased levels of store-operated Ca2+ entry (SOCE) and abnormal Ca2+ homeostasis. However, when STIM1 was downregulated in HG-induced cardiomyocytes, SOCE levels decreased and p-CaMKII was downregulated, resulting in an improvement in myocardial hypertrophy. To further elucidate the mechanism of action involving SOCE and CaMKII in T2DM-induced myocardial hypertrophy, high-glucose cardiomyocytes were respectively treated with BTP2 (SOCE blocker) and KN-93 (CaMKII inhibitor), and the results showed that STIM1 can mediate SOCE, thereby affecting the phosphorylation level of CaMKII and improving cardiomyocyte hypertrophy. CONCLUSION: STIM1/Orai1-mediated SOCE regulates p-CaMKII levels, thereby inducing myocardial hypertrophy in T2DM.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Calcio , Cardiomegalia , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Glucosa , Proteína ORAI1 , Molécula de Interacción Estromal 1 , Animales , Ratas , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Glucosa/metabolismo , Glucosa/farmacología , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Regulación hacia Arriba , Cardiomiopatías Diabéticas/complicaciones , Ratas Sprague-Dawley , Masculino
18.
Food Chem Toxicol ; 186: 114577, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458532

RESUMEN

Silver nanoparticles (AgNPs) have been widely used in biomedicine and cosmetics, increasing their potential risks in neurotoxicity. But the involved molecular mechanism remains unclear. This study aims to explore molecular events related to AgNPs-induced neuronal damage by RNA-seq, and elucidate the role of Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells synaptic degeneration induced by AgNPs. This study found that cell viabilities were decreased by AgNPs in a dose/time-dependent manner. AgNPs also increased protein expression of PINK1, Parkin, synaptophysin, and inhibited PGC-1α, MAP2 and APP protein expression, indicating AgNPs-induced synaptic degeneration involved in disturbance of mitophagy and mitochondrial biogenesis in HT22 cells. Moreover, inhibition of AgNPs-induced Ca2+/CaMKII activation and Drp1/ROS rescued mitophagy disturbance and synaptic degeneration in HT22 cells by reserving aforementioned protein express changes except for PGC-1α and APP protein. Thus, AgNPs-induced synaptic degeneration was mediated by Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells, and mitophagy is the sensitive to the mechanism. Our study will provide in-depth molecular mechanism data for neurotoxic evaluation and biomedical application of AgNPs.


Asunto(s)
Nanopartículas del Metal , Enfermedades Mitocondriales , Humanos , Plata/toxicidad , Plata/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Mitocondrias/metabolismo , Nanopartículas del Metal/toxicidad
19.
J Lipid Res ; 65(4): 100534, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522750

RESUMEN

The deposition of cholesterol-rich lipoproteins in the arterial wall triggers macrophage inflammatory responses, which promote atherosclerosis. The NLRP3 inflammasome aggravates atherosclerosis; however, cellular mechanisms connecting macrophage cholesterol accumulation to inflammasome activation are poorly understood. We investigated the mechanisms of NLRP3 inflammasome activation in cholesterol-loaded macrophages and in atherosclerosis-prone Ldlr-/- mice with defects in macrophage cholesterol efflux. We found that accumulation of cholesterol in macrophages treated with modified LDL or cholesterol crystals, or in macrophages defective in the cholesterol efflux promoting transporters ABCA1 and ABCG1, leads to activation of NLRP3 inflammasomes as a result of increased cholesterol trafficking from the plasma membrane to the ER, via Aster-B. In turn, the accumulation of cholesterol in the ER activates the inositol triphosphate-3 receptor, CaMKII/JNK, and induces NLRP3 deubiquitylation by BRCC3. An NLRP3 deubiquitylation inhibitor or deficiency of Abro1, an essential scaffolding protein in the BRCC3-containing cytosolic complex, suppressed inflammasome activation, neutrophil extracellular trap formation (NETosis), and atherosclerosis in vivo. These results identify a link between the trafficking of cholesterol to the ER, NLRP3 deubiquitylation, inflammasome activation, and atherosclerosis.


Asunto(s)
Aterosclerosis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Colesterol , Retículo Endoplásmico , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/patología , Ratones , Colesterol/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Retículo Endoplásmico/metabolismo , Inflamasomas/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Transporte Biológico , Ratones Noqueados
20.
Biomed Pharmacother ; 174: 116473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522237

RESUMEN

BACKGROUND: The elevation of endocannabinoid levels through inhibiting their degradation afforded neuroprotection in CaMKIIα-TDP-43 mice, a conditional transgenic model of frontotemporal dementia. However, which cannabinoid receptors are mediating these benefits is still pending to be elucidated. METHODS: We have investigated the involvement of the CB1 and the CB2 receptor using chronic treatments with selective ligands in CaMKIIα-TDP-43 mice, analysis of their cognitive deterioration with the Novel Object Recognition test, and immunostaining for neuronal and glial markers in two areas of interest in frontotemporal dementia. RESULTS: Our results confirmed the therapeutic value of activating either the CB1 or the CB2 receptor, with improvements in the animal performance in the Novel Object Recognition test, preservation of pyramidal neurons, in particular in the medial prefrontal cortex, and attenuation of glial reactivity, in particular in the hippocampus. In addition, the activation of both CB1 and CB2 receptors reduced the elevated levels of TDP-43 in the medial prefrontal cortex of CaMKIIα-TDP-43 mice, an effect exerted by mechanisms that are currently under investigation. CONCLUSIONS: These data reinforce the notion that the activation of CB1 and CB2 receptors may represent a promising therapy against TDP-43-induced neuropathology in frontotemporal dementia. Future studies will have to confirm these benefits, in particular with one of the selective CB2 agonists used here, which has been thoroughly characterized for clinical development.


Asunto(s)
Cannabinoides , Modelos Animales de Enfermedad , Demencia Frontotemporal , Ratones Transgénicos , Fármacos Neuroprotectores , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Animales , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/metabolismo , Masculino , Fármacos Neuroprotectores/farmacología , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/agonistas , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Ratones , Cannabinoides/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas de Unión al ADN/metabolismo , Ratones Endogámicos C57BL , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...