Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 289(1): 140-162, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34312977

RESUMEN

The translocon SecYEG and the associated ATPase SecA form the primary protein secretion system in the cytoplasmic membrane of bacteria. The secretion is essentially dependent on the surrounding lipids, but the mechanistic understanding of their role in SecA : SecYEG activity is sparse. Here, we reveal that the unsaturated fatty acids (UFAs) of the membrane phospholipids, including tetraoleoyl-cardiolipin, stimulate SecA : SecYEG-mediated protein translocation up to ten-fold. Biophysical analysis and molecular dynamics simulations show that UFAs increase the area per lipid and cause loose packing of lipid head groups, where the N-terminal amphipathic helix of SecA docks. While UFAs do not affect the translocon folding, they promote SecA binding to the membrane, and the effect is enhanced up to fivefold at elevated ionic strength. Tight SecA : lipid interactions convert into the augmented translocation. Our results identify the fatty acid structure as a notable factor in SecA : SecYEG activity, which may be crucial for protein secretion in bacteria, which actively change their membrane composition in response to their habitat.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Escherichia coli/genética , Ácidos Grasos Insaturados/metabolismo , Canales de Translocación SEC/genética , Proteína SecA/genética , Cardiolipinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Grasos Insaturados/genética , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/genética , Oleandomicina/metabolismo , Fosfolípidos/genética , Transporte de Proteínas/genética , Tetraciclina/metabolismo
2.
Sci Rep ; 11(1): 1433, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446830

RESUMEN

In bacteria, the SecA ATPase provides the driving force for protein secretion via the SecYEG translocon. While the dynamic interplay between SecA and SecYEG in translocation is widely appreciated, it is not clear how SecA associates with the translocon in the crowded cellular environment. We use super-resolution microscopy to directly visualize the dynamics of SecA in Escherichia coli at the single-molecule level. We find that SecA is predominantly associated with and evenly distributed along the cytoplasmic membrane as a homodimer, with only a minor cytosolic fraction. SecA moves along the cell membrane as three distinct but interconvertible diffusional populations: (1) A state loosely associated with the membrane, (2) an integral membrane form, and (3) a temporarily immobile form. Disruption of the proton-motive-force, which is essential for protein secretion, re-localizes a significant portion of SecA to the cytoplasm and results in the transient location of SecA at specific locations at the membrane. The data support a model in which SecA diffuses along the membrane surface to gain access to the SecYEG translocon.


Asunto(s)
Membrana Celular/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Imagen Molecular , Multimerización de Proteína , Proteína SecA/metabolismo , Membrana Celular/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Transporte de Proteínas/fisiología , Proteína SecA/genética
3.
FEBS J ; 288(7): 2203-2221, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33058437

RESUMEN

Protein translocation and insertion into the bacterial cytoplasmic membrane are the essential processes mediated by the Sec machinery. The core machinery is composed of the membrane-embedded translocon SecYEG that interacts with the secretion-dedicated ATPase SecA and translating ribosomes. Despite the simplicity and the available structural insights on the system, diverse molecular mechanisms and functional dynamics have been proposed. Here, we employ total internal reflection fluorescence microscopy to study the oligomeric state and diffusion of SecYEG translocons in supported lipid bilayers at the single-molecule level. Silane-based coating ensured the mobility of lipids and reconstituted translocons within the bilayer. Brightness analysis suggested that approx. 70% of the translocons were monomeric. The translocons remained in a monomeric form upon ribosome binding, but partial oligomerization occurred in the presence of nucleotide-free SecA. Individual trajectories of SecYEG in the lipid bilayer revealed dynamic heterogeneity of diffusion, as translocons commonly switched between slow and fast mobility modes with corresponding diffusion coefficients of 0.03 and 0.7 µm2 ·s-1 . Interactions with SecA ATPase had a minor effect on the lateral mobility, while bound ribosome:nascent chain complexes substantially hindered the diffusion of single translocons. Notably, the mobility of the translocon:ribosome complexes was not affected by the solvent viscosity or macromolecular crowding modulated by Ficoll PM 70, so it was largely determined by interactions within the lipid bilayer and at the interface. We suggest that the complex mobility of SecYEG arises from the conformational dynamics of the translocon and protein:lipid interactions.


Asunto(s)
Membrana Celular/genética , Proteínas de Escherichia coli/genética , Canales de Translocación SEC/genética , Proteína SecA/genética , Imagen Individual de Molécula , Adenosina Trifosfatasas/genética , Membrana Celular/química , Escherichia coli/química , Escherichia coli/genética , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Microscopía Fluorescente , Unión Proteica/genética , Transporte de Proteínas/genética , Canales de Translocación SEC/química
4.
Nat Commun ; 11(1): 3802, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732903

RESUMEN

The Sec translocon moves proteins across lipid bilayers in all cells. The Sec channel enables passage of unfolded proteins through the bacterial plasma membrane, driven by the cytosolic ATPase SecA. Whether SecA generates mechanical force to overcome barriers to translocation posed by structured substrate proteins is unknown. Here, we kinetically dissect Sec-dependent translocation by monitoring translocation of a folded substrate protein with tunable stability at high time resolution. We find that substrate unfolding constitutes the rate-limiting step during translocation. Using single-molecule force spectroscopy, we also define the response of the protein to mechanical force. Relating the kinetic and force measurements reveals that SecA generates at least 10 piconewtons of mechanical force to actively unfold translocating proteins, comparable to cellular unfoldases. Combining biochemical and single-molecule measurements thus allows us to define how the SecA motor ensures efficient and robust export of proteins that contain stable structure.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Desplegamiento Proteico , Canales de Translocación SEC/metabolismo , Proteína SecA/metabolismo , Estrés Mecánico , Membrana Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Membrana Dobles de Lípidos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Metotrexato/metabolismo , NADP/metabolismo , Transporte de Proteínas , Proteína SecA/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
5.
J Biol Chem ; 295(21): 7516-7528, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32241912

RESUMEN

The ATPase SecA is an essential component of the bacterial Sec machinery, which transports proteins across the cytoplasmic membrane. Most SecA proteins contain a long C-terminal tail (CTT). In Escherichia coli, the CTT contains a structurally flexible linker domain and a small metal-binding domain (MBD). The MBD coordinates zinc via a conserved cysteine-containing motif and binds to SecB and ribosomes. In this study, we screened a high-density transposon library for mutants that affect the susceptibility of E. coli to sodium azide, which inhibits SecA-mediated translocation. Results from sequencing this library suggested that mutations removing the CTT make E. coli less susceptible to sodium azide at subinhibitory concentrations. Copurification experiments suggested that the MBD binds to iron and that azide disrupts iron binding. Azide also disrupted binding of SecA to membranes. Two other E. coli proteins that contain SecA-like MBDs, YecA and YchJ, also copurified with iron, and NMR spectroscopy experiments indicated that YecA binds iron via its MBD. Competition experiments and equilibrium binding measurements indicated that the SecA MBD binds preferentially to iron and that a conserved serine is required for this specificity. Finally, structural modeling suggested a plausible model for the octahedral coordination of iron. Taken together, our results suggest that SecA-like MBDs likely bind to iron in vivo.


Asunto(s)
Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Hierro/metabolismo , Proteína SecA/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Mutación , Unión Proteica , Dominios Proteicos , Proteína SecA/genética , Azida Sódica/farmacología
6.
FEBS Open Bio ; 10(4): 561-579, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32068344

RESUMEN

Many nascent polypeptides synthesized in the cytoplasm are translocated across membranes via a specific 'translocon' composed of protein complexes. Recently, a novel targeting pathway for the outer membrane ß-barrel proteins (OMPs) in Gram-negative bacteria was discovered. The cell envelope of Gram-negative bacteria is composed of the inner (plasma) membrane (IM) and the outer membrane (OM). In this new pathway, a SecAN protein, which is mainly present in the IM as a homo-oligomer, translocates nascent OMPs across the IM; at the same time, SecAN directly interacts with the ß-barrel assembly machinery (BAM) complex embedded within the OM. A supercomplex (containing SecAN , the BAM complex and many other proteins) spans the IM and OM, and is involved in the biogenesis of OMPs. Investigation of the function of SecAN and the supercomplex, as well as the translocation mechanism, will require elucidation of their structures. However, no such structures are available. Therefore, here, I describe the use of protein modeling to build homology models for SecAN and theoretical structures for the core-complex composed of SecAN and the BAM complex, which is a key part of the supercomplex. The modeling data are consistent with previous experimental observations and demonstrated a conformational change of the core-complex. I conclude by proposing mechanisms for how SecAN and the supercomplex function in the biogenesis of OMPs.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/metabolismo , Bacterias Gramnegativas/enzimología , Modelos Químicos , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo , Proteína SecA/química , Proteína SecA/metabolismo , Algoritmos , Secuencias de Aminoácidos/genética , Citoplasma/metabolismo , Mutación , Conformación Proteica en Lámina beta , Multimerización de Proteína , Transporte de Proteínas , Proteína SecA/genética , Transducción de Señal
7.
Microbiol Spectr ; 7(4)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31373268

RESUMEN

In bacteria, the Sec translocase mediates the translocation of proteins into and across the cytoplasmic membrane. It consists of a protein conducting channel SecYEG, the ATP-dependent motor SecA, and the accessory SecDF complex. Here we discuss the function and structure of the Sec translocase.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Canales de Translocación SEC/metabolismo , Proteína SecA/metabolismo , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Transporte de Proteínas , Canales de Translocación SEC/genética , Proteína SecA/genética
8.
mBio ; 10(4)2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409676

RESUMEN

Bacteria execute a variety of protein transport systems for maintaining the proper composition of their different cellular compartments. The SecYEG translocon serves as primary transport channel and is engaged in transporting two different substrate types. Inner membrane proteins are cotranslationally inserted into the membrane after their targeting by the signal recognition particle (SRP). In contrast, secretory proteins are posttranslationally translocated by the ATPase SecA. Recent data indicate that SecA can also bind to ribosomes close to the tunnel exit. We have mapped the interaction of SecA with translating and nontranslating ribosomes and demonstrate that the N terminus and the helical linker domain of SecA bind to an acidic patch on the surface of the ribosomal protein uL23. Intriguingly, both also insert deeply into the ribosomal tunnel to contact the intratunnel loop of uL23, which serves as a nascent chain sensor. This binding pattern is remarkably similar to that of SRP and indicates an identical interaction mode of the two targeting factors with ribosomes. In the presence of a nascent chain, SecA retracts from the tunnel but maintains contact with the surface of uL23. Our data further demonstrate that ribosome and membrane binding of SecA are mutually exclusive, as both events depend on the N terminus of SecA. Our study highlights the enormous plasticity of bacterial protein transport systems and reveals that the discrimination between SRP and SecA substrates is already initiated at the ribosome.IMPORTANCE Bacterial protein transport via the conserved SecYEG translocon is generally classified as either cotranslational, i.e., when transport is coupled to translation, or posttranslational, when translation and transport are separated. We show here that the ATPase SecA, which is considered to bind its substrates posttranslationally, already scans the ribosomal tunnel for potential substrates. In the presence of a nascent chain, SecA retracts from the tunnel but maintains contact with the ribosomal surface. This is remarkably similar to the ribosome-binding mode of the signal recognition particle, which mediates cotranslational transport. Our data reveal a striking plasticity of protein transport pathways, which likely enable bacteria to efficiently recognize and transport a large number of highly different substrates within their short generation time.


Asunto(s)
Ribosomas/metabolismo , Proteína SecA/química , Proteína SecA/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Sitios de Unión , Unión Competitiva , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Imitación Molecular , Mutación , Unión Proteica , Biosíntesis de Proteínas , Transporte de Proteínas , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Proteína SecA/genética
9.
Sci Rep ; 9(1): 11794, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409845

RESUMEN

Helicobacter pylori plays an essential role in the pathogenesis of gastritis, peptic ulcer disease, and gastric cancer. The serine protease HtrA, an important secreted virulence factor, disrupts the gastric epithelium, which enables H. pylori to transmigrate across the epithelium and inject the oncogenic CagA protein into host cells. The function of periplasmic HtrA for the H. pylori cell is unknown, mainly due to unavailability of the htrA mutants. In fact, htrA has been described as an essential gene in this bacterium. We have screened 100 worldwide H. pylori isolates and show that only in the N6 strain it was possible to delete htrA or mutate the htrA gene to produce proteolytically inactive HtrA. We have sequenced the wild-type and mutant chromosomes and we found that inactivation of htrA is associated with mutations in SecA - a component of the Sec translocon apparatus used to translocate proteins from the cytoplasm into the periplasm. The cooperation of SecA and HtrA has been already suggested in Streptococcus pneumonia, in which these two proteins co-localize. Hence, our results pinpointing a potential functional relationship between HtrA and the Sec translocon in H. pylori possibly indicate for the more general mechanism responsible to maintain bacterial periplasmic homeostasis.


Asunto(s)
Proteínas Bacterianas/genética , Infecciones por Helicobacter/genética , Helicobacter pylori/genética , Proteína SecA/genética , Serina Proteasas/genética , Antígenos Bacterianos/genética , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Interacciones Huésped-Patógeno/genética , Humanos , Mutación
10.
Sci Adv ; 5(6): eaav9404, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31206019

RESUMEN

Escherichia coli exports proteins via a translocase comprising SecA and the translocon, SecYEG. Structural changes of active translocases underlie general secretory system function, yet directly visualizing dynamics has been challenging. We imaged active translocases in lipid bilayers as a function of precursor protein species, nucleotide species, and stage of translocation using atomic force microscopy (AFM). Starting from nearly identical initial states, SecA more readily dissociated from SecYEG when engaged with the precursor of outer membrane protein A as compared to the precursor of galactose-binding protein. For the SecA that remained bound to the translocon, the quaternary structure varied with nucleotide, populating SecA2 primarily with adenosine diphosphate (ADP) and adenosine triphosphate, and the SecA monomer with the transition state analog ADP-AlF3. Conformations of translocases exhibited precursor-dependent differences on the AFM imaging time scale. The data, acquired under near-native conditions, suggest that the translocation process varies with precursor species.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Unión al Calcio/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Membrana Dobles de Lípidos/química , Proteínas de Transporte de Monosacáridos/química , Proteínas de Unión Periplasmáticas/química , Precursores de Proteínas/química , Proteína SecA/química , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Membrana Dobles de Lípidos/metabolismo , Microscopía de Fuerza Atómica , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Unión Proteica , Multimerización de Proteína , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Proteolípidos/química , Proteolípidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canales de Translocación SEC/química , Canales de Translocación SEC/genética , Canales de Translocación SEC/metabolismo , Proteína SecA/genética , Proteína SecA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA