Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell Biol Toxicol ; 40(1): 22, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630149

RESUMEN

Uremic encephalopathy (UE) poses a significant challenge in neurology, leading to the need to investigate the involvement of non-coding RNA (ncRNA) in its development. This study employed ncRNA-seq and RNA-seq approaches to identify fundamental ncRNAs, specifically circRNA and miRNA, in the pathogenesis of UE using a mouse model. In vitro and in vivo experiments were conducted to explore the circRNA-PTPN4/miR-301a-3p/FOXO3 axis and its effects on blood-brain barrier (BBB) function and cognitive abilities. The research revealed that circRNA-PTPN4 binds to and inhibits miR-301a-3p, leading to an increase in FOXO3 expression. This upregulation results in alterations in the transcriptional regulation of ZO-1, affecting the permeability of human brain microvascular endothelial cells (HBMECs). The axis also influences the growth, proliferation, and migration of HBMECs. Mice with UE exhibited cognitive deficits, which were reversed by overexpression of circRNA-PTPN4, whereas silencing FOXO3 exacerbated these deficits. Furthermore, the uremic mice showed neuronal loss, inflammation, and dysfunction in the BBB, with the expression of circRNA-PTPN4 demonstrating therapeutic effects. In conclusion, circRNA-PTPN4 plays a role in promoting FOXO3 expression by sequestering miR-301a-3p, ultimately leading to the upregulation of ZO-1 expression and restoration of BBB function in mice with UE. This process contributes to the restoration of cognitive abilities.


Asunto(s)
Barrera Hematoencefálica , Cognición , Proteína Forkhead Box O3 , MicroARNs , ARN Circular , Humanos , Encefalopatías , Células Endoteliales , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , MicroARNs/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 4 , ARN Circular/genética
2.
BMC Med ; 21(1): 377, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775746

RESUMEN

BACKGROUND: Multiple myeloma (MM) is a severely debilitating and fatal B-cell neoplastic disease. The discovery of disease-associated proteins with causal genetic evidence offers a chance to uncover novel therapeutic targets. METHODS: First, we comprehensively investigated the causal association between 2994 proteins and MM through two-sample mendelian randomization (MR) analysis using summary-level data from public genome-wide association studies of plasma proteome (N = 3301 healthy individuals) and MM (598 cases and 180,756 controls). Sensitivity analyses were performed for these identified causal proteins. Furthermore, we pursued the exploration of enriched biological pathways, prioritized the therapeutic proteins, and evaluated their druggability using the KEGG pathway analysis, MR-Bayesian model averaging analysis, and cross-reference with current databases, respectively. RESULTS: We identified 13 proteins causally associated with MM risk (false discovery rate corrected P < 0.05). Six proteins were positively associated with the risk of MM, including nicotinamide phosphoribosyl transferase (NAMPT; OR [95% CI]: 1.35 [1.18, 1.55]), tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE1; 1.14 [1.06, 1.22]), neutrophil cytosol factor 2 (NCF2; 1.27 [1.12, 1.44]), carbonyl reductase 1, cAMP-specific 3',5'-cyclic phosphodiesterase 4D (PDE4D), platelet-activating factor acetylhydrolase IB subunit beta (PAFAH1B2). Seven proteins were inversely associated with MM, which referred to suppressor of cytokine signaling 3 (SOCS3; 0.90 [0.86, 0.94]), Fc-gamma receptor III-B (FCGR3B; 0.75 [0.65,0.86]), glypican-1 (GPC1; 0.69 [0.58,0.83]), follistatin-related protein 1, protein tyrosine phosphatase non-receptor type 4 (PTPN4), granzyme B, complement C1q subcomponent subunit C (C1QC). Three of the causal proteins, SOCS3, FCGR3B, and NCF2, were enriched in the osteoclast differentiation pathway in KEGG enrichment analyses while GPC1 (marginal inclusion probability (MIP):0.993; model averaged causal effects (MACE): - 0.349), NAMPT (MIP:0.433; MACE: - 0.113), and NCF2 (MIP:0.324; MACE:0.066) ranked among the top three MM-associated proteins according to MR-BMA analyses. Furthermore, therapeutics targeting four proteins are currently under evaluation, five are druggable and four are future breakthrough points. CONCLUSIONS: Our analysis revealed a set of 13 novel proteins, including six risk and seven protective proteins, causally linked to MM risk. The discovery of these MM-associated proteins opens up the possibility for identifying novel therapeutic targets, further advancing the integration of genome and proteome data for drug development.


Asunto(s)
Mieloma Múltiple , Proteoma , Humanos , Proteoma/genética , Estudio de Asociación del Genoma Completo , Mieloma Múltiple/genética , Teorema de Bayes , Factores de Riesgo , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Proteína Tirosina Fosfatasa no Receptora Tipo 4/genética
3.
Pancreas ; 52(4): e224-e234, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37747937

RESUMEN

OBJECTIVE: The role E3 ubiquitin ligase membrane-associated RING-CH 8 (MARCH8) has not been studied in pancreatic cancer. METHOD: Pancreatic cancer cell lines and the normal pancreatic cells were tested in vitro studies and male athymic nude mice were tested in vivo studies. Measuring cell viability by Cell Counting Kit-8 assay (CCK8), 5-ethynyl-2'- deoxyuridine (Edu) staining, and colony formation assay. Wound healing assay was implemented for cell migration and Transwell assay was performed for cell invasion to evaluate the histological status by hematoxylin and eosin staining and to detect the protein ubiquitination by ubiquitination assay. The protein expression was determined by immunohistochemistry staining and western blotting, and mRNA expression was measured by quantitative reverse transcription polymerase chain reaction. RESULT: The expression of MARCH8 was increased whereas PTPN4 was decreased in pancreatic cancer cells. Overexpression of MARCH8 promoted the growth, migration, and invasion of cells, and knockdown of PTPN4 had the similar effects both in vitro and in vivo. MARCH8 promoted PTPN4 protein degradation through ubiquitination. Moreover, PTPN4 suppressed the transcription activities of STAT3 by impairing the level of pSTAT3 (705), while inhibition of PTPN4 activated phosphorylation of STAT3. CONCLUSIONS: MARCH8 promoted pancreatic cancer growth and invasion through mediating the degradation of PTPN4 and activated the phosphorylation of STAT3.


Asunto(s)
Neoplasias Pancreáticas , Ubiquitina-Proteína Ligasas , Animales , Masculino , Ratones , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/genética , Ratones Desnudos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Humanos , Factor de Transcripción STAT3/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo
4.
Environ Toxicol ; 38(12): 2952-2966, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37615249

RESUMEN

OBJECTIVE: Circular RNAs (circRNAs), a new subgroup of non-coding RNAs in the human transcriptome, are crucial in atherosclerosis (AS). Here, a newly identified circRNA circDLGAP4 was demonstrated to be downregulated in oxidized forms of low-density lipoprotein (ox-LDL)-induced HUVECs. METHODS: This research adopted ox-LDL to stimulate human umbilical vein endothelial cells (HUVECs) to mimic AS in vitro. To further validate the protective action of circDLGAP4 in AS, a mouse model of AS was constructed with a high-fat diet. Functional assays evaluated circDLGAP4 role in AS in vitro and in vivo. Moreover, mechanism assays evaluated association of circDLGAP4/miR-134-5p/PTPN4. RESULTS: CircDLGAP4 was induced to promote cell proliferative behavior and autophagy, inhibit apoptotic and inflammatory activities in ox-LDL-treated HUVECs, and attenuated endothelial barrier function. CircDLGAP4 regulated PTPN4 by directly targeting miR-134-5p. Meanwhile, inhibiting miR-134-5p reduced ox-LDL-induced cell dysfunction. Knockout of PTPN4 reversed circDLGAP4 overexpression or miR-134-5p downregulation in vitro. In addition, reducing circDLGAP4 or overexpressing miR-134-5p increased the red atherosclerotic plaque and lesion area of AS mice, reduced autophagy level, and promoted the release of inflammatory cytokines. CONCLUSION: This study extends the role of circRNA in AS by inducing autophagy and improving endothelial dysfunction in AS via the circDLGAP4/miR-134-5p/PTPN4 axis.


Asunto(s)
Aterosclerosis , MicroARNs , ARN Circular , Animales , Humanos , Ratones , Apoptosis , Aterosclerosis/genética , Aterosclerosis/patología , Autofagia , Células Endoteliales de la Vena Umbilical Humana/patología , Ratones Noqueados , MicroARNs/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 4 , ARN Circular/genética
5.
Exp Mol Med ; 54(8): 1290-1305, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36042375

RESUMEN

The functional role of microRNA-375 (miR-375) in the development of prostate cancer (PCa) remains controversial. Previously, we found that plasma exosomal miR-375 is significantly elevated in castration-resistant PCa (CRPC) patients compared with castration-sensitive PCa patients. Here, we aimed to determine how miR-375 modulates CRPC progression and thereafter to evaluate the therapeutic potential of human umbilical cord mesenchymal stem cell (hucMSC)-derived exosomes loaded with miR-375 antisense oligonucleotides (e-375i). We used miRNA in situ hybridization technique to evaluate miR-375 expression in PCa tissues, gain- and loss-of-function experiments to determine miR-375 function, and bioinformatic methods, dual-luciferase reporter assay, qPCR, IHC and western blotting to determine and validate the target as well as the effects of miR-375 at the molecular level. Then, e-375i complexes were assessed for their antagonizing effects against miR-375. We found that the expression of miR-375 was elevated in PCa tissues and cancer exosomes, correlating with the Gleason score. Forced expression of miR-375 enhanced the expression of EMT markers and AR but suppressed apoptosis markers, leading to enhanced proliferation, migration, invasion, and enzalutamide resistance and decreased apoptosis of PCa cells. These effects could be reversed by miR-375 silencing. Mechanistically, miR-375 directly interfered with the expression of phosphatase nonreceptor type 4 (PTPN4), which in turn stabilized phosphorylated STAT3. Application of e-375i could inhibit miR-375, upregulate PTPN4 and downregulate p-STAT3, eventually repressing the growth of PCa. Collectively, we identified a novel miR-375 target, PTPN4, that functions upstream of STAT3, and targeting miR-375 may be an alternative therapeutic for PCa, especially for CRPC with high AR levels.


Asunto(s)
MicroARNs , Neoplasias de la Próstata Resistentes a la Castración , Proteína Tirosina Fosfatasa no Receptora Tipo 4 , Factor de Transcripción STAT3 , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/terapia , Proteína Tirosina Fosfatasa no Receptora Tipo 4/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
6.
Curr Opin Neurol ; 35(3): 436-442, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35674087

RESUMEN

PURPOSE OF REVIEW: The aim of this study was to present a new regulation system in the hippocampus constituted by the neuronal surface P antigen (NSPA) and the tyrosine phosphatase PTPMEG/PTPN4, which provides mechanistic and therapeutic possibilities for cognitive dysfunction driven by antiribosomal P protein autoantibodies in patients with systemic lupus erythematosus (SLE). RECENT FINDINGS: Mice models lacking the function of NSPA as an E3 ubiquitin ligase show impaired glutamatergic synaptic plasticity, decreased levels of NMDAR at the postsynaptic density in hippocampus and memory deficits. The levels of PTPMEG/PTPN4 are increased due to lower ubiquitination and proteasomal degradation, resulting in dephosphorylation of tyrosines that control endocytosis in GluN2 NMDAR subunits. Adult hippocampal neurogenesis (AHN) that normally contributes to memory processes is also defective in the absence of NSPA. SUMMARY: NSPA function is crucial in memory processes controlling the stability of NMDAR at PSD through the ubiquitination of PTPMEG/PTPN4 and also through AHN. As anti-P autoantibodies reproduce the impairments of glutamatergic transmission, plasticity and memory performance seen in the absence of NSPA, it might be expected to perturb the NSPA/PTPMEG/PTPN4 pathway leading to hypofunction of NMDAR. This neuropathogenic mechanism contrasts with that of anti-NMDAR antibodies also involved in lupus cognitive dysfunction. Testing this hypothesis might open new therapeutic possibilities for cognitive dysfunction in SLE patients bearing anti-P autoantibodies.


Asunto(s)
Encefalopatías , Lupus Eritematoso Sistémico , Animales , Anticuerpos Antinucleares , Autoanticuerpos , Encéfalo , Encefalopatías/patología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Plasticidad Neuronal , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Receptores de N-Metil-D-Aspartato
7.
J Microbiol ; 60(4): 395-401, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35089587

RESUMEN

High-risk genotypes of human papillomaviruses (HPVs) are directly implicated in various abnormalities associated with cellular hyperproliferation, including cervical cancer. E6 is one of two oncoproteins encoded in the HPV genome, which recruits diverse PSD-95/Dlg/ZO-1 (PDZ) domain-containing human proteins through its C-terminal PDZ-binding motif (PBM) to be degraded by means of the proteasome pathway. Among the three PDZ domain-containing protein tyrosine phosphatases, protein tyrosine phosphatase non-receptor type 3 (PTPN3) and PTPN13 were identified to be recognized by HPV E6 in a PBM-dependent manner. However, whether HPV E6 associates with PTPN4, which also has a PDZ domain and functions as an apoptosis regulator, remains undetermined. Herein, we present structural and biochemical evidence demonstrating the direct interaction between the PBM of HPV16 E6 and the PDZ domain of human PTPN4 for the first time. X-ray crystallographic structure determination and binding measurements using isothermal titration calorimetry demonstrated that hydrophobic interactions in which Leu158 of HPV16 E6 plays a key role and a network of intermolecular hydrogen bonds sustain the complex formation between PTPN4 PDZ and the PBM of HPV16 E6. In addition, it was verified that the corresponding motifs from several other high-risk HPV genotypes, including HPV18, HPV31, HPV33, and HPV45, bind to PTPN4 PDZ with comparable affinities, suggesting that PTPN4 is a common target of various pathogenic HPV genotypes.


Asunto(s)
Alphapapillomavirus , Proteínas Oncogénicas Virales , Papillomaviridae , Proteína Tirosina Fosfatasa no Receptora Tipo 4 , Proteínas Represoras , Alphapapillomavirus/química , Alphapapillomavirus/metabolismo , Humanos , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/metabolismo , Dominios PDZ , Papillomaviridae/metabolismo , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 4/química , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo
8.
Toxicol Appl Pharmacol ; 437: 115892, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35085590

RESUMEN

miR-34a-5p has been reported to be upregulated and function as an oncogene in papillary thyroid cancer (PTC). Crocin, the major chemical constituent of saffron, has been demonstrated to possess anti-tumorigenic activity and decrease miR-34a-5p expression. Thus we hypothesized that crocin exerted anti-PCT effect by downregulating miR-34a-5p. Herein, the hypothetical mechanism underlying the anti-PCT effect of crocin was explored. Cell viability and apoptosis were assessed by CCK-8 and TUNEL assays, respectively. Reactive oxygen species (ROS) level, caspase-3 activity, and LDH release were measured using corresponding commercially available assay kits. Expression of miR-34a-5p and protein tyrosine phosphatase nonreceptor type 4 (PTPN4) was analyzed using qRT-PCR and western blot analyses. Interaction between miR-34a-5p and targets were predicted by Targetscan, starbase, miRDB, microT-CDS, and miRWalk and validated using luciferase reporter assay. Results showed that crocin inhibited the viability and miR-34a-5p expression in papillary thyroid cancer (PTC) cells in a dose-dependent manner. The Venn diagram showed that 10 overlapped targets of miR-34a-5p were identified, among which PTPN4 was the most significantly downregulated target gene in thyroid cancer tissues based on the heat map and bar plot from GSE33630 analysis. Luciferase reporter assay validated the direct interaction between miR-34a-5p and PTPN4. Crocin upregulated PTPN4 by decreasing miR-34a-5p expression in PTC cells. Crocin promoted apoptosis and increased caspase-3 activity and LDH release, which were reversed by ROS scavenger N-acetyl-L-cysteine (NAC), miR-34a overexpression, and PTPN4 silencing. To conclude, crocin promoted ROS-mediated apoptosis of PTC cells by modulating the miR-34a-5p/PTPN4 axis.


Asunto(s)
Apoptosis/efectos de los fármacos , Carotenoides/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cáncer Papilar Tiroideo/tratamiento farmacológico , Neoplasias de la Tiroides/tratamiento farmacológico , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , MicroARNs , Proteína Tirosina Fosfatasa no Receptora Tipo 4/genética , Transcriptoma/efectos de los fármacos
9.
BMC Biol ; 18(1): 164, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33158444

RESUMEN

BACKGROUND: Cognitive dysfunction (CD) is common among patients with the autoimmune disease systemic lupus erythematosus (SLE). Anti-ribosomal P autoantibodies associate with this dysfunction and have neuropathogenic effects that are mediated by cross-reacting with neuronal surface P antigen (NSPA) protein. Elucidating the function of NSPA can then reveal CD pathogenic mechanisms and treatment opportunities. In the brain, NSPA somehow contributes to glutamatergic NMDA receptor (NMDAR) activity in synaptic plasticity and memory. Here we analyze the consequences of NSPA absence in KO mice considering its structural features shared with E3 ubiquitin ligases and the crucial role of ubiquitination in synaptic plasticity. RESULTS: Electrophysiological studies revealed a decreased long-term potentiation in CA3-CA1 and medial perforant pathway-dentate gyrus (MPP-DG) hippocampal circuits, reflecting glutamatergic synaptic plasticity impairment in NSPA-KO mice. The hippocampal dentate gyrus of these mice showed a lower number of Arc-positive cells indicative of decreased synaptic activity and also showed proliferation defects of neural progenitors underlying less adult neurogenesis. All this translates into poor spatial and recognition memory when NSPA is absent. A cell-based assay demonstrated ubiquitination of NSPA as a property of RBR-type E3 ligases, while biochemical analysis of synaptic regions disclosed the tyrosine phosphatase PTPMEG as a potential substrate. Mice lacking NSPA have increased levels of PTPMEG due to its reduced ubiquitination and proteasomal degradation, which correlated with lower levels of GluN2A and GluN2B NMDAR subunits only at postsynaptic densities (PSDs), indicating selective trafficking of these proteins out of PSDs. As both GluN2A and GluN2B interact with PTPMEG, tyrosine (Tyr) dephosphorylation likely drives their endocytic removal from the PSD. Actually, immunoblot analysis showed reduced phosphorylation of the GluN2B endocytic signal Tyr1472 in NSPA-KO mice. CONCLUSIONS: NSPA contributes to hippocampal plasticity and memory processes ensuring appropriate levels of adult neurogenesis and PSD-located NMDAR. PTPMEG qualifies as NSPA ubiquitination substrate that regulates Tyr phosphorylation-dependent NMDAR stability at PSDs. The NSPA/PTPMEG pathway emerges as a new regulator of glutamatergic transmission and plasticity and may provide mechanistic clues and therapeutic opportunities for anti-P-mediated pathogenicity in SLE, a still unmet need.


Asunto(s)
Antígenos de Superficie/genética , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 4/genética , Receptores de N-Metil-D-Aspartato/genética , Animales , Antígenos de Superficie/metabolismo , Masculino , Ratones , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ubiquitinación
10.
Mol Carcinog ; 59(8): 980-988, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32484301

RESUMEN

Nonreceptor protein tyrosine phosphatases (NRPTPs) are reported to be associated with several human cancers, but their roles in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remain unclear. Here, we integrated bioinformatics tools, population association analyses, and biological assays to systematically screen for potentially functional single nucleotide polymorphisms (SNPs) within the 17 NRPTPs genes and evaluate the effects of candidate SNPs on the risk of HCC or persistent HBV infection. A total of 790 HBV-related HCC cases and 1454 cancer-free controls were enrolled. Controls included 711 HBV persistent carriers and 743 spontaneously recovered subjects. Results demonstrated that PTPN4 rs9308777 (odds ratio [OR] = 1.25, 95% confidence interval [CI] = 1.06-1.49, P = .009) and PTPN12 rs350050 (OR = 1.26, 95% CI = 1.10-1.45, P = .001), were significantly associated with HCC risk, but not with persistent HBV infection risk. The cumulative risk effect of these two SNPs was more significantly increased the susceptibility to HCC (OR = 1.27, 95% CI = 1.14-1.41, P = 2.40 × 10-5 ). Subsequent biological assays further revealed the potential pathogenesis that PTPN4 rs9308777 might decrease the gene expression, and PTPN12 rs3750050 might promote cell proliferation by attenuating PTPN12's inhibitory activity on EGFR/ERK pathway. In summary, our integrative study highlights that PTPN4 and PTPN12 are significantly associated with HBV-related HCC risk, but do not influence persistent HBV infection. These findings shed light on the importance of the synergistic effects of regulatory and missense variants on the risk for HCC, and provide data to support personalized cancer medicine in the future.


Asunto(s)
Pueblo Asiatico/genética , Carcinoma Hepatocelular/epidemiología , Virus de la Hepatitis B/aislamiento & purificación , Hepatitis B/complicaciones , Polimorfismo de Nucleótido Simple , Proteína Tirosina Fosfatasa no Receptora Tipo 12/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 4/genética , Biomarcadores de Tumor , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Estudios de Casos y Controles , China/epidemiología , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Hepatitis B/virología , Humanos , Incidencia , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Masculino , Persona de Mediana Edad , Pronóstico , Factores de Riesgo
11.
Oxid Med Cell Longev ; 2019: 1957920, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178952

RESUMEN

BACKGROUND: Activation of cell apoptosis is a major form of cell death during myocardial ischemia/reperfusion injury (I/RI). Therefore, examining ways to control cell apoptosis has important clinical significance for improving postischemic recovery. Clinical evidence demonstrated that miR-181c-5p was significantly upregulated in the early phase of myocardial infarction. However, whether or not miR-181c-5p mediates cardiac I/RI through cell apoptosis pathway is unknown. Thus, the present study is aimed at investigating the role and the possible mechanism of miR-181c-5p in apoptosis during I/R injury by using H9C2 cardiomyocytes. METHODS AND RESULTS: The rat origin H9C2 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R, 6 hours hypoxia followed by 6 hours reoxygenation) to induce cell injury. The results showed that H/R significantly increased the expression of miR-181c-5p but not miR-181c-3p in H9C2 cells. In line with this, in an in vivo rat cardiac I/RI model, miR-181c-5p expression was also significantly increased. The overexpression of miR-181c-5p by its agomir transfection significantly aggravated H/R-induced cell injury (increased lactate dehydrogenase level and reduced cell viability) and exacerbated H/R-induced cell apoptosis (greater cleaved caspases 3 expression, Bax/Bcl-2 and more TUNEL-positive cells). In contrast, inhibition of miR-181c-5p in vitro had the opposite effect. By using computational prediction algorithms, protein tyrosine phosphatase nonreceptor type 4 (PTPN4) was predicted as a potential target gene of miR-181c-5p and was verified by the luciferase reporter assay. The overexpression of miR-181c-5p significantly attenuated the mRNA and protein expression of PTPN4 in H9C2 cardiomyocytes. Moreover, knockdown of PTPN4 significantly aggravated H/R-induced enhancement of LDH level, cleaved caspase 3 expression, and apoptotic cell death, which mimicked the proapoptotic effects of miR-181c-5p in H9C2 cardiomyocytes. CONCLUSIONS: These findings suggested that miR-181c-5p exacerbates H/R-induced cardiomyocyte injury and apoptosis via targeting PTPN4 and that miR-181c-5p/PTPN4 signaling may yield novel strategies to combat myocardial I/R injury.


Asunto(s)
Hipoxia de la Célula/fisiología , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Animales , Apoptosis/fisiología , Masculino , MicroARNs/genética , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 4/genética , Ratas , Ratas Sprague-Dawley , Transfección
12.
Cancer Sci ; 110(7): 2258-2272, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31025789

RESUMEN

Colorectal cancer (CRC) is one of the most common types of malignant tumor. Many genetic factors have been proved to show high association with the occurrence and development of CRC and many mutations are detected in CRC. PTPN4/PTP-MEG1 is a widely expressed non-receptor protein tyrosine phosphatase. Over the past three decades, PTPN4 has been demonstrated in the literature to participate in many biological processes. In this study, we identified a nonsense mutation of PTPN4 with a mutation ratio of 90.90% from 1 case of rectal cancer, leading to loss of function in PTPN4 gene. Several somatic mutations occurred in 5/137 rectal cancer samples from The Cancer Genome Atlas Rectum Adenocarcinoma (TCGA READ) database. Interestingly, we found that PTPN4 negative cytoplasm staining was more prone to lymphatic metastasis (N = 50, P = 0.0153) and low expression of PTPN4 in rectal cancer was highly associated with poor prognosis. Overexpression of PTPN4 suppressed the cell growth, and moreover, the loss of PTPN4 accelerated cell growth and boosted clonogenicity of CRC cells. Furthermore, we revealed that the deletion of PTPN4 promoted the tumor formation of NCM460 cells in vivo. In terms of the molecular mechanism, we demonstrated that PTPN4 dephosphorylates pSTAT3 at the Tyr705 residue with a direct interaction and suppresses the transcriptional activity of STAT3. In summary, our study revealed a novel mechanism that the tumorigenesis of colorectal cancer might be caused by the loss of PTPN4 through activating STAT3, which will broaden the therapy strategy for anti-rectal cancer in the future.


Asunto(s)
Neoplasias Colorrectales/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 4/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Factor de Transcripción STAT3/química , Factor de Transcripción STAT3/genética , Anciano , Animales , Línea Celular Tumoral , Proliferación Celular , Codón sin Sentido , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Metástasis Linfática , Masculino , Ratones , Persona de Mediana Edad , Fosforilación , Pronóstico , Análisis de Supervivencia , Tirosina
13.
Environ Sci Pollut Res Int ; 26(8): 8312-8324, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30706274

RESUMEN

Protein tyrosine phosphatase (PTPs) and protein tyrosine kinase (PTKs) genes are responsible for the regulation of insect insulin-like pathway (ILP), cells growth, metabolism initiation, gene transcription and observing immune response. Signal transduction in insect cell is also associated with PTPs and PTKs. The grasshopper (Oedaleus asiaticus) 'Bey-Bienko' were treated with dsRNA of protein tyrosine non-receptor type 4 (PTPN4) and protein tyrosine kinase 5 (PTK5) along with control (water). Applying dsPTK5 treatments in 5th instar of Oedaleus asiaticus, significant reduction was recorded in body dry mass, growth rate and overall performance except survival rate. Whereas with PTPN4, no such significant impact on all of these growth parameters was recorded. Expression of genes in ILP 5th instar of Oedaleus asiaticus by the application of dsPTPN4 and dsPTK5 revealed that PTK, INSR (insulin receptor), IRS (insulin receptor substrate), PI3K (phosphoinositide 3-kinase), PDK (3-phosphoinositide-dependent protein kinase), Akt (protein kinase B) and FOXO (forkhead transcription factor) significantly expressed with downregulation except PTPN4, which remained non-significant. On the other hand, the phosphorylation level of ILP four proteins in O. asiaticus with the treatment of dsPTPN4 and dsPTK5 significantly affected P-IRS and P-FOXO, while P-INSR and P-AKT remained stable at the probability level of 5%. This indicated that the stress response in the O. asiaticus insulin-like signalling pathway (ILP) reduced. Regarding association of protective enzymatic activities, ROS (relative oxygen species), CAT (catalase) and PO (phenol oxidase) increased significantly with exposure to dsPTK5 as compared to dsPTPN4 and control, while exposure of 5th instar of O. asiaticus to dsPTPN4 treatment slightly raised CAT and PO activities with but significant contribution. No such significant effect on MFO and POD was seen using dsPTPN4 and dsPTK5. This showed that in the ILP of O. asiaticus, PTK5 was detrimental to growth, body mass and overall performance, which ultimately benefited insect detoxification with high-energy cost.


Asunto(s)
Saltamontes/crecimiento & desarrollo , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Saltamontes/genética , Saltamontes/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insulina/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 4/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal
14.
Clin Genet ; 94(6): 581-585, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30238967

RESUMEN

Protein tyrosine phosphatase non-receptor type 4 (PTPN4) encodes non-receptor protein tyrosine phosphatase implicated in synaptic plasticity and innate immune response. The only report of PTPN4-associated disease described a neurodevelopmental disorder associated with a whole gene deletion. We describe a child with developmental delay, autistic features, hypotonia, increased immunoglobulin E and dental problems with a novel mosaic de novo variant in PTPN4 (hg19 chr2:g.120620188 T > C, NM_002830.3:p.[Leu72Ser]/c.215T>C) located in domain that controls protein subcellular distribution. Studies in mouse hippocampal neurons transfected with non-mutated or mutated human PTPN4 showed that despite their similar expression in neurons the mutated protein was absent from dendritic spines. Next, we studied patient's primary blood mononuclear cells' response to lipopolysaccharide stimulation and found no difference from control in phosphorylation of TBK1 and IRF3 (involved in Toll-like receptor 4 signaling) and induction of cytokines' messenger RNA. We conclude that the PTPN4 p.(Leu72Ser) variant is a likely cause of neurodevelopmental symptoms of our proband whereas its role in immune dysfunction requires further studies.


Asunto(s)
Espinas Dendríticas/metabolismo , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Neuronas/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , Proteína Tirosina Fosfatasa no Receptora Tipo 4/genética , Alelos , Biomarcadores , Técnica del Anticuerpo Fluorescente , Genes Reporteros , Humanos , Inmunohistoquímica , Masculino , Trastornos del Neurodesarrollo/metabolismo , Transporte de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Secuenciación del Exoma
15.
Int Heart J ; 59(4): 829-836, 2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-29877301

RESUMEN

MicroRNAs, a class of small and non-encoding RNAs that transcriptionally or post-transcriptionally modulate the expression of their target genes, have been implicated as critical regulatory molecules in ischemia-/reperfusion-induced cardiac injury. In the present study, we report on the role of miR-208a in myocardial I/R injury and the underlying cardio-protective mechanism. The gain-of-function and loss-of-function were used to explore the effects of miR-208a on cardiac injury induced by H2O2 in cardiomyocytes. As predicted, knockdown of endogenous miR-208a significantly decreased the level of cellular reactive oxygen species (ROS) and reduced cardiomyocyte apoptosis. In addition, miR-208a overexpression increased the ROS level and attenuated cell apoptosis in cardiomyocytes. Furthermore, protein tyrosine phosphatase receptor type G (PTPRG) and protein tyrosine phosphatase, non-receptor type 4 (PTPN4), which participate in regulating the level of cellular protein tyrosine phosphorylation balance, were predicted and verified as potential miR-208a targets using bioinformatics and luciferase assay. In summary, this study demonstrated that miR-208a plays a critical protective role in ROS-induced cardiac apoptosis.


Asunto(s)
MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Animales , Apoptosis , Técnicas de Silenciamiento del Gen , Peróxido de Hidrógeno/metabolismo , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Proteínas Tirosina Quinasas/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo
16.
Bioinformatics ; 34(3): 477-484, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29028926

RESUMEN

Motivation: Protein-peptide interactions are one of the most important biological interactions and play crucial role in many diseases including cancer. Therefore, knowledge of these interactions provides invaluable insights into all cellular processes, functional mechanisms, and drug discovery. Protein-peptide interactions can be analyzed by studying the structures of protein-peptide complexes. However, only a small portion has known complex structures and experimental determination of protein-peptide interaction is costly and inefficient. Thus, predicting peptide-binding sites computationally will be useful to improve efficiency and cost effectiveness of experimental studies. Here, we established a machine learning method called SPRINT-Str (Structure-based prediction of protein-Peptide Residue-level Interaction) to use structural information for predicting protein-peptide binding residues. These predicted binding residues are then employed to infer the peptide-binding site by a clustering algorithm. Results: SPRINT-Str achieves robust and consistent results for prediction of protein-peptide binding regions in terms of residues and sites. Matthews' Correlation Coefficient (MCC) for 10-fold cross validation and independent test set are 0.27 and 0.293, respectively, as well as 0.775 and 0.782, respectively for area under the curve. The prediction outperforms other state-of-the-art methods, including our previously developed sequence-based method. A further spatial neighbor clustering of predicted binding residues leads to prediction of binding sites at 20-116% higher coverage than the next best method at all precision levels in the test set. The application of SPRINT-Str to protein binding with DNA, RNA and carbohydrate confirms the method's capability of separating peptide-binding sites from other functional sites. More importantly, similar performance in prediction of binding residues and sites is obtained when experimentally determined structures are replaced by unbound structures or quality model structures built from homologs, indicating its wide applicability. Availability and implementation: http://sparks-lab.org/server/SPRINT-Str. Contact: yangyd25@mail.sysu.edu.cn. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Aprendizaje Automático , Péptidos/metabolismo , Proteínas/metabolismo , Análisis de Secuencia de Proteína/métodos , Biología Computacional/métodos , Humanos , Péptidos/química , Unión Proteica , Dominios Proteicos , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Proteínas/química
17.
Sci Rep ; 7(1): 7875, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28801650

RESUMEN

Human protein tyrosine phosphatase non-receptor type 4 (PTPN4) has been shown to prevent cell death. The active form of human PTPN4 consists of two globular domains, a PDZ (PSD-95/Dlg/ZO-1) domain and a phosphatase domain, tethered by a flexible linker. Targeting its PDZ domain abrogates this protection and triggers apoptosis. We previously demonstrated that the PDZ domain inhibits the phosphatase activity of PTPN4 and that the mere binding of a PDZ ligand is sufficient to release the catalytic inhibition. We demonstrate here that the linker connecting the PDZ domain and the phosphatase domain is involved in the regulation of the phosphatase activity in both PDZ-related inhibition and PDZ ligand-related activation events. We combined bioinformatics and kinetic studies to decipher the role of the linker in the PTPN4 activity. By comparing orthologous sequences, we identified a conserved patch of hydrophobic residues in the linker. We showed that mutations in this patch affect the regulation of the PTPN4 bidomain indicating that the PDZ-PDZ ligand regulation of PTPN4 is a linker-mediated mechanism. However, the mutations do not alter the binding of the PDZ ligand. This study strengthens the notion that inter-domain linker can be of functional importance in enzyme regulation of large multi-domain proteins.


Asunto(s)
Mutación , Dominios PDZ/genética , Monoéster Fosfórico Hidrolasas/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 4/genética , Regulación Alostérica/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , Biocatálisis , Humanos , Cinética , Ligandos , Monoéster Fosfórico Hidrolasas/metabolismo , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Proteolisis , Homología de Secuencia de Aminoácido
18.
Comput Biol Chem ; 66: 63-68, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27923202

RESUMEN

The PTP non-receptor type 4 (PTPN4) is an important regulator protein in learning, spatial memory and cerebellar synaptic plasticity; targeting the PDZ domain of PTPN4 has become as attractive therapeutic strategy for human neuroglioma. Here, we systematically examined the complex crystal structures of PTPN4 PDZ domain with its known peptide ligands; a number of charged amino acid residues were identified in these ligands and in the peptide-binding pocket of PDZ domain, which can constitute a complicated salt-bridge network across the complex interface. Molecular dynamics (MD) simulations, binding free energy calculations and continuum model analysis revealed that the electrostatic effect plays a predominant role in domain-peptide binding, while other noncovalent interactions such as hydrogen bonds and hydrophobic forces are also responsible for the binding. The computational findings were then used to guide structure-based optimization of the interfacial salt-bridge network. Consequently, five peptides were rationally designed using the high-affinity binder Cyto8-RETEV (RETEV-COOH) as template, including four single-point mutants (i.e. Cyto8-mtxe0: RETEE-COOH, Cyto8-mtxd-1: RETDV-COOH, Cyto8-mtxd-3: RDTEV-COOH and Cyto8-mtxk-4: KETEV-COOH) and one double-point mutant (i.e. Cyto8-mtxd-1k-4: KETDV-COOH). Binding assays confirmed that three (Cyto8-mtxd-1, Cyto8-mtxk-4 and Cyto8-mtxd-1k-4) out of the five designed peptides exhibit moderately or considerably increased affinity as compared to the native peptide Cyto8-RETEV.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Péptidos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Neoplasias Encefálicas/patología , Glioma/patología , Ligandos , Modelos Moleculares , Dominios PDZ , Péptidos/química , Conformación Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 4/química , Electricidad Estática , Termodinámica
19.
J Biol Chem ; 291(32): 16699-708, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27246854

RESUMEN

The human protein tyrosine phosphatase non-receptor type 4 (PTPN4) prevents cell death induction in neuroblastoma and glioblastoma cell lines in a PDZ·PDZ binding motifs-dependent manner, but the cellular partners of PTPN4 involved in cell protection are unknown. Here, we described the mitogen-activated protein kinase p38γ as a cellular partner of PTPN4. The main contribution to the p38γ·PTPN4 complex formation is the tight interaction between the C terminus of p38γ and the PDZ domain of PTPN4. We solved the crystal structure of the PDZ domain of PTPN4 bound to the p38γ C terminus. We identified the molecular basis of recognition of the C-terminal sequence of p38γ that displays the highest affinity among all endogenous partners of PTPN4. We showed that the p38γ C terminus is also an efficient inducer of cell death after its intracellular delivery. In addition to recruiting the kinase, the binding of the C-terminal sequence of p38γ to PTPN4 abolishes the catalytic autoinhibition of PTPN4 and thus activates the phosphatase, which can efficiently dephosphorylate the activation loop of p38γ. We presume that the p38γ·PTPN4 interaction promotes cellular signaling, preventing cell death induction.


Asunto(s)
Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Complejos Multienzimáticos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Transducción de Señal/fisiología , Muerte Celular , Línea Celular Tumoral , Humanos , Proteína Quinasa 12 Activada por Mitógenos/genética , Complejos Multienzimáticos/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 4/genética
20.
Tumour Biol ; 37(8): 11289-97, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26951513

RESUMEN

Non-small cell lung cancer (NSCLC) is the most common cancer worldwide and is a leading cause of lung cancer mortality due to early stage metastases. Cancer stem-like cells (CSLCs) or tumor-initiating cells (TICs) are rare subpopulation cells that are responsible for maintaining tumor growth and invasion leading to recurrence and metastasis. Previous studies revealed that miR-183 can mediate the invasiveness and growth of NSCLC. However, the exact role of miR-183 in regulating the biological behavior of CSLCs in NSCLC remains unclear. In the present study, we explored the regulation of protein tyrosine phosphatase non-receptor type 4 (PTPN4) by miR-183 in vitro using luciferase reporter assays, and we further analyzed the effects of miR-183 on the invasiveness of CSLCs in vitro and in vivo using transwell and bioluminescence assays. Following our finding that miR-183 binds to PTPN4 messenger RNA (mRNA) to prevent its translation through the 3'-untranslated region (UTR), we found that overexpression of miR-183 in CSLCs decreased PTPN4 protein levels while inhibition of miR-183 increased PTPN4 protein levels. The suppression of PTPN4 levels in CSLCs by miR-183 paralleled with a significant promotion in their motility in vitro and in vivo, while anti-sense miR-183 increased PTPN4 levels in CSLCs, which paralleled with a significant decrease in their invasiveness. Furthermore, correlation analysis between miR-183 and PTPN4 in clinical samples demonstrated a statistically significant inverse correlation between PTPN4 mRNA levels and miR-183. In brief, our data indicate that miR-183 plays a pro-invasive role by inverse regulation of PTPN4, and this axis may be a new therapeutic target for suppressing the metastatic capability of CSLCs in NSCLC.


Asunto(s)
Adenocarcinoma/patología , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pulmonares/patología , MicroARNs/genética , Invasividad Neoplásica/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 4/biosíntesis , Antígeno AC133 , Adenocarcinoma/genética , Adenocarcinoma del Pulmón , Animales , Western Blotting , Línea Celular Tumoral , Movimiento Celular , Molécula de Adhesión Celular Epitelial , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Xenoinjertos , Humanos , Neoplasias Pulmonares/genética , Ratones , Ratones Desnudos , MicroARNs/metabolismo , Células Madre Neoplásicas/patología , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...