Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Cell Commun Signal ; 22(1): 229, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622714

RESUMEN

The ß-catenin dependent canonical Wnt signaling pathway plays a crucial role in maintaining normal homeostasis. However, when dysregulated, Wnt signaling is closely associated with various pathological conditions, including inflammation and different types of cancer.Here, we show a new connection between the leukocyte inflammatory response and the Wnt signaling pathway. Specifically, we demonstrate that circulating human primary monocytes express distinct Wnt signaling components and are susceptible to stimulation by the classical Wnt ligand-Wnt-3a. Although this stimulation increased the levels of ß-catenin protein, the expression of the classical Wnt-target genes was not affected. Intriguingly, treating circulating human monocytes with Wnt-3a induces the secretion of cytokines and chemokines, enhancing monocyte migration. Mechanistically, the enhanced monocyte migration in response to Wnt stimuli is mediated through CCL2, a strong monocyte-chemoattractant.To further explore the physiological relevance of these findings, we conducted ex-vivo experiments using blood samples of patients with rheumatic joint diseases (RJD) - conditions where monocytes are known to be dysfunctional. Wnt-3a generated a unique cytokine expression profile, which was significantly distinct from that observed in monocytes obtained from healthy donors.Thus, our results provide the first evidence that Wnt-3a may serve as a potent stimulator of monocyte-driven immune processes. These findings contribute to our understanding of inflammatory diseases and, more importantly, shed light on the role of a core signaling pathway in the circulation.


Asunto(s)
Monocitos , Vía de Señalización Wnt , Humanos , Monocitos/metabolismo , Proteína Wnt3A/genética , Movimiento Celular , Quimiocinas , beta Catenina/metabolismo
2.
Cell Signal ; 113: 110938, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871667

RESUMEN

PURPOSE: The role of Wnt signaling in oncogenesis and drug resistance is well known. Receptor-interacting protein kinase (RIPK4) contributing to the increased activity of many signaling pathways, including Wnt/ß-catenin, may be an important target for designing new drugs for metastatic melanoma, but its role in melanoma is not fully understood. METHODS: We tested the effect of genetic manipulation of RIPK4 (CRISPR/Cas9) on xenograft growth. In addition, immunohistochemistry was used to detect active ß-catenin, Ki67 and necrosis in xenografts. Wnt signaling pathway activity was examined using Western blot and Top-Flash. The effect of RIPK4 knockout on melanoma cells in vitro stimulated Wnt3A on wound overgrowth, migration and invasion ability was then evaluated. RESULTS: Our study showed that CRISPR/Cas9-mediated RIPK4 knockout (KO) significantly reduced tumor growth in a mouse model of melanoma, particularly of WM266.4 cells. RIPK4 KO tumors exhibited lower percentages of Ki67+ cells as well as reduced necrotic area and decreased levels of active ß-catenin. In addition, we observed that RIPK4 knockout impaired Wnt3A-induced activation of LRP6 and ß-catenin, as manifested by a decrease in the transcriptional activity of ß-catenin in Top-Flash in both tested melanoma cell lines, A375 and WM266.4. Prolonged incubation (48 h) with Wnt3A showed reduced level of MMP9, C-myc, and increased SOX10, proteins whose transcription is also dependent on ß-catenin activity. Moreover, RIPK4 knockout led to the inhibition of scratch overgrowth, migration and invasion of these cells compared to their controls. CONCLUSION: RIPK4 knockdown inhibits melanoma tumor growth and Wnt3A stimulated migration and invasion indicating that RIPK4 might be a potential target for melanoma therapy.


Asunto(s)
Melanoma , Vía de Señalización Wnt , Animales , Humanos , Ratones , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Melanoma/patología , Proteína Wnt3A/genética
3.
J Clin Invest ; 133(13)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37395277

RESUMEN

Some studies suggest that the trace element selenium protects against colorectal cancer (CRC). However, the contribution of selenoprotein P (SELENOP), a unique selenocysteine-containing protein, to sporadic colorectal carcinogenesis challenges this paradigm. SELENOP is predominately secreted by the liver but is also expressed in various cells of the small intestine and colon in mice and humans. In this issue of the JCI, Pilat et al. demonstrate that increased SELENOP expression promoted the progression of conventional adenomas to carcinoma. SELENOP functioned as a modulator of canonical WNT signaling activity through interactions with WNT3A and its coreceptor LDL receptor-related protein 5/6 (LRP5/6). Secreted SELENOP formed a concentration gradient along the gut crypt axis, which might amplify WNT signaling activity by binding to LRPL5/6. The mechanism for WNT control via SELENOP may affect colorectal tumorigenesis and provide therapeutic targets for CRC.


Asunto(s)
Neoplasias Colorrectales , Selenio , Humanos , Ratones , Animales , Selenoproteína P/genética , Selenoproteína P/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Hígado/metabolismo , Transformación Celular Neoplásica/metabolismo , Selenio/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
4.
Mol Med Rep ; 27(6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37203400

RESUMEN

Oral cancer is one of the leading causes of death worldwide, with a reported 5­year survival rate of ~50% after treatment. The treatment measures for oral cancer are very expensive and affordability is low. Thus, it is necessary to develop more effective therapies to treat oral cancer. A number of studies have found that miRNAs are invasive biomarkers and have therapeutic potential in a variety of cancers. The present study included 30 oral patients and 30 healthy controls. Clinicopathological characteristic and miR­216a­3p/ß­catenin expression level of 30 oral cancer patients were analyzed. In addition, two oral cancer cell lines (HSC­6 and CAL­27) were used for mechanism­of­action study. The expression level of miR­216a­3p was higher in oral cancer patients compared with healthy controls and positively associated with tumor stage. Inhibition of miR­216a­3p potently suppressed cell viability and induced apoptosis of oral cancer cells. It was found that effects of miR­216a­3p on oral cancer were through Wnt3a signaling. It was also found that the expression level of ß­catenin was higher in oral cancer patients compared with healthy controls and positively associated with tumor stage; the effects of miR­216a­3p on oral cancer were through ß­catenin. In conclusion, miR­216a­3p and the Wnt­ß­catenin signaling pathway may be interesting candidates to develop effective therapies for oral cancers.


Asunto(s)
MicroARNs , Neoplasias de la Boca , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias de la Boca/genética , Vía de Señalización Wnt , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
5.
Sci Rep ; 13(1): 5820, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037887

RESUMEN

The injury of vascular endothelial cells is a crucial factor in the development of diabetic retinopathy (DR). PDLIM1 (a member of the PDZ and LIM protein family) has been reported to exert an essential function in vascular diseases. This study aimed to elucidate the role of PDLIM1 on retinal vascular endothelial cells in DR. Immunofluorescence staining was used to localize the expression of PDLIM1 in the mouse retina. In some tumor diseases, PDLIM1 has been reported to play a key role in regulating the Wnt pathway. However, no in-depth reports have been found in DR. Retinal capillary endothelial cells (RCECs) were treated with high-glucose and high-lipid (HG/HL) culture medium, and siRNA transfection to investigate the role of PDLIM1 in DR. PDLIM1 and Wnt3a expression was confirmed by qRT-PCR and western blotting. Flow cytometry, Transwell assay, and scratch assay were used to test the ability of cell apoptosis, migration, and invasion. PDLIM1 was mainly expressed in the retinal pigment epithelium (RPE), ganglion cell layer (GCL), inner plexus layer (IPL), and outer plexus layer (OPL). HG/HL increased Wnt3a levels and promoted cell's ability of apoptosis, migration, and invasion, which were reversed by the knockdown of PDLIM1. PDLIM1 was found to play a protective role in diabetic retinopathy by counter-regulating Wnt3a. PDLIM1 ameliorates cell apoptosis, migration, and invasion by negatively regulating Wnt3a in RCECs of DR, which suggests that PDLIM1 might be a promising therapeutic target for DR treatment.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Proteínas con Dominio LIM , Proteína Wnt3A , Animales , Ratones , Movimiento Celular , Diabetes Mellitus/metabolismo , Retinopatía Diabética/patología , Células Endoteliales/metabolismo , Procesos Neoplásicos , Retina/patología , Proteínas con Dominio LIM/genética , Proteína Wnt3A/genética
6.
Perfusion ; 38(4): 706-716, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35410528

RESUMEN

OBJECTIVE: LncRNAs show great potential in diagnosing and treating myocardial infarction (MI). Clarifying the mechanism of lncRNAs on MI is of great significance for the application of MI biomarkers. Therefore, this report intended to determine the role and mechanism of LINC00936 on MI by biological and imaging methods. METHODS: Hypoxia H9C2 model was established by hypoxia treatment. Flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assay detected the apoptosis of H9C2. H2DCFDA staining and enzyme-linked immunosorbent assay (ELISA) was used to detect the reactive oxygen species (ROS) accumulation and Lactate dehydrogenase (LDH) contents, respectively. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect LINC00936, Wnt3a and miR-4795-3p levels. Western blot detected Wnt3a protein expression. Dual luciferase reporter assays detected the relationship of miR-4795-3p to LINC00936 or Wnt3a. Echocardiography analysis detected cardiac function. 2,3,5-Triphenyltetrazolium chloride (TTC) detected the infarct size. Masson staining detected the pathological changes. RESULTS: LINC00936 level was elevated in the MI patients compared with the controls. Overexpression of LINC00936 promoted apoptosis and ROS accumulation in hypoxia H9C2 model and exacerbated MI progression in vivo. miR-4795-3p bound with LINC00936 in H9C2 cells and miR-4795-3p mimics inhibited apoptosis and ROS accumulation in hypoxia H9C2 model regulated by LINC00936. Wnt3a was targeted by miR-4795-3p and Wnt3a elevation promoted apoptosis and ROS accumulation in hypoxia H9C2 model. CONCLUSION: In this report, we illustrated that LINC00936 exacerbated MI progression via the miR-4795-3p/Wnt3a signaling pathway based on biological and imaging methods. These findings might provide potential molecular target for the diagnosis and treatment of MI.


Asunto(s)
MicroARNs , Infarto del Miocardio , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Especies Reactivas de Oxígeno/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transducción de Señal , Apoptosis , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/genética , Hipoxia , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
7.
Front Immunol ; 13: 1011700, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569862

RESUMEN

The present study was performed to evaluate the association of WNT signaling pathway genes variants with pulmonary tuberculosis (PTB) risk in Chinese Han population. Our study subjects were composed of 452 PTB patients and 465 normal controls, and seventeen SNPs of seven genes in WNT signaling pathway (SFRP1, WNT3A, CTNNB1, WIF-1, DKK-1, LRP5, LRP6) were genotyped by SNPscan technique. We found no significant relationship of SFRP1 rs10088390, rs4736958, rs3242, WNT3A rs752107, rs3121310, CTNNB1 rs2293303, rs1798802, rs4135385, WIF-1 rs1026024, rs3782499, DKK-1 rs2241529, rs1569198, LRP5 rs3736228, rs556442, LRP6 rs2302685, rs11054697, rs10743980 polymorphisms with PTB susceptibility. While, WIF-1 rs3782499 variant was associated with susceptibility to PTB under recessive model, and haplotype analysis showed that DKK-1 GA haplotype frequency was significantly increased in PTB patients. The WNT3A rs3121310, CTNNB1 rs2293303 polymorphisms were respectively associated with drug-induced liver injury (DILI), sputum smear-positive in PTB patients. The rs3782499 in WIF-1 gene was related to fever, leukopenia, and the rs1569198 in DKK-1 was linked to sputum smear-positive in PTB patients. In LRP5 gene, rs3736228, rs556442 variants respectively affected the occurrence of DILI, fever, and LRP6 gene rs2302685, rs10743980 variants respectively influenced the development of hypoproteinemia, sputum smear-positive in PTB patients. Our results revealed that WNT signaling pathway genes variation were not associated with the susceptibility to PTB, while WNT3A, CTNNB1, WIF-1, DKK-1, LRP5, LRP6 genetic variations might be closely related to the occurrence of several clinical characteristics of PTB patients.


Asunto(s)
Tuberculosis Pulmonar , Vía de Señalización Wnt , Humanos , Vía de Señalización Wnt/genética , Relevancia Clínica , Pueblos del Este de Asia , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Tuberculosis Pulmonar/genética , Proteínas de la Membrana/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , beta Catenina/metabolismo , Proteína Wnt3A/genética
8.
Oxid Med Cell Longev ; 2022: 9042345, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388171

RESUMEN

Both hair follicle stem cells (HFSC) and dermal papilla cells (DPC) are essential for hair follicle growth and proliferation. In this study, HFSCs and DPCs that made signature proteins like KRT14, KRT15, KRT19, α-SMA, and Versican were obtained. Cell coculture systems between HFSCs and DPCs were used to measure the increased PCNA protein content in HFSCs. Additionally, exosomes from dermal papilla cells (DPC-Exos), the overexpression and silencing of Wnt3a, could regulate the Wnt/ß-catenin signaling pathway downstream genes. After collecting DPC-ExosOE-Wnt3a, the treatment of HFSC with DPC-ExosOE-Wnt3a showed that DPC-ExosOE-Wnt3a could upregulate the mRNA expression of downstream genes in the Wnt/ß-catenin signaling pathway and that DPC-ExosOE-Wnt3a enhanced the proliferation of HFSCs while inhibiting their apoptosis. These findings suggest that DPC-Exos could regulate HFSC cell proliferation via the Wnt3a/ß-catenin signaling pathway. This research offers novel concepts for the molecular breeding and efficient production of Angora rabbits, as well as for the treatment of human hair problems.


Asunto(s)
Exosomas , beta Catenina , Animales , Humanos , Conejos , beta Catenina/metabolismo , Folículo Piloso , Exosomas/metabolismo , Vía de Señalización Wnt , Proliferación Celular , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
9.
Development ; 149(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34910127

RESUMEN

Although Wnt signaling is clearly important for the intestinal epithelial homeostasis, the relevance of various sources of Wnt ligands themselves remains incompletely understood. Blocking the release of Wnt in distinct stromal cell types suggests obligatory functions of several stromal cell sources and yields different observations. The physiological contribution of epithelial Wnt to tissue homeostasis remains unclear. We show here that blocking epithelial Wnts affects colonic Reg4+ epithelial cell differentiation and impairs colonic epithelial regeneration after injury in mice. Single-cell RNA analysis of intestinal stroma showed that the majority of Wnt-producing cells were contained in transgelin (Tagln+) and smooth muscle actin α2 (Acta2+) expressing populations. We genetically attenuated Wnt production from these stromal cells using Tagln-Cre and Acta2-CreER drivers, and found that blockage of Wnt release from either epithelium or Tagln+ and Acta2+ stromal cells impaired colonic epithelial healing after chemical-induced injury. Aggregated blockage of Wnt release from both epithelium and Tagln+ or Acta2+ stromal cells drastically diminished epithelial repair, increasing morbidity and mortality. These results from two uncharacterized stromal populations suggested that colonic recovery from colitis-like injury depends on multiple Wnt-producing sources.


Asunto(s)
Actinas/metabolismo , Colitis Ulcerosa/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Proteína Wnt3A/metabolismo , Cicatrización de Heridas , Actinas/genética , Animales , Células Cultivadas , Colon/citología , Colon/metabolismo , Colon/fisiología , Mucosa Intestinal/citología , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas Musculares/genética , Proteínas Asociadas a Pancreatitis/genética , Proteínas Asociadas a Pancreatitis/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/metabolismo , Proteína Wnt3A/genética
10.
Lancet Oncol ; 23(1): 161-171, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34902334

RESUMEN

BACKGROUND: Hepatocellular carcinoma is a frequent consequence of alcohol-related liver disease, with variable incidence among heavy drinkers. We did a genome-wide association study (GWAS) to identify common genetic variants for alcohol-related hepatocellular carcinoma. METHODS: We conducted a two-stage case-control GWAS in a discovery cohort of 2107 unrelated European patients with alcohol-related liver disease aged 20-92 years recruited between Oct 22, 1993, and March 12, 2017. Cases were patients with alcohol-related hepatocellular carcinoma diagnosed by imaging or histology. Controls were patients with alcohol-related liver disease without hepatocellular carcinoma. We used an additive logistic regression model adjusted for the first ten principal components to assess genetic variants associated with alcohol-related hepatocellular carcinoma. We did another analysis with adjustment for age, sex, and liver fibrosis. New candidate associations (p<1 × 10-6) and variants previously associated with alcohol-related hepatocellular carcinoma were evaluated in a validation cohort of 1933 patients with alcohol-related liver disease aged 29-92 years recruited between July 21, 1995, and May 2, 2019. We did a meta-analysis of the two case-control cohorts. FINDINGS: The discovery cohort included 775 cases and 1332 controls. Of 7 962 325 variants assessed, we identified WNT3A-WNT9A (rs708113; p=1·11 × 10-8) and found support for previously reported regions associated with alcohol-related hepatocellular carcinoma risk at TM6SF2 (rs58542926; p=6·02 × 10-10), PNPLA3 (rs738409; p=9·29 × 10-7), and HSD17B13 (rs72613567; p=2·49 × 10-4). The validation cohort included 874 cases and 1059 controls and three variants were replicated: WNT3A-WNT9A (rs708113; p=1·17 × 10-3), TM6SF2 (rs58542926; p=4·06 × 10-5), and PNPLA3 (rs738409; p=1·17 × 10-4). All three variants reached GWAS significance in the meta-analysis: WNT3A-WNT9A (odds ratio 0·73, 95% CI 0·66-0·81; p=3·93 × 10-10), TM6SF2 (1·77, 1·52-2·07; p=3·84×10-13), PNPLA3 (1·34, 1·22-1·47; p=7·30 × 10-10). Adjustment for clinical covariates yielded similar results. We observed an additive effect of at-risk alleles on alcohol-related hepatocellular carcinoma. WNT3A-WNT9A rs708113 was not associated with liver fibrosis. INTERPRETATION: WNT3A-WNT9A is a susceptibility locus for alcohol-related hepatocellular carcinoma, suggesting an early role of the Wnt-ß-catenin pathway in alcohol-related hepatocellular carcinoma carcinogenesis. FUNDING: Ligue Nationale contre le Cancer, Bpifrance, INSERM, AFEF, CARPEM, Labex OncoImmunology, and Agence Nationale de la Recherche.


Asunto(s)
Trastornos Relacionados con Alcohol/genética , Carcinoma Hepatocelular/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias Hepáticas/genética , Aciltransferasas/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Variación Genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Fosfolipasas A2 Calcio-Independiente/genética , Polimorfismo de Nucleótido Simple , Proteínas Wnt/genética , Proteína Wnt3A/genética , Adulto Joven
12.
Nat Commun ; 12(1): 5941, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642323

RESUMEN

Wnt signaling usually functions through a spatial gradient. Localized Wnt3a signaling can induce the asymmetric division of mouse embryonic stem cells, where proximal daughter cells maintain self-renewal and distal daughter cells acquire hallmarks of differentiation. Here, we develop an approach, same cell epigenome and transcriptome sequencing, to jointly profile the epigenome and transcriptome in the same single cell. Utilizing this method, we profiled H3K27me3 and H3K4me3 levels along with gene expression in mouse embryonic stem cells with localized Wnt3a signaling, revealing the cell type-specific maps of the epigenome and transcriptome in divided daughter cells. H3K27me3, but not H3K4me3, is correlated with gene expression changes during asymmetric cell division. Furthermore, cell clusters identified by H3K27me3 recapitulate the corresponding clusters defined by gene expression. Our study provides a convenient method to jointly profile the epigenome and transcriptome in the same cell and reveals mechanistic insights into the gene regulatory programs that maintain and reset stem cell fate during differentiation.


Asunto(s)
Epigenómica/métodos , Histonas/genética , Células Madre Embrionarias de Ratones/metabolismo , Transcriptoma , Proteína Wnt3A/genética , Animales , Diferenciación Celular , División Celular , Línea Celular , Redes Reguladoras de Genes , Histonas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Análisis de la Célula Individual/métodos , Secuenciación del Exoma , Proteína Wnt3A/metabolismo
13.
Biochem Biophys Res Commun ; 577: 24-31, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34492499

RESUMEN

Osteomyelitis is one of the most challenging diseases in the field of orthopedics for its complex pathogenesis and unsatisfactory treatment. The mechanism underlying its occurrence and development is still unclear. In our previous study, we found that long non-coding RNA (lncRNA) NONHSAT009968 inhibited the ability of osteogenic differentiation in staphylococcal protein A (SPA)-treated human bone marrow mesenchymal stem cells (hBMMSCs), but the underlying mechanism remains unclear. The current study was aimed at elucidating the possible mechanism of NONHSAT009968 in regulating osteogenic differentiation and bone defect repairability of hBMMSCs under infection. It was revealed that Wnt3a played a key role in promoting osteogenic differentiation of hBMMSCs treated with SPA in vitro. In addition, NONHSAT009968 inhibited osteogenic differentiation of hBMMSCs treated with SPA via Wnt3a, both in vivo and in vitro. In sum, the results suggested that lncNONHSAT009968 inhibited osteogenic differentiation of hBMMSCs in SA-induced inflammation through Wnt3a, which may have affected the occurrence and development of osteomyelitis. This study might provide novel insights regarding osteomyelitis and infectious bone defects.


Asunto(s)
Diferenciación Celular/genética , Inflamación/genética , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , ARN Largo no Codificante/genética , Proteína Wnt3A/genética , Western Blotting , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación de la Expresión Génica , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Células Madre Mesenquimatosas/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Estafilocócica A , Proteína Wnt3A/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34408016

RESUMEN

During malignant progression, epithelial cancer cells dissolve their cell-cell adhesion and gain invasive features. By virtue of its dual function, ß-catenin contributes to cadherin-mediated cell-cell adhesion, and it determines the transcriptional output of Wnt signaling: via its N terminus, it recruits the signaling coactivators Bcl9 and Pygopus, and via the C terminus, it interacts with the general transcriptional machinery. This duality confounds the simple loss-of-function analysis of Wnt signaling in cancer progression. In many cancer types including breast cancer, the functional contribution of ß-catenin's transcriptional activities, as compared to its adhesion functions, to tumor progression has remained elusive. Employing the mouse mammary tumor virus (MMTV)-PyMT mouse model of metastatic breast cancer, we compared the complete elimination of ß-catenin with the specific ablation of its signaling outputs in mammary tumor cells. Notably, the complete lack of ß-catenin resulted in massive apoptosis of mammary tumor cells. In contrast, the loss of ß-catenin's transcriptional activity resulted in a reduction of primary tumor growth, tumor invasion, and metastasis formation in vivo. These phenotypic changes were reflected by stalled cell cycle progression and diminished epithelial-mesenchymal transition (EMT) and cell migration of breast cancer cells in vitro. Transcriptome analysis revealed subsets of genes which were specifically regulated by ß-catenin's transcriptional activities upon stimulation with Wnt3a or during TGF-ß-induced EMT. Our results uncouple the signaling from the adhesion function of ß-catenin and underline the importance of Wnt/ß-catenin-dependent transcription in malignant tumor progression of breast cancer.


Asunto(s)
Adhesión Celular/fisiología , Neoplasias Mamarias Animales/metabolismo , Transducción de Señal/fisiología , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Animales , Apoptosis , Ciclo Celular , Movimiento Celular , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Mamarias Animales/genética , Ratones , Ratones Transgénicos , Invasividad Neoplásica , Metástasis de la Neoplasia , Transcriptoma , Factor de Crecimiento Transformador beta/farmacología , Proteína Wnt3A/genética , beta Catenina/genética
15.
Sci Rep ; 11(1): 15942, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354108

RESUMEN

To elucidate genetic factors affecting orthodontic treatment duration, we employed targeted next-generation sequencing on DNA from the saliva of 117 patients undergoing orthodontic treatment after premolar extraction. The clinical characteristics of patients are summarized, and the association of clinical variables with treatment duration was assessed. Patients whose treatment duration deviated from the average were classified into an extreme long group or an extreme short group. We identified nine single nucleotide polymorphisms (SNPs) of six genes that significantly differed in the two groups via targeted sequencing. The frequency of the CC genotypes of WNT3A, SPP1 (rs4754, rs9138), and TNFSF11, TT genotype of SPP1 (rs1126616), and GG genotype of SFRP2 was significantly higher in the extreme long group than in the short group. In the extreme short group, the TC genotype of SPP1, AA genotype of P2RX7, CT genotype of TNFSF11, and AG genotype of TNFRSF11A tended to exhibit higher frequency than in the long group. Taken together, we identified genetic polymorphisms related to treatment duration in Korean orthodontic patients undergoing premolar extraction. Our findings could lead to further studies predicting the prolongation of the orthodontic treatment duration, and will be of great aid to patients as well as orthodontists.


Asunto(s)
Diente Premolar/cirugía , Ortodoncia/métodos , Adolescente , Adulto , Estudios de Casos y Controles , Duración de la Terapia , Femenino , Expresión Génica , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos , Humanos , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Osteopontina/genética , Polimorfismo de Nucleótido Simple , Ligando RANK/genética , Receptores Purinérgicos P2X7/genética , Estudios Retrospectivos , Transcriptoma , Resultado del Tratamiento , Proteína Wnt3A/genética
16.
Cell Commun Signal ; 19(1): 87, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399774

RESUMEN

BACKGROUND: Wnt signaling plays key roles in cellular and physiological processes, including cell proliferation, differentiation and migration during development and tissue homeostasis in adults. This pathway can be defined as Wnt/ß-catenin-dependent or ß-catenin-independent or "non-canonical", both signaling are involved in neurite and synapse development/maintenance. Porcupine (PORCN), an acylase that o-acylates Wnt ligands, a major modification in secretion and interaction with its receptors. We use Wnt-C59, a specific PORCN inhibitor, to block the secretion of endogenous Wnts in embryonic hippocampal neurons (DIV 4). Under these conditions, the activity of exogenous Wnt ligands on the complexity of the dendritic tree and axonal polarity were evaluated METHODS: Cultured primary embryonic hippocampal neurons obtained from Sprague-Dawley rat fetuses (E18), were cultured until day in vitro (DIV) 4 (according to Banker´s protocol) and treated with Wnt-C59 for 24 h, Wnt ligands were added to the cultures on DIV 3 for 24 h. Dendritic arbors and neurites were analysis by fluorescence microscopy. Transfection with Lipofectamine 2000 on DIV 2 of plasmid expressing eGFP and KIF5-Cherry was carried out to evaluate neuronal polarity. Immunostaining was performed with MAP1B and Tau protein. Immunoblot analysis was carried out with Wnt3a, ß-catenin and GSK-3ß (p-Ser9). Quantitative analysis of dendrite morphology was carried out with ImageJ (NIH) software with Neuron J Plugin. RESULTS: We report, here, that Wnt-C59 treatment changed the morphology of the dendritic arbors and neurites of embryonic hippocampal neurons, with decreases ß-catenin and Wnt3a and an apparent increase in GSK-3ß (p-Ser9) levels. No effect was observed on axonal polarity. In sister cultures, addition of exogenous Wnt3a, 5a and 7a ligands rescued the changes in neuronal morphology. Wnt3a restored the length of neurites to near that of the control, but Wnt7a increased the neurite length beyond that of the control. Wnt5a also restored the length of neurites relative to Wnt concentrations. CONCLUSIONS: Results indicated that Wnt ligands, added exogenously, restored dendritic arbor complexity in embryonic hippocampal neurons, previously treated with a high affinity specific Porcupine inhibitor. We proposed that PORCN is an emerging molecular target of interest in the search for preclinical options to study and treat Wnt-related diseases. Video Abstract.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/genética , Neuronas/metabolismo , Proteína Wnt3A/genética , beta Catenina/genética , Animales , Axones/metabolismo , Bencenoacetamidas/farmacología , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Polaridad Celular/genética , Proliferación Celular/efectos de los fármacos , Feto , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Ligandos , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas/genética , Piridinas/farmacología , Ratas , Proteínas Wnt/genética , Proteína Wnt-5a/genética
17.
Nat Commun ; 12(1): 4640, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330896

RESUMEN

Cranial sutures are major growth centers for the calvarial vault, and their premature fusion leads to a pathologic condition called craniosynostosis. This study investigates whether skeletal stem/progenitor cells are resident in the cranial sutures. Prospective isolation by FACS identifies this population with a significant difference in spatio-temporal representation between fusing versus patent sutures. Transcriptomic analysis highlights a distinct signature in cells derived from the physiological closing PF suture, and scRNA sequencing identifies transcriptional heterogeneity among sutures. Wnt-signaling activation increases skeletal stem/progenitor cells in sutures, whereas its inhibition decreases. Crossing Axin2LacZ/+ mouse, endowing enhanced Wnt activation, to a Twist1+/- mouse model of coronal craniosynostosis enriches skeletal stem/progenitor cells in sutures restoring patency. Co-transplantation of these cells with Wnt3a prevents resynostosis following suturectomy in Twist1+/- mice. Our study reveals that decrease and/or imbalance of skeletal stem/progenitor cells representation within sutures may underlie craniosynostosis. These findings have translational implications toward therapeutic approaches for craniosynostosis.


Asunto(s)
Suturas Craneales/metabolismo , Craneosinostosis/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Células Madre/metabolismo , Animales , Proteína Axina/genética , Proteína Axina/metabolismo , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Suturas Craneales/citología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Sistema Musculoesquelético/citología , Sistema Musculoesquelético/metabolismo , Células Madre/citología , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , Vía de Señalización Wnt/genética , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
18.
In Vitro Cell Dev Biol Anim ; 57(6): 587-597, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34212340

RESUMEN

Conventional methods for obtaining pancreatic ß cells are based on simulating the embryonic development phase of endocrine cells via hierarchical differentiation of pluripotent stem cells (PSCs). Accordingly, we attempted to modify the protocols for obtaining insulin-secreting cells (ISCs) by sequential differentiation of a human embryonic stem cell (hESC), using the HS181 cell line. Furthermore, we hypothesize that actual pancreatic endocrine cells may arise from trans-differentiation of mature ductal cells after the embryonic developmental stage and throughout the rest of life. According to the hypothesis, ductal cells are trans-differentiated into endocrine and exocrine cells, undergoing a partial epithelial to mesenchymal transition (EMT). To address this issue, we developed two new protocols based on hESC differentiation to obtain ductal cells and then induce EMT in cells to obtain hormone-secreting islet-like cells (HSCs). The ductal (pre-EMT exocrine) cells were then induced to undergo partial EMT by treating with Wnt3a and activin A, in hypoxia. The cell derived from the latter method significantly expressed the main endocrine cell-specific markers and also ß cells, in particular. These experiments not only support our hypothetical model but also offer a promising approach to develop new methods to compensate ß cell depletion in patients with type 1 diabetes mellitus (T1DM). Although this protocol of generating islet-like cells from ductal cells has a potential to treat T1DM, this strategy may be exploited to optimize the function of these cells in an animal model and future clinical applications.


Asunto(s)
Transdiferenciación Celular/genética , Diabetes Mellitus Tipo 1/terapia , Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes/citología , Proteína Wnt3A/genética , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Células Endocrinas/citología , Transición Epitelial-Mesenquimal/genética , Células Madre Embrionarias Humanas/trasplante , Humanos , Insulina/genética , Insulina/metabolismo , Secreción de Insulina/genética , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/trasplante , Páncreas/crecimiento & desarrollo , Páncreas/patología , Células Madre Pluripotentes/trasplante
19.
Pediatr Surg Int ; 37(11): 1543-1554, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34216241

RESUMEN

PURPOSE: Refinement of organoid technology is important for studying physiology and disease of the intestine. We aimed to optimize defined serum-free conditions for human infant small intestinal (SI) organoid culture with predetermined doses of Wnt3a and Rspo1 from surgical specimens. We further assessed whether intestinal specimens could be stored before use as a source of organoids. METHODS: Different doses of Wnt3a and Rspo1 in a serum-free medium were tested to establish a condition in which surgically resected SI cells grew as organoids over multiple passages. The expression of marker genes for stem and differentiated cells was assessed by quantitative polymerase chain reaction. We also investigated the organoid-forming efficiency of cells in degenerating intestines stored at 4 °C for various intervals post-resection. RESULTS: We determined the doses of Wnt3a and Rspo1 required for the continuous growth of infant SI organoids with multi-differentiation potential. We revealed that, despite the time-dependent loss of stem cells, tissues stored for up to 2 days preserved cells capable of generating amplifiable organoids. CONCLUSION: SI cells can be grown as organoids under defined conditions. This could provide a reproducible and customizable method of using surgical specimens for the study of intestinal maturation and their relevance to pediatric diseases.


Asunto(s)
Intestino Delgado , Organoides , Diferenciación Celular , Humanos , Lactante , Intestino Delgado/cirugía , Intestinos , Células Madre , Proteína Wnt3A/genética
20.
Am J Respir Cell Mol Biol ; 65(5): 489-499, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34107237

RESUMEN

The Wnt/ß-catenin pathway initiates a signaling cascade that is critical in cell differentiation and the normal development of multiple organ systems. The reactivation of this pathway has been documented in experimental and human idiopathic pulmonary fibrosis, wherein Wnt/ß-catenin activation has been implicated in epithelial-cell repair. Furthermore, the canonical ligand Wnt3a is known to induce myofibroblast differentiation; however, the role of noncanonical Wnt ligands remains unclear. This study showed significantly higher levels of Wnt11 expression in cells from both patients with idiopathic pulmonary fibrosis and bleomycin-treated mice, as well as in TGFß-treated mouse lung fibroblasts. Moreover, Wnt11 induced myofibroblast differentiation as manifested by increased α-SMA (ACTA2) expression, which was similar to that induced by canonical Wnt3a/ß-catenin signaling. Further investigation revealed that Wnt11 induction of α-SMA was associated with the activation of JNK (c-Jun N-terminal kinase)/c-Jun signaling and was inhibited by a JNK inhibitor. The potential importance of this signaling pathway was supported by in vivo evidence showing significantly increased levels of Wnt11 and activated JNK in the lungs of mice with bleomycin-induced pulmonary fibrosis. Interestingly, fibroblasts did not express canonical Wnt3a, but treatment of these cells with exogenous Wnt3a induced endogenous Wnt11 and Wnt5a, resulting in repression of the Wnt3a/ß-catenin target gene Axin2. These findings suggested that the noncanonical Wnt induction of myofibroblast differentiation mediated by the JNK/c-Jun pathway might play a significant role in pulmonary fibrosis, in addition to or in synergy with canonical Wnt3a/ß-catenin signaling. Moreover, Wnt3a activation of noncanonical Wnt signaling might trigger a switch from canonical to noncanonical Wnt signaling to induce myofibroblast differentiation.


Asunto(s)
Fibrosis Pulmonar Idiopática/patología , Miofibroblastos/patología , Vía de Señalización Wnt/fisiología , Proteína Wnt3A/metabolismo , Animales , Bleomicina/toxicidad , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Humanos , Ratones Endogámicos C57BL , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt3A/genética , beta Catenina/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...